
EasyChair Preprint
№ 10531

Intelligent Requirements Engineering: Applying
Machine Learning for Requirements Classification

Mo’Ath Shatnawi, Ahmad Audat and Marah Saraireh

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 10, 2023



Intelligent Requirements Engineering: Applying
Machine Learning for Requirements Classification

1st Mo’ath Shatnawi
Philadelphia University

Amman, Jordan
msshatnawi5@gmail.com

2nd Ahmad Audat
Philadelphia University

Amman, Jordan
audat.ahmad@gmail.com

3rd Marah Saraireh
Philadelphia University

Amman, Jordan
marahyahia160@gmail.com

Abstract—The classification of requirements plays a crucial
role in requirements engineering, enabling the differentiation
between legally relevant requirements and auxiliary content.
However, the manual labeling of each content element in a
requirements specification as a ”functional requirement” or ”non-
functional requirement” or ”information” is a time-consuming
and error-prone task. In this paper, we propose an approach
that automates the classification of content elements in a nat-
ural language requirements specification as either ”functional
requirement” or ”non-functional requirement” or ”information”
Our approach leverages a combination of Convolutional Neural
Networks (CNN) and Support Vector Machines (SVM) for the
classification task. The CNN model is responsible for extracting
meaningful features from the textual content, while the SVM
classifier is employed to make the final classification decision.
To train and validate our model, we utilized online datasets
specifically designed for requirements classification. Additionally,
we augmented these datasets by incorporating data from other
projects. The performance of our model was measured using
various evaluation metrics, including accuracy, F1 score, pre-
cision, recall, and confusion matrix analysis. The experimental
results demonstrate promising performance with a precision of
80%, accuracy of 85%, F1 score of 88%, and recall of 90%.
These results indicate that our approach successfully automates
the classification process and significantly reduces the need for
manual labeling, thereby saving time and reducing the potential
for errors in requirements classification.

Index Terms—Requirements classification, natural language
processing, Convolutional Neural Networks, Support Vector Ma-
chines, accuracy, F1 score, precision, recall, Machine Learning,
Datasets

I. INTRODUCTION

Artificial Intelligence (AI) is what defines machine intel-
ligence or computer intelligence because of the intelligence
provided by computers and machines that simulate the intelli-
gence and capabilities of a person, such as prediction, learning,
or conclusion, as well as a term concerned with the manufac-
ture of computers, prediction, or the detection of something
[1]. Machine Learning is one of the most important types of ar-
tificial intelligence, through which computers are programmed
through specific algorithms taught to them through experience
and training so that computers can implement new orders
based on the data they have been trained on [2]. Require-
ments engineering plays a crucial role in machine learning

This work is supported by the Deanship of Scientific Research in Philadel-
phia University, Jordan.

by defining and operationalizing the goals and constraints that
need to be fulfilled in a system as required by stakeholders.
It involves a systematic and structured process that begins
with domain analysis, followed by requirement elicitation,
specification, evaluation, negotiation, and documentation. The
ultimate objective is to establish clear responsibilities for
all stakeholders and achieve high-quality requirements, de-
spite the inherent challenges associated with this process
[3]. In requirements engineering, the accurate classification
of requirements plays a vital role in ensuring the successful
development and implementation of software systems [4]. The
ability to differentiate between legally relevant requirements
and auxiliary content is crucial for effective decision-making,
compliance, and overall project success. However, manually
labeling each content element in a requirements specification
as a ”functional requirement” or ”non-functional requirement”
can be a labor-intensive and error-prone task [5]. As a result,
there is a growing interest in leveraging machine learning
techniques to automate the requirements classification process.

In this research, our objective is to develop a requirements
classification model utilizing artificial intelligence techniques,
particularly machine learning. We aim to leverage the power
of machine learning algorithms to effectively classify re-
quirements based on their nature and characteristics. We will
employ a dataset that is readily available in kaggle. Addi-
tionally, we will augment this dataset by incorporating new
requirements gathered from various other projects. To structure
our research, we will begin by reviewing previous studies
that have explored similar works in the field of requirements
classification. Next, we will focus on the collecting the dataset.
We will gather the initial dataset from kaggle,and we will col-
lect additional requirements from different projects, ensuring a
comprehensive representation of real-world requirements.The
next section we will proceed to develop our requirements clas-
sification model. by Convolutional Neural Networks (CNN)
and Support Vector Machines (SVM) and k-nearest neighbor
(KNN). We will measure various evaluation metrics, including
accuracy, precision, recall, F1 score, and analyze the confusion
matrix.

Finally, we will conclude our research by summarizing
the findings and discussing the implications of our developed
requirements classification model. We will highlight the contri-
butions of our work in leveraging machine learning techniques



for more accurate and efficient requirements classification.
The methodology of our research, which encompasses the
following steps:
- Studying Previous Intelligent Models for Requirements Clas-
sification.
- Acquiring an initial dataset by leveraging datasets available
in Kaggle and GitHub.
- Oversampling by Collecting new datasets of requirements
from various projects and applications. - Conducting data pre-
processing to prepare the textual data for analysis.
- Implementing several classification models, including CNN,
SVM, and KNN.
- Evaluating the performance of the models using accuracy,
precision, recall, and F1-score metrics.

II. PREVIOUS INTELLIGENT MODELS FOR REQUIREMENTS
CLASSIFICATION

In this section, we provide an overview of the strengths and
limitations of the research on of Requirements Classification
model using machine learning.

The research titled ”Automatic Classification of Require-
ments Based on Convolutional Neural Networks” conducted
by Jonas Winkler and Andreas Vogelsang [6], focused on the
categorization of requirements and information without ex-
plicitly distinguishing between functional and non-functional
requirements. By employing Convolutional Neural Networks
(CNN), the study aimed to automate the classification pro-
cess, improving the efficiency and accuracy of requirements
categorization.

One notable strength of the research lies in its utilization of
CNNs to automatically classify requirements and information.
CNNs, known for their effectiveness in pattern recognition
tasks, were adapted to handle textual representations of re-
quirements. This innovative application of CNNs showcases
the researchers’ ability to leverage deep learning techniques
for automating the classification process, enabling faster and
more reliable categorization.

However, it is important to note that the research had a lim-
itation in terms of the specific categorization of requirements
as functional or non-functional. While the study successfully
classified requirements and information, it did not explicitly
differentiate between different types of requirements. This
omission restricts the ability to analyze and distinguish be-
tween functional and non-functional requirements, which are
crucial distinctions in requirements engineering. Incorporating
such categorization could provide a more comprehensive un-
derstanding of the requirements and their characteristics.

The secend research paper ”Software Requirements Clas-
sification using Machine Learning algorithm’s” by Gaith Y
Quba et al. [7], addresses the challenge of automating the
classification of software requirements. Previous attempts to
automate this process have been insufficient, leading to the
need for an improved approach. This study aims to fill this
gap by proposing a technique that utilizes machine learning to
automatically classify software requirements into two classes:
Functional Requirements and Non-Functional Requirements.

In the methodology, the study utilizes the PROMISE exp
dataset, which contains labeled software requirements. The
dataset undergoes preprocessing steps such as normalization,
extractions, and the selection of suitable techniques. The text
data from software requirements specifications is represented
using the Bag-of-Words (BoW) technique. To perform the
classification, two machine learning algorithms, Support Vec-
tor Machine (SVM) and K-Nearest Neighbors (KNN), are
employed. The proposed technique’s effectiveness is evaluated
using metrics such as Precision, Recall, and F-measure.

One strength of this research lies in its utilization of machine
learning algorithms to automate the classification of software
requirements. By leveraging machine learning techniques,
the study addresses the challenges associated with manual
classification, including the effort, time, and cost involved.
Automating the classification process not only improves ef-
ficiency but also enhances the accuracy by reducing potential
human errors.

However, a potential weakness of the study is its reliance
on the PROMISE exp dataset for evaluation. The extent to
which this dataset accurately represents real-world software
requirements may limit the generalizability of the proposed
technique. Additionally, the research lacks a comprehensive
analysis of the performance and limitations of the SVM and
KNN algorithms used. Further exploration and comparison
with alternative algorithms would provide a more compre-
hensive understanding of the most effective machine learning
approach for requirements classification.

Where we also expanded the study to include more research
which used different methods and algorithms to classify re-
quirements, it summarizes their used approaches, proposed
algorithms, used dataset, and the result for each study.
The paper [10] highlights the crucial role of security in soft-
ware development, emphasizing the need for clear security re-
quirements in the Software Requirement Specification (SRS).
It identifies a common issue where these requirements are of-
ten inadequately defined, leading to potential security vulnera-
bilities. To address this, the authors propose a method to mine
security-related requirements from the SRS and classify them
into specific categories. The method uses text mining and the
J48 decision tree algorithm to develop prediction models for
each security type. This approach aims to improve future soft-
ware development by facilitating early security requirement
identification and thus enhancing the reliability of software.
The authors present a three-step methodology for classifying
security requirements based on their descriptions. They first
gather security requirements from a public dataset and select
descriptions related to security issues. Then, they apply text
mining techniques, including preprocessing, feature selection,
and TF-IDF weighting to convert the text data into a structured
format. In the final step, they develop four binary prediction
models using the J48 decision tree method, each focused
on a specific type of security requirement: authentication-
authorization, access control, cryptography-encryption, and
data integrity. The performance of these models is assessed us-
ing Receiver Operating Characteristic (ROC) analysis. More-



over, The study [11] proposed a novel approach to ad-
dress misclassification issues in Non-Functional Requirements
(NFRs) using a Convolutional Neural Network (CNN) based
multi-label classifier. The goal was to automate the process
of classifying stakeholder requirements into five classes of
NFRs: reliability, usability, portability, maintainability, and
efficiency. The implementation of this approach occurs in two
steps: corpus construction and annotation, followed by feature
extraction and CNN training. In step 1, the procedure starts
by identifying critical NFR attributes—reliability, efficiency,
portability, usability, and maintainability—based on various
software quality models. Software requirement specification
(SRS) documents are then collected, and researchers manually
extract requirements related to the selected NFR attributes
to create a dataset. This dataset creation process follows the
MATTER-MAMA framework to ensure a representative and
balanced corpus. Subsequently, each requirement related to
selected categories is reassessed by a crowd to minimize the
chance of mislabeling, and three annotators perform specifi-
cations to the dataset based on guidelines and instructions.
The outcome of step 1 is a multi-labeled corpus. In step 2, a
CNN is designed for feature extraction and classification. The
labeled corpus from step 1 is used to train a word-level CNN
for multi-label text classification using TensorFlow and Keras.
Feature extraction is performed on word2vec, which is used
to determine class labels based on the semantic dependency
and relatedness of words in a requirement. The CNN generates
dense vectors for word representation, predicting labels with
improved fit criteria for classification.

Furthermore, the authors [12] applied a systematic approach
that involved filtering and selecting papers discussing NFR
catalogs. Inclusion and exclusion criteria were established, and
a systematic ’lightweight’ mapping study was conducted on 20
selected papers representing diverse NFRs related to security,
performance, and usability. Keywords were collected from 31
catalogs to create a dataset, ensuring duplication avoidance
and comprehensive coverage. The final dataset included 77
words across three categories: usability, security, and per-
formance. The methodology involved four steps: visualizing
a ”lightweight” methodological process, converting the sig
parser to CSV format, keyword embedding, and QA. The
parser was developed to convert SIG catalogs into CSV files,
and the quality assurance process ensured search efficiency
and classification accuracy. The Tera-PROMISE Open Sci-
ence data set of 625 specifications was used for evaluation.
This specification, obtained from 15 master’s degree projects,
covered 11 types of NFRs. The authors focused on four spe-
cific types: security, performance, operational, and usability,
resulting in 187 related statements.

This research paper [13] addresses the automated extrac-
tion and classification of functional requirements (FRs) and
non-functional requirements (NFRs) in software development,
leveraging supervised machine learning. The central concern
arises from the fact that NFRs are often overlooked and
identified late in the software development process, pointing
towards the need for enhanced tools for early identification

and management of NFRs.
The researchers developed and evaluated a supervised ma-

chine learning approach that uses metadata, lexical, and syn-
tactical features. This approach was based on the Support
Vector Machine (SVM) classifier algorithm. To deal with class
imbalances in their dataset, the researchers employed under-
and over-sampling strategies. They also augmented the dataset
using user comments from software reviews, particularly for
the binary classification cases.

For classification, they focused on two classes: non-
functional requirements (NFR) and functional requirements
(FR). These two classes were balanced by random under-
sampling of the majority class. For individual NFR types,
binary classifiers were used, while a multi-class classifier was
employed for predicting the four major classes.

The performance of the classifiers was evaluated through
cross-validation techniques, and they achieved impressive pre-
cision and recall rates. For the identification of FRs and NFRs,
precision and recall reached up to approximately 92%. For
specific NFRs like security and performance, they attained
around 92% precision and 90% recall.

III. COLLECTING THE NEW DATASET

In this section, we describe the process of compiling the
dataset used in the research for software requirements classifi-
cation using machine learning algorithms. The dataset plays a
crucial role in training and evaluating the proposed classifica-
tion model. We aimed to create a comprehensive and diverse
dataset that accurately represents software requirements. To
achieve this, we employed a multi-step approach, starting
with an initial dataset and augmenting it with additional
requirements from other sources.

A. Collecting dataset

In the initial step, we identified the initial dataset on GitHub,
which was curated by Mitrevski (2021) [8] specifically for the
task of requirements classification. This dataset encompassed a
total of 626 requirements, which were subsequently classified
into two distinct categories: functional requirements and non-
functional requirements.

After that, We discovered a second dataset on Kaggle called
”Software Requirements Dataset,” curated by Iam Vaibhav
[9]. This dataset aimed to classify requirements into multiple
classes and consisted of approximately 976 requirements. We
integrated this dataset with our primary dataset, focusing
on classifying the requirements as either functional or non-
functional. After conducting data re-processing, including the
removal of duplicate requirements, our combined dataset now
comprises around 1180 requirements.

Additionally, we conducted a thorough study of various
projects and applications to gather a substantial number of
requirements, striving to include the largest possible variety
in our dataset. The analysis encompassed various research
papers, resulting in the extraction of 70 non-functional re-
quirements and 361 functional requirements Specifically, the



TABLE I
COMPARISON PREVIOUS INTELLIGENT MODELS FOR REQUIREMENTS CLASSIFICATION

Auther Name Titel Algorithm Dataset Result

Winkler, J. Automatic classification of
requirements based on

convolutional neural networks.

Convolutional Neural Networks
(CNN)

A dataset was created from the
database of The DOORS

document through the
knowledge gained

A precision of 0.73 and a
recall of 0.89.

Quba, G. Software requirements
classification using machine

learning algorithm’s

Support Vector Machine
(SVM) and K-Nearest

Neighbors (KNN)

The PROMISE exp dataset The use of Words (BoW) with
the Support Vector Machine

(SVM) algorithm outperformed
BoW with KNN, achieving an

F1 score of 90% in binary
classification (FR or NFR),

66% across 11 NFR
subcategories, and 72% across

all 12 subcategories.

Jindal, R. Automated Classification of
Security Requirements

J48 decision tree algorithm A publicly available dataset
from the PROMISE software

engineering repository

Model 4 performance
(AUC=0.83, sensitivity=80%).
Models 1 and 2 performance

(AUC=0.72 and 0.77
respectively). Model 3

performance (AUC=0.69).

Sabir, M. Multi-label classifier to deal
with misclassification in

non-functional requirements.

a Convolutional Neural
Network (CNN) algorithm

Private SRS documents and
manually extracted

There isn’t a specific about the
results of the proposed

approach

Kumar, M. Extraction and classification of
non-functional requirements
from text files: a supervised

learning approach.

The methodology comprised
four main steps: Systematic

”lightweight” process
visualization, Converting the
SIG parser into CSV format,

Merging keywords, and
Quality assurance.

Utilized an Open Science
Tera-PROMISE dataset

187 phrases related to security,
performance, and usability.

Kurtanović, Z. Automatically classifying
functional and non-functional
requirements using supervised

machine learning.

Support Vector Machine
(SVM)

”Quality attributes (NFR)”
dataset

Precision and Recall 92

study proposed by [24] yielded 12 non-functional require-
ments and 28 functional requirements. Additionally, the study
proposed by [23] yielded 12 non-functional requirements and
51 functional requirements. Moreover, [22] provided 10 non-
functional requirements and 57 functional requirements, while
[20], [21] contributed 15 non-functional requirements and 64
functional requirements. Furthermore, the works of [16]–[19]
resulted in 21 non-functional requirements and 161 functional
requirements.

B. The Pre-processing of Textual Data

Textual data is a valuable source of information in many do-
mains, but its raw form is not directly compatible with machine
learning algorithms. Therefore, pre-processing techniques play
a crucial role in converting text into a suitable format for
analysis. In our study, we focus on the pre-processing steps
of tokenization, sequence padding, and TF-IDF vectorization
to prepare the textual data for classification using the CNN,
SVM, and KNN models [14].

1) Tokenization: Tokenization is the process of converting
text into a sequence of tokens, where each token represents a

word or a subword unit [14]. In our CNN model code, the
Tokenizer class from the tensorflow.keras.preprocessing.text
module is used for tokenization. It is initialized and then fitted
on the input text data (X) using the fit on texts method. This
step creates a vocabulary of unique words in the dataset and
assigns a unique integer index to each word Figure 1.

Fig. 1. Example for Tokenization from our requirements

2) Sequence Padding: Neural networks require input data
of equal length, but the input text data may have varying



lengths [14]. To overcome this, sequence padding is ap-
plied to make all sequences of equal length. In our CNN
model code, the pad sequences function from the tensor-
flow.keras.preprocessing.sequence module is used for padding.
The sequences obtained from tokenization are padded to a
specified max seq length (which is set to 100 in this code)
using the pad sequences function. The padding is done by
adding zeros to the end of each sequence to match the
maximum sequence length.

3) The TF-IDF: The TF-IDF (Term Frequency-Inverse
Document Frequency) vectorizer is a commonly used tech-
nique for converting textual data into numerical features that
can be used for machine learning algorithms [15]. It assigns
a numerical value to each word or term in the text based
on its frequency and importance in the document and across
the entire dataset.We employ the TF-IDF vectorizer in both
the SVM and KNN models to convert the textual data into
numerical features2.

Fig. 2. Example for TF-IDF from our requirements

IV. IMPLEMENTION AND RESULTS

In the implementation phase, we utilized Python to conduct
the classification process employing machine learning tech-
niques. We experimented with multiple algorithms, specifi-
cally Convolutional Neural Network (CNN), Support Vector
Machine (SVM), and another instance of CNN, to achieve
optimal results for the task at hand.

In evaluating the experiment, we employed various per-
formance metrics, namely accuracy, F1 score, recall, and
precision. These metrics enable a comprehensive analysis of
the model’s performance, capturing different aspects such as
overall correctness, balance between precision and recall, and
more. By utilizing these methodologies and metrics, we aimed
to establish a reliable and effective classification process for
software requirements.

A. CNN

During the Convolutional Neural Network (CNN), were
experimented with to achieve the best possible outcomes. The
model underwent training on 70% of the dataset, validation on
20%, and testing on 10%. To ensure uniformity, the dataset
underwent preprocessing through tokenization and sequence
padding. The CNN model was comprised of an embedding
layer, a convolutional layer, a global max pooling layer, and

dense layers. It was compiled using the Adam optimizer and
trained for 10 epochs with a batch size of 32. The classification
results are as follows:

TABLE II
THE RESULTS OF CNN MODEL

From the Table II ,the CNN model achieved high accuracy,
precision, recall, and F1-score across all evaluation metrics,
demonstrating its effectiveness in classifying the data.

The Confusion matrices were generated for the training,
validation, and testing datasets, which are shown in the Tables
IIIIVV.

TABLE III
THE CONFUSION MATRIX OF CNN TRAINING DATASETS

TABLE IV
THE CONFUSION MATRIX OF CNN VALIDATION DATASETS

TABLE V
THE CONFUSION MATRIX OF CNN TESTING DATASETS



Figure 3 depicts the performance of the CNN algorithm in
terms of accuracy across different evaluation sets. The results
indicate high accuracy in the training set (98%), followed
by slightly lower accuracy in the validation set (88%) and
the testing set (92%). Similarly, precision, recall, and F1-
score exhibit consistent and favorable values across the three
evaluation sets.

Fig. 3. The performance of the CNN algorithm

B. SVM

The Support Vector Machine (SVM) algorithm was em-
ployed for classification in this implementation. To convert the
textual data into numerical features, the TF-IDF vectorizer was
utilized. The dataset was then split into training, validation,
and testing sets.

The SVM model, with a linear kernel, was trained on the
training set. The trained model and vectorizer were saved
for future use. Predictions were made on the training, vali-
dation, and testing sets. Evaluation metrics such as accuracy,
precision, recall, and F1-score were calculated for each set.
Additionally, a confusion matrix was generated for the test
set.The classification results are as follows:

TABLE VI
THE RESULTS OF SVM MODEL

The SVM model, as shown in Table VI, achieved good
accuracy, precision, recall, and F1-score across all evaluation
metrics, indicating its effectiveness in classifying the data.

The Confusion matrices were generated for the training,
validation, and testing datasets, which are shown in the Tables
VIIVIIIIX.

Figure 4 depicts the performance of the SVM algorithm in
terms of accuracy across different evaluation sets.The results
indicate relatively high accuracy in the training set (96%),

TABLE VII
THE CONFUSION MATRIX OF SVM TRAINING DATASETS

TABLE VIII
THE CONFUSION MATRIX OF SVM VALIDATION DATASETS

TABLE IX
THE CONFUSION MATRIX OF SVM TESTING DATASETS

followed by slightly lower accuracy in the validation set (88%)
and the testing set (88%). Precision, recall, and F1-score
also exhibit consistent and favorable values across the three
evaluation sets.

Fig. 4. The performance of the SVM algorithm

C. KNN

The K-Nearest Neighbors (KNN) algorithm is applied for
classification. The textual data was transformed into numerical
features using the TF-IDF vectorizer. Subsequently, the dataset
was divided into training, validation, and testing sets. The



KNN model was trained on the training set, with the number of
neighbors (k) set to 5.The trained model was then saved, along
with the TF-IDF vectorizer, for future use. Predictions were
made on the training, validation, and testing sets using the
trained KNN model.The accuracy, precision, recall, and F1-
score exhibited favorable values across the training, validation,
and testing sets.The classification results are as follows:

TABLE X
THE RESULTS OF KNN MODEL

The KNN model performance was evaluated using various
metrics, including accuracy, precision, recall, and F1-score.
The results are summarized in Table X.

The Confusion matrices were generated for the training,
validation, and testing datasets, which are shown in the Tables
XIXIIXIII.

TABLE XI
THE CONFUSION MATRIX OF KNN TRAINING DATASETS

TABLE XII
THE CONFUSION MATRIX OF KNN VALIDATION DATASETS

Figure 6 presents a visual representation of the KNN
algorithm’s accuracy performance across different evaluation
sets. The training set achieved the highest accuracy at 90%,
followed by the validation set at 86% and the testing set
at 85%. Similarly, precision, recall, and F1-score exhibit
consistent and favorable values across the three evaluation sets.

TABLE XIII
THE CONFUSION MATRIX OF KNN TESTING DATASETS

Fig. 5. The performance of the KNN algorithm

TABLE XIV
THE SUMMARY CNN, SVM, AND KNN RESULTS

D. Summery

Table XIV presents a summary of the results obtained from
the three models: CNN, SVM, and KNN. The CNN model
achieved the highest accuracy of 98%, indicating its ability
to classify the data with a high level of correctness. It also
exhibited excellent precision and recall scores of 98% and 97%
respectively, demonstrating its capability to accurately identify
positive instances and minimize false positives. The F1-score,
which combines precision and recall, was also impressive at
98% for the CNN model.

The SVM model also performed well, with an accuracy
of 96%. It showed a slightly lower precision of 95% but
compensated with an outstanding recall of 99%, indicating its
effectiveness in correctly identifying positive instances. The
F1-score for the SVM model was 97%, reflecting a good
balance between precision and recall.

The KNN model achieved an accuracy of 90%, which is
lower compared to the other two models. However, it still
displayed respectable precision and recall scores of 91% and
95% respectively. The F1-score for the KNN model was 93%,
indicating a relatively balanced performance between precision



and recall.
Overall, the CNN model demonstrated the highest accuracy

and performed consistently well across all evaluation metrics.
The SVM model excelled in recall, making it highly reliable
for correctly identifying positive instances. The KNN model
showed good performance but had slightly lower accuracy
compared to the other two models. Figure ?? can provide
a visual representation or diagram to further analyze and
compare the performance of these models.

Fig. 6. The performance of CNN, SVM, and KNN algorithms

V. CONCLUSION

In conclusion, our study aimed to leverage artificial intel-
ligence to enhance requirements engineering. We employed
machine learning techniques to develop multiple classifica-
tion models for distinguishing between functional and non-
functional requirements. To accomplish this, we constructed a
novel dataset by amalgamating existing datasets from sources
such as Kaggle and GitHub. Additionally, we collected new
requirement datasets from various projects and applications.

Throughout our research, we implemented three different
models: CNN, SVM, and KNN. These models underwent
rigorous evaluation and testing, yielding promising results.
These results highlight the effectiveness of the CNN model
in achieving remarkable accuracy (98%), along with balanced
performance across precision (98%), recall (97%), and F1-
score (98%) metrics. The SVM model also exhibits strong
overall performance, particularly in terms of recall (99%),
indicating its ability to correctly identify positive instances.
The KNN model demonstrates a respectable level of accuracy
(90%) and precision (91%), although its recall (95%) and F1-
score (93%) are slightly lower compared to the other models.

By utilizing these classification models, we have made
significant progress in automating the classification of require-
ments, facilitating more efficient and accurate requirement
engineering processes. Our work demonstrates the potential
of artificial intelligence and machine learning in improving
the field of requirements engineering and opens avenues for
further research and development in this domain.

REFERENCES

[1] Winston, P. H. (1984). Artificial intelligence. Addison-Wesley Longman
Publishing Co., Inc..

[2] Mitchell, T. M. (2007). Machine learning (Vol. 1). New York: McGraw-
hill.

[3] Van Lamsweerde, A. (2000, June). Requirements engineering in the year
00: A research perspective. In Proceedings of the 22nd international
conference on Software engineering (pp. 5-19).

[4] Nuseibeh, B., Easterbrook, S. (2000, May). Requirements engineering:
a roadmap. In Proceedings of the Conference on the Future of Software
Engineering (pp. 35-46).

[5] Ninaus, G., Reinfrank, F., Stettinger, M., Felfernig, A. (2014, August).
Content-based recommendation techniques for requirements engineer-
ing. In 2014 IEEE 1st International Workshop on Artificial Intelligence
for Requirements Engineering (AIRE) (pp. 27-34). IEEE.

[6] Winkler, J., Vogelsang, A. (2016, September). Automatic classification
of requirements based on convolutional neural networks. In 2016 IEEE
24th International Requirements Engineering Conference Workshops
(REW) (pp. 3945). IEEE.

[7] Quba, G. Y., Al Qaisi, H., Althunibat, A., AlZu’bi, S. (2021, July).
Software requirements classification using machine learning algorithm’s.
In 2021 International Conference on Information Technology (ICIT) (pp.
685-690). IEEE.

[8] Mitrevski, A. ”SE Requirements Classification PROMISE exp
Dataset.”, 2021, https://github.com/AleksandarMitrevski/se-
requirements-classification.

[9] Vaibhav, Iam. ”Software Requirements Dataset.” Accessed May
16, 2023. https://www.kaggle.com/datasets/iamvaibhav100/software-
requirements-dataset.

[10] Jindal, R., Malhotra, R., Jain, A. (2016, September). Automated classi-
fication of security requirements. In 2016 International Conference on
Advances in Computing, Communications and Informatics (ICACCI)
(pp. 2027-2033). IEEE.

[11] Sabir, M., Chrysoulas, C., Banissi, E. (2020). Multi-label classifier to
deal with misclassification in non-functional requirements. In Trends and
Innovations in Information Systems and Technologies: Volume 1 8 (pp.
486-493). Springer International Publishing.

[12] Kumar, M. S., Harika, A. (2020). Extraction and classification of non-
functional requirements from text files: a supervised learning approach.
Psychology and Education, 57(9), 4120-4123.

[13] Kurtanović, Z., Maalej, W. (2017, September). Automatically classifying
functional and non-functional requirements using supervised machine
learning. In 2017 IEEE 25th International Requirements Engineering
Conference (RE) (pp. 490-495). Ieee.

[14] Chowdhury, R. R., Hossain, M. S., Hossain, S., Andersson, K. (2019,
September). Analyzing sentiment of movie reviews in bangla by apply-
ing machine learning techniques. In 2019 International Conference on
Bangla Speech and Language Processing (ICBSLP) (pp. 1-6). IEEE.

[15] Christian, H., Agus, M. P., Suhartono, D. (2016). Single document
automatic text summarization using term frequency-inverse document
frequency (TF-IDF). ComTech: Computer, Mathematics and Engineer-
ing Applications, 7(4), 285-294.

[16] Aleko, D. R., and Djahel, S. (2020). An efficient adaptive traffic light
control system for urban road traffic congestion reduction in smart cities.
Information, 11(2), 119.

[17] Khalid, T., Khan, A. N., Ali, M., Adeel, A., ur Rehman Khan, A., &
Shuja, J. (2019). A fog-based security framework for intelligent traffic
light control system. Multimedia Tools and Applications, 78, 24595-
24615.[utf8]inputenc

[18] Liu, J., Li, J., Zhang, L., Dai, F., Zhang, Y., Meng, X., Shen, J.
(2018). Secure intelligent traffic light control using fog computing.
Future Generation Computer Systems, 78, 817-824.

[19] Elsagheer Mohamed, S. A., & AlShalfan, K. A. (2021). Intelligent traffic
management system based on the internet of vehicles (IoV). Journal of
advanced transportation, 2021, 1-23.

[20] Habib, M. A., Ahmad, M., Jabbar, S., Khalid, S., Chaudhry, J., Saleem,
K., ... Khalil, M. S. (2019). Security and privacy based access control
model for internet of connected vehicles. Future Generation Computer
Systems, 97, 687-696.

[21] Feng, Y., Huang, S., Chen, Q. A., Liu, H. X., Mao, Z. M. (2018).
Vulnerability of traffic control system under cyberattacks with falsified
data. Transportation research record, 2672(1), 1-11.

[22] M. Bani Younes and A. Boukerche, Intelligent Traffic Light Controlling
Algorithms Using Vehicular Networks,” IEEE Trans. Veh. Technol., vol.
65, no. 8, pp. 5887–5899, 2016, doi: 10.1109/TVT.2015.2472367.

[23] Hossan, S., & Nower, N. (2020). Fog-based dynamic traffic light control
system for improving public transport.Public Transport, 12, 431-454.



[24] Younes, M. B., Boukerche, A. (2018). An efficient dynamic traffic
light scheduling algorithm considering emergency vehicles for intelligent
transportation systems. Wireless Networks, 24, 2451-2463.


