
EasyChair Preprint
№ 15545

Enhancing English-Persian Neural Machine
Translation with a Large-Scale Parallel Dataset
and Relative Position Representations

Alireza Kamyab, Negar Baghaei Nejad and Alireza Akhavanpour

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 9, 2024



Enhancing English-Persian Neural Machine
Translation with a Large-Scale Parallel Dataset and

Relative Position Representations
1st Alireza Kamyab

dept. of Computer Engineering
Shahid Rajaee University

Tehran, Iran
alirezakamyab19@gmail.com

2nd Negar Baghaei Nejad
dept. of Computer Engineering

Shahid Rajaee University
Tehran, Iran

negarbnejad@gmail.com

3rd Alireza Akhavanpour
Shenasa AI

Tehran, Iran
akhavan@shenasa.ai

Abstract—Transformer-based models have revolutionized neu-
ral machine translation (NMT), particularly with the introduc-
tion of the encoder-decoder architecture. However, training these
models effectively often requires large amounts of parallel data
or pretraining on massive unlabeled corpora. In the context
of English-Persian translation, the lack of extensive parallel
datasets has hindered progress. To address this, we introduce
a new dataset of 4 million English-Persian parallel sentences
that span various topics. Without any pretraining on unlabeled
data, our model achieves a BLEU score of 47 on the PEPC
benchmark and 35 on the MIZAN benchmark, demonstrating
strong performance. We used Transformers with relative position
representations, enabling the model to generalize to sequence
lengths not seen during training. To promote further research
and reproducibility, we have open-sourced both the dataset1 and
the trained model2, supporting advancements in English-Persian
NMT.

Index Terms—neural machine translation, transformer, BLEU
score, English-Persian dataset, attention mechanism

I. INTRODUCTION

Neural Machine Translation is a machine translation ap-
proach which relies on neural networks to model the transla-
tions from source to target language. Other than the traditional
statistical methods that are phrase-based, NMT uses only
a single architecture, usually an encoder-decoder framework
with an attention mechanism. This architecture enables the
NMT model to understand deep patterns and dependencies
among sequences, resulting in fluent and contextually correct
translations. NMT has gained a variety of improvements,
majorly brought about by the new Transformer-based models,
such that the translation quality has increased tremendously
and it has taken over the dominant approach in research and
industry.

A. Recurrent Neural Networks

The RNNs have been widely used in machine translation
tasks such as LSTMs [7] and GRUs. Given an input sequence

1The dataset can be accessed at: https://github.com/AlirezaKamyab/English-
Persian-NMT

2The model and code are publicly available at:
https://github.com/AlirezaKamyab/NMT-Project

x = (x1, . . . , xn), at any time step t, these models compute
an embedding ht using the previously computed hidden state
ht−1. This recurrent structure has some very useful properties
for sequence modeling tasks, such as machine translation,
where the order of the tokens is informative to the linguistic
meaning. Besides, RNNs are often applied in time-series
analysis, where the order of the values depends on temporal
progressions.

However, RNNs do have some challenges when long se-
quences are involved since they have a tendency to ”forget”
the earlier embeddings as the sequence gets longer. While
LSTM and GRU alleviate this problem by using various types
of gating mechanisms, they still suffer in tracking information
across very large sequences. In neural machine translation,
it’s based on the Encoder-Decoder architecture, where one
critical task of an encoder is to encode an input sequence
x = {x1, . . . , xTx

} into a vector v ∈ Rd, with a fixed size that
does not depend on whether the input is one word or a whole
text. This could limit the model’s capability for capturing long-
range dependencies effectively, which is a critical requirement
in translation.

B. Attention

Attention was first introduced in the decoder [2] to se-
lectively concentrate on the relevant aspects of the outputs
generated so far by the encoder in predicting the target
sequence. In fact, attention enables learning of long-range
dependencies without regard to their positional distance in the
input sequence by allowing a model to dynamically attend to
different states of the encoder. This mechanism significantly
enhances the model’s ability to capture more information about
context; it is therefore especially effective in tasks such as
machine translation.

C. Transformer Architecture

Although RNNs with attention mechanisms can handle
longer text sequences, they still face inefficiency at very
long sequences because of their sequential nature. This is
because each state ht depend on previous state ht−1, and



thus RNNs cannot be parallelized. The limitation overcome
by the Transformer architecture [17] lays in the avoidance
of recurrence and dependence on mere attention mechanisms,
such as self-attention and multihead attention. This turned
out to be an innovation which enabled the Transformers for
the first time to outperform the state-of-the-art in machine
translation.

For such a purpose, self-attention will enable this architec-
ture to contextualize each token embedding in the context of
a sentence where it may happen to be. This enhances long-
range dependencies inside the representation. Another very
important property of the Transformer architecture is filling in
for the lack of recurrence with positional encoding. Positional
encodings added to token embeddings will allow this model
to capture word order successfully, hence being capable of
distinguishing between the different word ordering.

D. Contributions

Here, we utilize an improved version of the Transformer that
includes relative position encoding, enhancing its adaptability
for sequences of variable lengths. For the difficult Persian
WIKI PEPC [8] benchmark, our proposed model achieved a
very high BLEU [12] score of 47, compared to previously
reported results. On MIZAN [9] benchmark, we achieved
BLEU score of 35.

We also introduce a new dataset with 4M parallel English-
Persian sentence pairs, which has shown to significantly en-
hance the performance of our model. This dataset not only
increases the diversity of training data but also improves the
overall quality of translation results.

The remainder of this paper is organized as follows:
• Section II provides an overview of related work, high-

lighting the current advancements in the field and prior
methodologies. This section begins with a discussion of
the tokenizer employed in our experiments, followed by
an explanation of a transformer variant utilized in the
study.

• Section III outlines the methodology employed in this
study, including the methods used for dataset collection,
the training procedures, and a description of the hardware
utilized.

• Section IV describes the experimental setup, including
datasets, metrics, and evaluation criteria.

II. RELATED WORKS

A. Byte Pair Encoding

Subword tokenization techniques, such as Byte Pair Encod-
ing (BPE), which [15] performed, have been applied in most
of the NLP tasks to handle the occurrence of a rare or out-of-
vocabulary word by subword units of that word that are more
frequent. BPE was initially developed as a data compression
algorithm that works by iteratively merging the most frequent
pairs of symbols-character or character sequences-in a text
corpus while building up a vocabulary of subwords which can
efficiently represent even rare words. This is especially helpful

in languages with rich morphology, where one word can have
a large number of inflections.

BPE mitigates the problem of large vocabulary sizes and
reduces the resulting requirement for high-dimensional word
embeddings, respectively. It does this by breaking rare words
into smaller subunits that appear more frequently. Consider a
word like ”unhappily”; it could be split into subwords ”un”,
”happy”, and ”ly” so that it can be represented by the model
without having to create a separate embedding. This further
allows for better generalization because the model is able to
deal with unseen words at inference time by breaking them
down into known subwords.

While BPE has seen adoption in many transformer-based
models, such as GPT [13] and BERT [4], it strikes a very
effective balance between vocabulary size and expressiveness
necessary for language modeling. Variants and improvements
to BPE include SentencePiece [11], which further refined this
approach to be more flexible for a variety of tasks entailing
different languages and writing systems.

B. Transformer

The Transformer model, introduced by [17], revolutionized
sequence-to-sequence tasks with an encoder-decoder architec-
ture which relies on self-attention mechanisms to process input
data in parallel rather than sequentially, increasing training
efficiency significantly. The encoder consists of self-attention
layers and position-wise feed-forward networks, while the
decoder adds an encoder-decoder attention mechanism that
enables it to pay attention to particular parts of the input
sequence when decoding.

One of the most salient features of the Transformer model
is its use of position encoding. While in RNNs, because of
the nature of the feedforward processing step, the order in
a sequence is inherently preserved, Transformers need to be
explicitly informed about position to understand any order of
tokens. [17] suggested a positional encoding based on the sinus
function; These encodings are added to the input embeddings
at the base of the encoder and decoder stacks. The positional
encodings are designed to have the same dimensionality as the
input embeddings, enabling a straightforward summation.

The encodings are derived using sinusoidal functions of
varying frequencies, as defined by:

PE(pos,2i) = sin(
pos

100002i/dmodel
) (1)

PE(pos,2i+1) = cos(
pos

100002i/dmodel
) (2)

where pos represents the token position and i indicates
the dimension. The choice of sinusoidal functions facilitates
the model’s ability to generalize to sequence positions not
observed during training, as the positional encodings for any
fixed positional offset k can be expressed as a linear function
of the encoding at pos. This approach ensures that the posi-
tional information is smoothly integrated into the embedding
space.



These generalize well to sequences of different lengths
because positional information is given in such a way that
it is independent from the length of the whole sequence. Later
works further extend this with learned positional encodings
and relative positional representations [16] [3], enhancing the
model’s capability to handle variable lengths of sequences not
seen during training in a more robust manner.

Residual connections [6] and layer normalization [1] applied
around each sub-layer proved to be crucial in practice for
reducing training instability as well as improving gradient
flow. These architectural modifications not only make possible
the efficient learning but propagate the positional information
through the depth, a necessity in modeling sequential depen-
dencies.

1) Self-Attention: Self-attention leverages a dot-product
compatibility function for computing relationships between
elements in a sequence. Introduced by [17], self-attention
employs multi-head attention, allowing attention heads to
operate in parallel across sequence positions for efficiency.

Given an input sequence x = (x1, . . . , xn) ∈ Rdx , each at-
tention head computes an output sequence z = (z1, . . . , zn) ∈
Rdz . In this work, we adopt relative position representation, as
described by [16], instead of absolute position representation.
This approach introduces vectors aVij and aKij , which capture
the positional relationship between elements xi and xj . The
output of multi-head attention is computed as a weighted sum
of linearly transformed inputs, adjusted by relative position
information:

zi =

n∑
j=1

αij(xjW
V + aVij), (3)

where each weight coefficient αij is derived using a softmax
function:

αij =
exp(eij)∑n
k=1 exp(eik)

. (4)

Each score eij is computed via scaled dot-product:

eij =
xiW

Q(xjW
K)T + xiW

Q(aKij )
T

√
dz

. (5)

The computations in equations (1) and (3) can be efficiently
parallelized.

C. Relative Position Information Representation

Relative position representation was first proposed by [16]
as an alternative to absolute position encoding. In the context
of linear sequences, relative position embeddings capture the
positional relationships between tokens without relying on
specific sequence indices.

In natural language processing, each token can be repre-
sented as a vertex in a directed graph. The relative embedding
would represent its position relative to another token. The
model achieves this without keeping track of the absolute
sequence positions but rather the relative distance and direction
of one token to another. For instance, whether it is on the left

or right side. This way, the model generalizes well on the
different lengths of sequences than what it has seen during
training.

It is assumed that the exact relative positioning has less
significance beyond a certain distance; hence, more distant
relationships will contribute less to token-level dependencies.
To enhance generalization to sequence lengths not found
during training, we learn a set of 2k + 1 relative position
embeddings. These embeddings correspond to distances from
−k to k, where k < 0 represents positions to the left of the
reference token, k > 0 represents positions to its right and
k = 0 denotes a self-looping edge on the token itself.

aKij = wK
clip(j - i, k) (6)

aVij = wV
clip(j - i, k) (7)

Then wK = (wK
−k, . . . , w

K
k ) and wV = (wV

−k, . . . , w
V
k ) are

learned.

III. OUR WORK

A. Proposed Architecture

Our proposed model is a Transformer model-based archi-
tecture with an encoder and decoder structure, each having
N = 6 layers stacked. Each encoder layer shall have a self-
attention sublayer followed by a position-wise feed-forward
network. The decoder layers are similar to the standard trans-
former decoders and contain three sublayers: a self-attention
sublayer, a cross-attention sublayer (attending to the encoder
outputs), and a position-wise feed-forward sublayer. Residual
connections and layer normalization after each sublayer further
help train stabilization and propagate positional information
through higher layers.

To ensure that the output of decoders is generated sequen-
tially, in each layer of the decoder, we modify the self-attention
mechanism such that attending to subsequent positions is not
possible. Thus, this masks the attention allowing only previous
and current positions and ultimately preserves autoregressive
behavior. It allows the model to predict each token based solely
on prior context.

We use a Byte Pair Encoding tokenizer that splits each
input word into subword units. Further, these subwords are
embedded into the vector space Rd model, providing input
embeddings both for the encoder and decoder.

Our model is trained on approximately 4 million parallel
English-Persian sentence pairs with no extra pretraining on
unlabeled data. To better generalize to sequence lengths unseen
during training, we take k = 16 where k defines the clip value
for the maximum distance in relative position embeddings, for
the model’s sensitivity to longer-range dependencies dimin-
ishes.

B. Dataset

Due to the rarity of an English-Persian parallel dataset, a
corpus of approximately 4 million parallel sentence pairs in
English and Persian was gathered from movie subtitles, books,



news, and commonly used idioms. Also, a portion of the
sentences in English were retrieved from the WMT19 dataset
[5] and translated into Persian. The normalization process
included removal of accent symbols on some of the English
sentences and removal of duplicate entries. Sentences were
then manually checked for linguistic correctness. For Persian,
normalization was done on all sentences so that they are in
uniform form. In order to avoid cross-linguistic interference,
sentences containing words of languages other than English or
Persian were excluded from this dataset. The collected dataset
contains a wide range of sentence types so that the model can
get a strong foundation for different usage of languages. This
varies from formal language and mathematical and scientific
expressions to everyday conversation phrases, making it versa-
tile in capturing a wide range of linguistic styles. This includes
formal sentences that help to equip the model with how to
handle official or structured language mainly found in profes-
sional or academic contexts. The mathematical and scientific
sentences introduce technical terminologies and specialized
structures that are necessary for accurate translations in these
domains. The conversational phrases enrich the dataset with
casual and idiomatic language that increases the versatility
of the model in real-world, informal conversations. This kind
of diverse composition will definitely enable the model to
generalize better across contexts and produce translations that
are contextually appropriate and nuanced.

C. Training

1) Objective: The decoder is trained to predict the next
probable token yt given the previous tokens y0:t−1, input
sequence x, and model parameters θ. The probability of
predicting token yt at each time step t is defined as:

p(yt) =

T∏
t=1

p (yt | y0:t−1;x; θ) (8)

To optimize the model, we use a maximum likelihood
objective, defined as:

L(θ) = −
T∑

t=1

log p (yt | y0:t−1;x; θ) (9)

This objective maximizes the likelihood of the target se-
quence by minimizing the negative log probability of the
correct tokens at each time step.

2) Hardware: The experiments were performed with a
single NVIDIA RTX 3090 GPU. Given the choice of hyperpa-
rameters described in the Experiments section, our base model
needed 30 hours of training to complete a total of 796, 200
steps whereas bigger model was trained for 48 hours over
796, 200 steps.

3) Optimizer and Scheduler: We employed the Adam op-
timizer [10] with β1 = 0.9, β2 = 0.98, and ϵ = 10−9.
The learning rate was controlled using a warmup scheduler,
following the approach proposed by [17]:

lrate = d−0.5
model min

(
step−0.5, step · warmup−1.5

)
(10)

The learning rate is increased linearly during the initial
warmup training steps and subsequently decays proportion-
ally to the inverse square root of the training steps. During
the warmup phase, the learning rate starts at a very low value
to prevent divergence, as the weights are initially randomly
initialized.

4) Regularization: Dropout was also applied on the output
of every sublayer before residual addition and normalization.
The dropout rate throughout all the experiments is set to
0.1. Besides, label smoothing is used during training with
a smoothing factor of 0.1 to let the model be less confident
during training, which improves generalization.

IV. EXPERIMENTS

The proposed model was evaluated on two datasets: the
PEPC dataset [8], a parallel English-to-Persian dataset derived
from Wikipedia, and the MIZAN dataset [9], a Persian-English
parallel corpus containing over one million sentence pairs from
literary masterpieces. The evaluation focused on translating
English sentences into Persian, with beam search omitted from
all experiments. Performance was measured using the BLEU
score [12], computed with the NLTK library.

Given that the original study does not report baseline results
for the PEPC [8] and MIZAN [9] datasets, and no other
validations or comparisons of this methodology on these
datasets could be found, we have gone ahead to compare the
performance of our model with regard to these datasets. While
it is difficult to make direct comparisons without specific
baseline numbers, this approach is still useful in judging the
relative effectiveness of our method. In order to be transparent,
we henceforth acknowledge this limitation and stress that our
results are based on the available datasets. Furthermore, we
provide detailed descriptions of our evaluation setup, including
dataset versions, pre-processing steps, and evaluation metrics,
to allow for reproducibility and validation. We also release our
trained models and code publicly so that others can replicate
our experiments and verify our results. More importantly,
rather than relying solely on quantitative measures, we focus
on the insight such an analysis brings into a better understand-
ing of the task and how effective our approach is. We also
considered other baselines from relevant studies to expand the
contextual scope of our comparison.

A. Evaluation Dataset Description

The PEPC dataset [8] comprises 200,000 parallel English-
Persian sentence pairs with varying sequence lengths. The
average sequence length is 61 tokens, while the maximum
sequence length reaches 153 tokens.

The MIZAN dataset is a Large Persian-English Parallel
Corpus by [9], is a comprehensive resource for Persian-
English translation tasks. This parallel corpus consists of over
one million sentence pairs, primarily derived from Persian
translations of English literary works. The dataset’s focus on



literary content ensures a rich variety of linguistic features,
including complex sentence structures, diverse vocabulary.

B. Results

We have conducted experiments with two variants of the
Transformer model in order to inspect to what extent position
representation affects translation quality. The first model uses
relative position representation and hence has the ability
to capture contextual relations without relying on absolute
position indices. In contrast, the second model uses an ab-
solute position representation which allocates fixed positional
embeddings to every token with respect to its position in a
sequence. This comparative setup provides the opportunity to
analyze how each of the approaches influences the model’s
translation performance.

TABLE I
BLEU METRIC COMPARISON OF TRANSFORMER MODELS WITH

ABSOLUTE AND RELATIVE POSITION REPRESENTATIONS. RESULTS ARE
PRESENTED FOR BOTH SMALL (S) AND LARGE (L) VARIANTS OF EACH

MODEL TYPE.

Benchmark Absolute POS Relative POS

Model S Model L Model S Model L

PEPC 43 43 45 47

MIZAN 31 32 33 35

According to the tabel I even the small transformer config-
uration with relative-position representation achieves a higher
BLEU score than the absolute variant. Although [17] suggests
that the model generalizes across all sequence lengths, the
relative-position method [16] appears to enable generalization
to sequence lengths not encountered during training. Further-
more, Fig. 1 illustrates that the accuracy of the absolute-
position model declines as sequence length increases, whereas
the accuracy of the relative-position model remains consistent
across varying sequence lengths.

Table I demonstrates that the model’s performance is rela-
tively lower compared to the PEPC dataset. This discrepancy
can be attributed to the MIZAN dataset containing sentences
derived from literature, which pose greater challenges for
translation. Nonetheless, the model exhibits strong capabilities
in accurately translating idiomatic expressions.

NEXT STEPS

We demonstrated that a straightforward Transformer ar-
chitecture that incorporates relative position representations
achieves a BLEU score of 47 on PEPC and 35 on MIZAN
just by training on the proposed dataset. Recent advances in
sequence transduction frequently employ transformer models
only with a decoder [13]. These models are typically pre-
trained on unlabeled data using objectives such as next-token
prediction or denoising. Alternatively, models like T5 [14]
maintain the encoder-decoder framework but reframe the task
within a text-to-text paradigm, pretraining on unlabeled data
before fine-tuning on specific downstream tasks.

Fig. 1. This figure illustrates a comparison of BLEU scores between two
Transformer variations utilizing absolute and relative position representations.
The plotted data includes a smoothing factor of 0.8.

Given the abundance of unlabeled data, we hypothesize that
employing a similar pretraining strategy, followed by fine-
tuning on our dataset, has the potential to achieve state-of-
the-art performance.
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