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A PECULIAR SUBSET OF THE SMALLEST INDUCTIVE SET

FENG ZHAO

Abstract. By ZF, there exists a peculiar subset ω̄ of the smallest inductive set
ω, which is not just infinite, but D-finite. If ZF is consistent, then ZF + ω̄ 6= ω

is also consistent; otherwise, ZF is inconsistent. Moreover, if ZF is consistent,

then ω̄ and ω are indistinguishable in the forcing method, and so the forcing
method has limitation. In order to avoid conflicts with ZF, it will be necessary

to discriminate ω̄ from ω in the forcing method, and thus some problems
relevant to ω̄ deserve deeper discussion.

1. Introduction

Let ω be the minimal transfinite number. By the Axiom of Infinity, we have

(1.1) ∀x∈ω (x = 0 ∨ ∃y∈ω(x = y+))

where y+ = y ∪ {y}. Let F (X , E):

(1.2) Fun(X ) ∧ Fun(E) ∧ dom(E) = < ∧ ran(E) = dom(X ) = N ∧ ran(X ) ⊂ ω

where a predicate Fun(X ) means that X is a function, < is the set of real numbers
and N = ω−{0}. Then there are some X and E such that

(1.3) ∀E>0∃N=E(E)∀n>N(X (n) > E).

Let A(X , E) denote (1.3). We have

∃E(F (X , E) ∧A(X , E)) ⇒ X→∞

for some X . Now we define

(1.4) ω̄ = {x ∈ ω : ∀X ∀E(F (X , E) ∧A(X , E) ⇒ B(x,X ))}

where B(x,X ) : ∃N ∀n>N (x ∈ X (n)). By the Separation Axioms, ω̄ is exactly a
set. Obviously, 0 ∈ ω̄ and x ∈ ω̄ ⇒ x ∈ ω holds for every x, i. e.,

(1.5) ω̄ 6= ∅ ∧ ω̄ ⊂ ω.

So, can we claim that ω̄ = ω?
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2. ω & ω̄

Lemma 2.1. Let Y be the variable function such that Y → ∞ where

dom(Y) = N and ran(Y) ⊂ ω,
and let m be the variable object such that m ∈ dom(Y). Then

(2.1) ¬ (∃Y ∀m (Y(m) ∈ ω̄)).

Proof. Let R(x): ∀X ∀E (F (X , E) ∧ A(X , E) ⇒ B(x,X )). By the following prop-
erties for the universal and existential quantifiers[1]:

(2.2) (1) ∀x (Q(x)⇒ S(x)) ≡ ∃xQ(x) ⇒ ∀xS(x),

(2) ∃x (Q(x)⇒ S(x)) ≡ ∀xQ(x) ⇒ ∃xS(x),

(3) ∀x (Q(x) ∧ S(x)) ≡ ∀xQ(x) ∧ ∀xS(x),

(4) ∃x (Q(x) ∧ S(x)) ⇒ ∃xQ(x) ∧ ∃xS(x) is a tautology,

from (1.4), we have

∀x (x∈ ω̄ ⇔ x∈ω ∧R(x))(2.3)

⇔ ∀x ((x∈ ω̄ ⇒ x∈ω ∧R(x)) ∧ (x ∈ ω ∧R(x) ⇒ x ∈ ω̄))(2.4)

⇔ ∀x (x∈ ω̄ ⇒ x∈ω ∧R(x)) ∧ ∀x (x ∈ ω ∧R(x) ⇒ x ∈ ω̄)(2.5)

where

∀x (x∈ ω̄ ⇒ x∈ω ∧R(x))(2.6)

⇔ ∃x(x∈ ω̄) ⇒ ∀x(x∈ω ∧R(x)) (by (1) of (2.2))(2.7)

⇔ ∃x(x∈ ω̄) ⇒ ∀x(x∈ω) ∧ ∀xR(x) (by (3) of (2.2))(2.8)

⇔ ∃x(x∈ ω̄) ⇒ ∀x(x∈ω) ∧ ∀x ∀X ∀E(F (X , E) ∧A(X , E) ⇒ B(x,X ));(2.9)

herein, using the Separation Axioms, and the fact that ω̄ 6= ∅, we have

∀x ∀X ∀E (F (X , E) ∧A(X , E) ⇒ B(x,X ))(2.10)

⇔ ∀x ∀X (∀E (F (X , E) ∧A(X , E) ⇒ B(x,X )))(2.11)

⇔ ∀x ∀X (∃E (F (X , E) ∧A(X , E)) ⇒ ∀E B(x,X ))(2.12)

(x and X are parametric variables being bound, and by (1) of (2.2))(2.13)

⇔ ∀x (∃X ∃E (F (X , E) ∧A(X , E)) ⇒ ∀X ∀E B(x,X ))(2.14)

⇔ ∃x ∃X ∃E (F (X , E) ∧A(X , E)) ⇒ ∀x∀X ∀E B(x,X )(2.15)

⇔ ∃X ∃E (F (X , E) ∧A(X , E)) ⇒ ∀x ∀X B(x,X )(2.16)

(x in ∃xX ∃E (F (X , E) ∧A(X , E)) and(2.17)

E in ∀x∀X ∀E B(x,X ) are dummy variables being bound)(2.18)

where

∀x∀X B(x,X )(2.19)

⇔ ∀x∀X ∃N ∀n>N (x ∈ X (n))(2.20)

⇔ ∀x∀X ∃N ∀n (n > N ⇒ x ∈ X (n))(2.21)

⇔ ∃x∃X ∀N ∃n (n > N) ⇒ ∀x ∀X ∃N ∀n (x ∈ X (n))(2.22)

⇔ ∀N ∃n (n > N) ⇒ ∀x∀X ∀n (x ∈ X (n)).(2.23)

Now let us assume that ∃Y ∀m (Y(m) ∈ ω̄). Since for any x,

x ∈ ω̄ ⇔ x ∈ ω ∧ ∀X ∀E(F (X , E) ∧A(X , E) ⇒ B(x,X )),
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we have

∃Y ∀m (Y(m) ∈ ω̄)(2.24)

⇔ ∃Y ∀m (Y(m) ∈ ω ∧ ∀X ∀E(F (X , E) ∧A(X , E) ⇒ B(Y(m),X )))(2.25)

⇔ ∃Y (∀m(Y(m) ∈ ω) ∧ ∀m∀X∀E(F (X , E) ∧A(X , E) ⇒ B(Y(m),X )))(2.26)

⇒ ∃Y∀m(Y(m) ∈ ω) ∧ ∃Y∀m∀X∀E(F (X , E) ∧A(X , E) ⇒ B(Y(m),X ))(2.27)

where

∃Y ∀m ∀X ∀E (F (X , E) ∧A(X , E) ⇒ B(Y(m),X ))(2.28)

⇔ ∃Y ∀m ∀X (∃E(F (X , E) ∧A(X , E)) ⇒ ∀E B(Y(m),X ))(2.29)

⇔ ∃Y (∃m ∃X ∃E (F (X , E) ∧A(X , E)) ⇒ ∀m∀X ∀E B(Y(m),X ))(2.30)

⇔ ∀Y ∃m ∃X ∃E (F (X , E) ∧A(X , E)) ⇒ ∃Y ∀m∀X ∀E B(Y(m),X ),(2.31)

in which

∃Y ∀m ∀X ∀E B(Y(m),X )(2.32)

⇔ ∃Y ∀m ∀X ∀E ∃N ∀n>N(Y(m) ∈ X (n))(2.33)

⇔ ∃Y ∀m ∀X ∀E ∃N ∀n (n > N ⇒ Y(m) ∈ X (n))(2.34)

⇔ ∃Y ∀m ∀X ∃N ∀n (n > N ⇒ Y(m) ∈ X (n))(2.35)

⇔ ∀Y ∃m ∃X ∀N ∃n (n > N) ⇒ ∃Y ∀m ∀X ∃N ∀n (Y(m) ∈ X (n))(2.36)

⇔ ∀N ∃n (n > N) ⇒ ∃Y ∀m ∀X ∀n (Y(m) ∈ X (n)).(2.37)

Then for some Y (which is introduced by the Lemma (2.1)), we can let X be Y,
and so we have

∀N ∃n (n > N) ⇒ ∀m ∀n (Y(m) ∈ Y(n))(2.38)

⇔ ∀N ∃m ∃n (n > N) ⇒ ∃N ∀m ∀n (Y(m) ∈ Y(n))(2.39)

⇔ ∃N ∀m ∀n (n > N ⇒ Y(m) ∈ Y(n))(2.40)

⇒ m>N ⇒ Y(m) ∈ Y(m) for some foregoing N and any m with n=m(2.41)

( by ∀n∈N ∃m (m = n) ∧ ∀m ∃n∈N (n = m)),(2.42)

which is a contradiction because Y(m) 6∈ Y(m) for such a Y and every m∈dom(Y),
and so the assumption cannot hold. By the Law of Excluded Middle, if ZF is
consistent then we have (2.1).
NB: Assuming ∃Y ∀m (Y(m) ∈ ω̄), by (2.35) – (2.37) and (2.38) – (2.40) we have for
some Y, ∀m ∃N ∀n>N(Y(m) ∈ Y(n)) ⇔ ∃N ∀m ∀n>N(Y(m) ∈ Y(n)). �

From (2.1), and by

(2.43) (1) ¬ (∃xQ(x)) ≡ ∀x (¬Q(x)),

(2) ¬ (∀xQ(x)) ≡ ∃x (¬Q(x)),

we have

¬ (∃Y ∀m (Y(m) ∈ ω̄)) ⇔ ∀Y (¬ (∀m (Y(m) ∈ ω̄)))(2.44)

⇔ ∀Y ∃m (¬Y(m) ∈ ω̄)(2.45)

⇔ ∀Y ∃m (Y(m) 6∈ ω̄).(2.46)
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Lemma 2.2. Let Y be the variable function such that Y → ∞ where

dom(Y) = N and ran(Y) ⊂ ω,

and let m be the variable object such that m ∈ dom(Y). Then

(2.47) ¬ (∀Y ∀m (Y(m) ∈ ω̄)).

Proof. Assume that ∀Y ∀m (Y(m) ∈ ω̄) . Similar to (2.24)–(2.37), we have

∀N ∃n (n > N) ⇒ ∀Y ∀m ∀X ∀n (Y(m) ∈ X (n)).

Then for any of the foregoing Ys, we can let X be Y, and so we obtain:

∀N ∃n (n > N) ⇒ ∀m ∀n (Y(m) ∈ Y(n)).

By (2.38) – (2.42), there is a contradiction in it. Therefore the assumption cannot
hold, and so by the Law of Excluded Middle we have (2.47). �

From (2.47), by (2) of (2.43), we have

¬ (∀Y ∀m (Y(m) ∈ ω̄)) ⇔ ∃Y (¬ (∀m (Y(m) ∈ ω̄)))(2.48)

⇔ ∃Y ∃m (¬Y(m) ∈ ω̄)(2.49)

⇔ ∃Y ∃m (Y(m) 6∈ ω̄).(2.50)

In addition, by (1.1) – (1.5) and (2.43), we can obtain

(2.51) (1) ∃Y ∃m (Y(m) ∈ ω̄);

(2) ¬ (∃Y ∀m (Y(m) 6∈ ω̄)).

Combining the results with (2.43) we obtain

∃Y ∃m (Y(m) ∈ ω̄) ⇔ ¬ (∀Y ∀m (Y(m) 6∈ ω̄));(2.52)

¬ (∃Y ∀m (Y(m) 6∈ ω̄)) ⇔ ∀Y ∃m (Y(m) ∈ ω̄).(2.53)

Thus, if Y is the variable function such that Y →∞ where dom(Y) = N and
ran(Y) ⊂ ω, and m is the variable object such that m ∈ dom(Y), then each of the
following cannot hold.

(2.54) (1) ∃Y ∀m (Y(m) ∈ ω̄);

(2) ∀Y ∀m (Y(m) ∈ ω̄);

(3) ∃Y ∀m (Y(m) 6∈ ω̄);

(4) ∀Y ∀m (Y(m) 6∈ ω̄).

By (1.1) – (1.3), Y(m) ∈ ω holds for any of the foregoing Ys and anym ∈ dom(Y),
and so by (2.1) and (2.47) we obtain:

Theorem 2.1.

(2.55) ω̄ 6= ω.

By (1.5) and (2.55), we clearly have ω−ω̄ 6= ∅ and ω−ω̄ 6= ω.

Theorem 2.2.

(2.56) ∀α∈ ω̄ ∃Θ∈ω (α ∈ Θ).
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Proof. By (1.1) – (1.4), for any α,

α ∈ ω̄ ⇔ α ∈ ω ∧ ∀X ∀E (F (X , E) ∧A(X , E) ⇒ B(α,X ))(2.57)

⇒ α ∈ ω ∧ ∃X ∃N ∃n>N (X (n) ∈ ω ∧ α ∈ X (n))(2.58)

⇒ ∃X ∃N ∃n>N (α ∈ ω ∧ X (n) ∈ ω ∧ α ∈ X (n))(2.59)

(because α is a parametric variable being bound and(2.60)

by the property that q ∧ ∃xS(x) ≡ ∃x(q ∧ S(x)))(2.61)

⇒ ∃Θ (Θ ∈ ω ∧ α ∈ Θ)(2.62)

⇔ ∃Θ∈ω (α ∈ Θ).(2.63)

Or, put more briefly, for any α,

α ∈ ω̄ ⇒ α ∈ ω(2.64)

⇔ α ∈
⋃
ω(2.65)

⇔ ∃Θ (α ∈ Θ ∧ Θ ∈ ω)(2.66)

⇔ ∃Θ∈ω (α ∈ Θ).(2.67)

Hence we have (2.56). �

Theorem 2.3.

(2.68) ¬ (∀Θ∈ω (Θ ⊂ ω̄)).

Proof. Assume that ∀Θ∈ω (Θ ⊂ ω̄). Since for any α,

α ∈ ω ⇔ α ∈
⋃
ω(2.69)

⇔ ∃Θ (α ∈ Θ ∧ Θ ∈ ω)(2.70)

⇒ ∃Θ (α ∈ Θ ∧ Θ ⊂ ω̄)(2.71)

⇒ α ∈ ω̄,(2.72)

we have ω ⊂ ω̄. And by (1.5), we would have ω̄ = ω, which is contradictory with
(2.55). Thus we have (2.68). �

From (2.68), by (2) of (2.43), we have

¬ (∀Θ∈ω (Θ ⊂ ω̄)) ⇔ ∃Θ∈ω (¬(Θ ⊂ ω̄))(2.73)

⇔ ∃Θ∈ω (Θ 6⊂ ω̄).(2.74)

Compare ω̄ with ω:

∀α (α∈ ω̄ ⇒ ∃Θ (α ∈ Θ ∧ Θ ∈ ω));(2.75)

∀α (α∈ω ⇔ ∃Θ (α ∈ Θ ∧ Θ ∈ ω)).(2.76)

Theorem 2.4.

(2.77) sup ω̄ =
⋃
ω̄ = ω̄.

Proof. Firstly, for any α,

α ∈
⋃
ω̄(2.78)

⇔ ∃ϑ (α ∈ ϑ ∧ ϑ ∈ ω̄)(2.79)

⇔ ∃ϑ (α ∈ ϑ ∧ ϑ ∈ ω ∧ ∀X ∀E (F (X , E) ∧A(X , E) ⇒ B(ϑ,X )))(2.80)

⇔ ∃ϑ (α∈ϑ ∧ ϑ∈ω ∧ α∈ϑ ∧ ∀X ∀E (F (X , E)∧A(X , E)⇒ B(ϑ,X )))(2.81)

⇒ α ∈ ω ∧ ∃ϑ (α ∈ ϑ ∧ ∀X ∀E (F (X , E) ∧A(X , E) ⇒ B(ϑ,X ))),(2.82)
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where for any X , E , if F (X , E) and A(X , E) hold then we have for any ϑ ∈ ω̄,

B(ϑ,X )(2.83)

⇒ ∃N ∀n>N (ϑ ∈ X (n))(2.84)

⇒ ∃N ∀n (n > N ⇒ ϑ ∈ X (n))(2.85)

⇒ ∀N ∃n (n > N) ⇒ ∃N ∀n (ϑ ∈ X (n))(2.86)

⇒ ∀N ∃n (n > N) ⇒ ∀n (ϑ ∈ X (n))(2.87)

⇒ ∀N ∃n (n > N) ⇒ ∀n (ϑ ⊂ X (n))(2.88)

⇒ ∀N ∃n (n > N) ⇒ ∀n∀β (β ∈ ϑ ⇒ β ∈ X (n))(2.89)

⇒ ∃N ∀n∀β (n > N ⇒ (β ∈ ϑ ⇒ β ∈ X (n))),(2.90)

and therefore

∃ϑ (α ∈ ϑ ∧ ∀X ∀E (F (X , E) ∧A(X , E) ⇒ B(ϑ,X )))(2.91)

⇒ ∀X ∀E (F (X , E) ∧A(X , E) ⇒ B(α,X ));(2.92)

hence we have

α ∈
⋃
ω̄ ⇒ α ∈ ω ∧ ∀X ∀E (F (X , E) ∧A(X , E)⇒ B(α,X ))(2.93)

⇒ α ∈ ω̄.(2.94)

Then it follows that

(2.95)
⋃
ω̄ ⊂ ω̄.

Secondly, by (1.2) – (1.4), for any α ∈ ω̄ we have

∀X ′ ∀E ′ (F (X ′, E ′) ∧A(X ′, E ′) ⇒ B(α,X ′))(2.96)

⇔ ∀X ′ ∀E ′ (F (X ′, E ′) ∧A(X ′, E ′) ⇒ ∃N ∀n>N (α ∈ X ′(n))(2.97)

⇔ ∀X ′ ∀E ′ (F (X ′, E ′) ∧A(X ′, E ′) ⇒ ∃N ∀n (n > N ⇒ α ∈ X ′(n)),(2.98)

and so for any such function X ′ with some N there is some Nα > N such that

(2.99) α ∈ X ′(Nα).

Since Nα ∈ N and 0 < X ′(Nα) ∈ ω, by (1.2) and (1.3), for any X ′′ with some E ′′
we have ∃M = E ′′(X ′(Nα))∀n>M (X ′′(n) > X ′(Nα)) if F (X ′′, E ′′) and A(X ′′, E ′′)
hold, and so for any such X ′′ there is some M such that

(2.100) ∀n>M (X ′(Nα) ∈ X ′′(n));

thus by (1.4), we have X ′(Nα) ∈ ω̄. Therefore

(2.101) ∀α∈ ω̄ ∃ϑ∈ ω̄ (α ∈ ϑ),

that is, ω̄ has no the maximal element, and hence

(2.102) sup ω̄ =
⋃
ω̄.

Combining (2.95) with (2.102), it follows that (2.77). �

Since ω̄ 6= ∅ is a set of finite ordinals,
⋃
ω̄ is an ordinal. Rather oddly enough,

by (2.77) and (2.55), ω̄ =
⋃
ω̄ is exactly a limit ordinal, as distinguished from the

limit ordinal ω, and thus we have
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Corollary 2.1.

(2.103) (1) ∀α (α∈ ω̄ ⇔ ∃ϑ (α∈ϑ ∧ ϑ∈ ω̄));

(2) ∀α∈ ω̄ (α ⊂ ω̄);

(3) Let P(ω̄) be the power set of ω̄. Then ω̄⊂P(ω̄), i. e., ∀α∈ ω̄ (α∈P(ω̄)).

In particular, U ⊂ ω is cofinal in ω if supU = ω, and sup ω̄ = ω̄ 6= ω, hence the
set ω̄ cannot be cofinal in ω, i. e., cof (ω, ω̄) does not hold. This also shows that in
ZF the limit of a sequence based on (1.2) and (1.3) will be fundamentally different
than the limit of a sequence based on the Axiom of Infinity. However, the natural
question to ask is, whether ω̄ ∈ ω or not. Obviously, from (1.1) it follows that

Theorem 2.5.

(2.104) ω̄ 6∈ ω.

Theorem 2.6.

(2.105) ω̄ is infinite but is D-finite.

Proof. On the one hand, by (2.101), there is no a one-to-one mapping of ω̄ onto a
natural number, that is, ω̄ is infinite.

On the other hand, if we let T be an arbitrary proper subset of ω̄, then T ⊂ ω̄
and T 6= ω̄, and thus

⋃
T ⊂

⋃
ω̄. Obviously,

⋃
T and

⋃
ω̄ are ordinals, and we

have:
(1) If

⋃
T 6=

⋃
ω̄, then since

⋃
ω̄ = ω̄ is a limit ordinal and

⋃
T ( ω̄,

⋃
T is not

a limit ordinal, and so T has the maximal element; hence there is no a one-to-one
mapping of ω̄ onto such a proper subset T of ω̄.

(2) If
⋃
T =

⋃
ω̄, then

⋃
T = ω̄ is a limit ordinal. Now we let Z → ∞ be such

that dom(Z) = N and ran(Z) = ω, and let m be a variable such that m ∈ dom(Z).
By (2.46) and (2.74), there is some m such that Z(m) ∈ ω and Z(m) 6∈ ω̄, and so if
we let M be the smallest such m, then Z(M) ∈ ω ∧ Z(M) 6∈ ω̄, and by (1.2) – (1.4)
and (2.77), we have ω̄ = {Z(m) ∈ ω : m ∈ dom(Z) ∧ m < M}, where M ∈ N

will be large enough, at least not less than any α ∈ ω̄; thus ω̄ has M− 1 elements
even though M is uncertain. Assume that there exists a one-to-one mapping of ω̄
onto the proper subset T of ω̄ where T ( ω̄ and

⋃
T = ω̄. Then since there is at

least one i ∈ ω such that Z(M − i) 6∈ T, T has at most M − 2 elements, and so
M − 1 = M − 2, that is, 1 = 2, a contradiction; hence there is no a one-to-one
mapping of ω̄ onto the proper subset T of ω̄.

In a word, there is no a one-to-one mapping of ω̄ onto a proper subset of ω̄, that
is, ω̄ is Dedekind-finite (D-finite). �

Since ω̄ is infinite, if we consider U = {s ⊂ ω̄ : s is finite}, then it follows that ω̄
is Tarski-infinite (T-infinite). By (2.105), ω̄ is not just T-infinite, but also D-finite;
hence it does not satisfy the Axiom of Choice. This result would not be inconsistent
in ZF, because one cannot prove that every D-finite set is finite without the Axiom
of Choice.[4]

By ZF, it is common knowledge that |ω| = ω = ω0 = ℵ0 and |α| = α for every
α < ω. Now we consider the cardinality |ω̄| of ω̄, we first notice that if for any
ordinal α, β such that β ≤ α and |β| = |α|, there exists an ordinal number β0 ∈ β+

such that cof (α, β0) holds. Since cof (ω, ω̄) does not hold, we have |ω̄| 6= |ω|.
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Theorem 2.7.

(2.106) ∃α∈ω (α < |ω̄| < |ω|).

Proof. On the one hand, by (2.77), ω̄ is transitive and has no maximal element,
and so by (2) of (2.103) ∀α∈ ω̄ (α < |ω̄|) holds. And by (1.4), we have

(2.107) ∃α∈ω (α < |ω̄|).

On the other hand, by (1.5), we have |ω̄| ≤ |ω|. Assume that |ω̄| = |ω|. Then
there exists a one-to-one mapping of ω onto ω̄. Let h be a one-to-one mapping of
ω onto ω̄ such that h(α) = ϑ. Then we have a one-to-one mapping 2α 7→ 2ϑ of
the proper subset {2α : α ∈ ω} of ω onto the proper subset {2ϑ : ϑ ∈ ω̄} of ω̄.
Since the mapping α 7→ 2α of ω onto {2α : α ∈ ω} is also one-to-one, we have
|{2ϑ : ϑ ∈ ω̄}| = |ω̄|. However, this is impossible since |ω̄| is D-finite. Therefore,

(2.108) |ω̄| < |ω|.

By (2.107) and (2.108), we have (2.106). �

Theorem 2.8.

(2.109) 2|ω̄| ≤ |ω|.

Proof. By the Power Set and Separation Axioms, we let P(ω̄) = {s : s ⊂ ω̄},

PD(ω) = {s ∈ P(ω) : |s| < |ω| ∧ s is D-finite}

and P<ω0
(ω) = {s ∈ P(ω) : |s| < |ω|}. Since P(ω̄) ⊂ PD(ω) (by (2.105) – (2.108))

and PD(ω) ⊂ P<ω0
(ω), we have

(2.110) |P(ω̄)| ≤ |P<ω0(ω)|.

Subsequently, let us consider the cardinality of P<ω0
(ω). Given a S ∈ P<ω0

(ω),
we construct a function ϕS : ω → {0, 1} such that ϕS(i) = ai, where ai = 1 if i ∈ S,
and ai = 0 otherwise; hence

S = {i ∈ ω : I(S) ∈ ω ∧ i ≤ I(S) ∧ ϕS(i) = 1}.

If rS = aI(S)aI(S)−1 . . . ai . . . a2a1a0 such that

I(S) ∈ ω ∧ 0 ≤ i ≤ I(S) ∧ ai ∈ {0, 1},

then

rS ∈ ω ∧ rS = ϕS(I(S))ϕS(I(S)− 1) . . . ϕS(i) . . . ϕS(2)ϕS(1)ϕS(0),

and so for every Sα, Sβ ∈ P<ω0
(ω),

Sα 6= Sβ if and only if rSα 6= rSβ .

It is clear that there is a one-to-one mapping of P<ω0
(ω) into ω. Thus

(2.111) |P<ω0
(ω)| ≤ |ω|.

Then, since |P(ω̄)| = 2|ω̄|, by (2.110) and (2.111) we have (2.109). �

Theorem 2.9.

(2.112) (1) cf (|ω̄|) = |ω̄|;
(2) ω

|ω̄|
1 = ω1.
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Proof. (1) Here we let |ω̄| = ω̄. By (2.106), we can consider the cofinality of
|ω̄|. Let β < ω be a finite ordinal such that cof (|ω̄|, β) holds. Then there exists an
ordinal number β1 such that β = β+

1 , and there is a function ψ such that cof (|ω̄|, β)
holds. Let α1 ∈ |ω̄| be such that ψ(β1) = α1. Then there is an ordinal number
α2 ∈ |ω̄| such that α1<α2, and thus there is an ordinal number β2 ∈ β such that
ψ(β2) = α2. However, it is impossible since β2 ≤ β1 and ψ is strictly monotonically
increasing. Hence we only have β = |ω̄|, i. e., cof (|ω̄|, |ω̄|) and cf (|ω̄|) = |ω̄|.

(2) By (2.106), there is some α < ω such that ω
|α|
1 ≤ ω

|ω̄|
1 and ω

|ω̄|
1 ≤ ω

|ω|
1 , and

since ω
|α|
1 = ω1 and ω

|ω|
1 = ωω0

0 · ω1 = 2ω0 , we have

(2.113) ω1 ≤ ω|ω̄|1 ≤ 2ω0 .

By (2.106) and (2.109), we clearly have |ω̄| < ω1 and 2|ω̄| = |ω̄||ω̄| ≤ |ω|, and since
ω1 is a regular and successor cardinal, by the Hausdorff formula and the cardinal
arithmetic we have

ω
|ω̄|
1 = ω

|ω̄|
0 · ω1(2.114)

= (
∑
α<ω0

|α||ω̄|) · ω1(2.115)

= 2|ω̄| · ω0 · ω1(2.116)

≤ ω0 · ω0 · ω1(2.117)

= ω1.(2.118)

Combining (2.113) and (2.114) – (2.118), we conclude that ω
|ω̄|
1 = ω1 holds. �

It is peculiar that there exists the infinite subset ω̄ of the countable ω that is
not countable but is D-finite and can asymptotically converge to the countable ω.
This will not lead to contradiction under ZF unless ZF is inconsistent.

3. forcing method and ZF with ω̄

Theorem 3.1. If ZF is consistent, then ω̄ and ω are indistinguishable in the forcing
method.

Proof. By (2.106) and (2.112), it is clear that |ω̄| < ω0, cf (|ω̄|) = |ω̄| and ω
|ω̄|
1 = ω1.

Thereby, we let P be the set of all functions p such that

(3.1) (i) dom(p) is a finite subset of ω1 × ω̄,
(ii) ran(p) ⊂ {0, 1},

and let p be stronger than q if and only if p ⊃ q.
Then the sets Dξ,n = {p ∈ P : <ξ, n> ∈ dom(p)} are dense in P . Let

D = {Dξ,n : ξ ∈ ω1 ∧ n ∈ ω̄}.
By Martin’s Axiom MAℵ1 , there exists a D-generic filter on P .

If G is a generic set of conditions, we let f =
⋃
G. We claim that

(3.2) (i) f is a function;
(ii) dom(f) = ω1 × ω̄.

Part (i) of (3.2) holds because G is a filter. For part (ii), G is a D-generic filter on
P , hence G meets each set in D, and so <ξ, n>∈ dom(f) for all <ξ, n>∈ ω1 × ω̄.

Now, for each ξ < ω1, let fξ : ω̄ → {0, 1} be the function defined as follows:

fξ(n) = f(ξ, n).
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If ξ 6= ζ, then fξ 6= fζ ; this is because the set

D = {p ∈ P : p(ξ, n) 6= p(ζ, n) for some n}

is dense in P and hence G ∩D 6= ∅. Thus in V [G] we have a one-to-one mapping
ξ 7→ fξ of ω1 into {0, 1}ω̄.

Since each fξ is the characteristic function of a set aξ ⊂ ω̄, there is a generic
extension V [G] such that

(3.3) 2|ω̄| > ω0.

But by (2.109), and using the Cantor’s Theorem, there can be only

|ω̄| < 2|ω̄| ≤ ω0 and 2|ω| > |ω| = ω0,

which is contradictory with the conclusion (3.3). Hence, either ZF is inconsistent,
or ω̄ and ω are indistinguishable in the forcing method. �

Thus, if we believe that the method of forcing must be a perfect method, then
ZF seems to be precisely inconsistent. “Apropos of the open question of consistency
Poincaré remarked, ‘We have put a fence around the herd to protect it from the
wolves but we do not know whether some wolves were not already within the
fence.”’[2]

And in ZF, the set ω claims that the natural numbers will certainly belong to
it to Infinity, but the set ω̄ claims that the natural numbers must not belong to it
to Infinity. Just as, in geometry, the projective line claims that the points would
lie in it at Infinity, but the Euclidean line claims that the points cannot lie in it
at Infinity. Of course, if the infinite ω can be considered as a set, then its subclass
ω̄ is exactly the T-infinite and D-finite set asymptotic to it, and this means that
ω̄ will never be able to reach ω. In any case, ω̄ is indeed a set that differs from ω
by ZF, otherwise ZF is inconsistent. So we have to be very, very careful when the
extrapolations from finiteness to infiniteness are considered.

4. Concluding Remarks

By ZF, ω̄ is a non-empty proper subset of ω and it is asymptotic with respect
to ω. If ZF is consistent, then the axioms of ZF and the fact that there exists the
set ω̄ are also consistent; otherwise, ZF itself is inconsistent. Meanwhile, If ZF is
consistent, then ω and ω̄ are exactly indistinguishable in the forcing method, and
thus the description power of the forcing method is inadequate for ZF; conversely,
if the forcing method does not try to discriminate between ω̄ and ω, then it would
be inconsistent with ZF. Therefore, some related problems such as the consistency
of ZF, the adequacy of the forcing method and CH independent of ZF, are needed
to further study in ZF + ω̄ 6= ω (i. e. ZF ∪ {ω̄ 6= ω}), although ω̄ 6= ω is merely an
inference of ZF. But first, a very basic question is, what happens if the fields of the
functions of (1.2) and (1.3) are ω1?

In particular, there exists the T-infinite and D-finite subset ω̄ of ω that can
not be put into one-to-one correspondence with a finite ordinal and can not be
put into one-to-one correspondence with the infinite ω under ZF; nevertheless, the
cardinality of such a set ω̄ is merely a measurement of the boundary of all finite
ordinals, and hence there are no cardinals between the D-finite and the countable.
In other words, there is an infinite set between the finite and the countable but it is
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unable to transcend all D-finite sets until the countable. Isn’t that extraordinary?
What if the set of all real numbers is also in a similar state of subsets?

Problem 1 : Is there an infinite set of real numbers that could not be put into
one-to-one correspondence with the natural numbers and could not be put into
one-to-one correspondence with the real numbers?[3]

Problem 2 : Is it the case that there are no cardinals between the countable and
the continuum?[5]

By analogy with the case of ω̄, on the Problem 1 it should follow that ¬CH
holds, but on the Problem 2 it should follow that CH holds. Thus the Problem 1
and the Problem 2 would not be equivalent to one another in ZF, are they so?
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