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Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part 1

2 . We state the conjecture that
π2

6.4 ×e0.0712132519795× log x ≥ eγ× log(x−K×
√

x) is satisfied for infinitely many natural numbers
x > 108 where K > 0 is a constant. Under the assumption of this conjecture and the Riemann
Hypothesis, we prove that there is not any odd perfect number at all.
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1. Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part 1

2 . As usual σ(n) is the sum-of-
divisors function of n: ∑

d|n

d

where d | n means the integer d divides n, d ∤ n means the integer d does not divide n and dk ∥ n
means dk | n and dk+1 ∤ n. Define f (n) and G(n) to be σ(n)

n and f (n)
log log n respectively, such that log

is the natural logarithm. We know these properties from these functions:

Proposition 1.1. [1]. Let
∏r

i=1 qai
i be the representation of n as a product of primes q1 < · · · < qr

with natural numbers as exponents a1, . . . , ar. Then,

f (n) =

 r∏
i=1

qi

qi − 1

 × r∏
i=1

1 − 1

qai+1
i

 .
Proposition 1.2. For every prime power qa, we have that f (qa) = qa+1−1

qa×(q−1) [2]. If m, n ≥ 2 are
natural numbers, then f (m × n) ≤ f (m) × f (n) [2]. Moreover, if p is a prime number, and a, b
two positive integers, then [2]:

f (pa+b) − f (pa) × f (pb) = −
(pa − 1) × (pb − 1)
pa+b−1 × (p − 1)2 .
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Say Robins(n) holds provided
G(n) < eγ

where the constant γ ≈ 0.57721 is the Euler-Mascheroni constant. The importance of this prop-
erty is:

Proposition 1.3. Robins(n) holds for all natural numbers n > 5040 if and only if the Riemann
Hypothesis is true [3].

The Chebyshev function θ(x) is given by

θ(x) =
∑
p≤x

log p

with the sum extending over all prime numbers p that are less than or equal to x [4]. We state the
following properties about this function:

Proposition 1.4. [4]. For x ≥ 89909:

θ(x) > (1 −
0.068
log(x)

) × x.

Proposition 1.5. [5]. There is a constant K > 0 such that there are infinitely many natural
numbers x:

θ(x) < x − K ×
√

x.

In mathematics, Ψ = n×
∏

q|n

(
1 + 1

q

)
is called the Dedekind Ψ function. Say Dedekinds(qn)

holds provided ∏
q≤qn

(
1 +

1
q

)
>

eγ

ζ(2)
× log θ(qn)

where qn is the nth prime number, ζ(x) is the Riemann zeta function and ζ(2) =
∏∞

i=1
q2

i

q2
i −1 =

π2

6 .
The importance of this inequality is:

Proposition 1.6. Dedekinds(qn) holds for all prime numbers qn > 3 if and only if the Riemann
Hypothesis is true [6].

Let q1 = 2, q2 = 3, . . . , qk denote the first k consecutive primes, then an integer of the form∏k
i=1 qai

i with a1 ≥ a2 ≥ · · · ≥ ak ≥ 0 is called an Hardy-Ramanujan integer [7]. A natural
number n is called superabundant precisely when, for all natural numbers m < n

f (m) < f (n).

Proposition 1.7. If n is superabundant, then n is an Hardy-Ramanujan integer [8]. Let n be a
superabundant number, then p ∥ n where p is the largest prime factor of n [8]. For large enough
superabundant number n, we have that qaq < 2a2 for q > 11 where qaq ∥ n and 2a2 ∥ n [8].
For large enough superabundant number n, we obtain that log n < (1 + 0.5

log p ) × p where p is
the largest prime factor of n [4]. Moreover, for large enough superabundant n, we know that
2a2 < 2 × p × log p such that p is the largest prime factor of n where p ∥ n and 2a2 ∥ n [8]. Let n
be a superabundant number, then f (n) > (1− ε(p))×

∏
q|n

q
q−1 where ε(p) = 1− 1

log p × (1+ 1.5
log p )

and p is the largest prime factor of n [4].
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On the sum of the reciprocals of power prime numbers not exceeding x, we have these results:

Proposition 1.8. [9]. For x ≥ 2278383:∑
p≤x

1
p
≥ log log x + B −

1
5 × log3 x

where B ≈ 0.261497212847642 is the Meissel-Mertens constant [10].

Proposition 1.9. [11]. For y ≥ 108:∑
p≥x

1
p2 ≤

1
y × log y

−
1

y × log2 y
+

2
y × log3 y

−
2.07

y × log4 y
.

In addition, we will use these properties:

Proposition 1.10. [6]. For n ≥ 2: ∏
q>qn

q2

q2 − 1
≤ e

2
qn .

Proposition 1.11. [12]. For x ≥ 1:

1
x + 0.5

< log(1 +
1
x

).

In number theory, a perfect number is a positive integer n such that f (n) = 2. Euclid proved
that every even perfect number is of the form 2s−1 × (2s − 1) whenever 2s − 1 is prime. It is
unknown whether any odd perfect numbers exist, though various results have been obtained:

Proposition 1.12. Any odd perfect number N must satisfy the following conditions: N > 101500

and the largest prime factor of N is greater than 108 [13], [14].

Say Vegas(x) holds provided

π2

6.4
× e0.0712132519795 × log x ≥ eγ × log(x − K ×

√
x)

where K > 0 is a constant.

Conjecture 1.13. Vegas(x) holds for infinitely many natural numbers x > 108.

Under the assumption of this conjecture and the Riemann Hypothesis, we prove that there is
not any odd perfect number at all.

2. Numerical Calculations

Lemma 2.1. ∑
q

(
1

q × (q + 0.5)

)
< 0.380503927189989469441
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Proof. Using the Proposition 1.9, we check by computer that,∑
q

(
1

q × (q + 0.5)

)
<

∑
q<108

(
1

q × (q + 0.5)

)
+

∑
q≥108

(
1
p2

)
≤ 0.380503926673572 +

1
108 × log 108 −

1
108 × log2 108

+
2

108 × log3 108
−

2.07
108 × log4 108

< 0.380503927189989469441.

3. Central Lemma

Lemma 3.1. For all prime numbers qn > 108, we have that∏
q≤qn

(
1 +

1
q

)
> e0.0712132519795 × log qn

is satisfied.

Proof. We apply the logarithm to the both sides of the inequality,∑
q≤qn

log(1 +
1
q

) > 0.0712132519795 + log log qn.

We use the Proposition 1.11,∑
q≤qn

1
q + 0.5

> 0.0712132519795 + log log qn.

This is the same as∑
q≤qn

(
1
q

)
−

∑
q≤qn

(
1
q
−

1
q + 0.5

)
> 0.0712132519795 + log log qn.

We know that
1
q
−

1
q + 0.5

=
1

2 × q × (q + 0.5)
.

Hence, ∑
q≤qn

(
1
q

)
− log log qn > 0.0712132519795 +

∑
q≤qn

(
1

2 × q × (q + 0.5)

)
.

We use that Proposition 1.8,

B −
1

5 × log3(qn)
> 0.0712132519795 +

∑
q≤qn

(
1

2 × q × (q + 0.5)

)
that is equivalent to

B > 0.0712132519795 +
∑
q≤qn

(
1

2 × q × (q + 0.5)

)
+

1
5 × log3(qn)

.
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Using the numerical computation in the Lemma 2.1, we only need to prove that

B > 0.0712132519795 +
0.380503927189989469441

2
+

1
5 × log3(108)

since 1
5×log3(qn)

decreases as qn increases. In this way, we obtain that

B > 0.261497212847634

and thus, the proof is done.

4. Main Insight

Lemma 4.1. Under the assumption of the Conjecture 1.13, we prove that

π2

6.4
×

∏
q≤qn

(
1 +

1
q

)
> eγ × log θ(qn)

is satisfied for infinitely many prime numbers qn > 108.

Proof. We know there is a constant K > 0 such that there are infinitely many prime numbers
qn > 108:

θ(qn) < qn − K ×
√

qn

according to the Proposition 1.5. Hence, it is enough to show there are infinitely many prime
numbers qn > 108 such that∏

q≤qn

(
1 +

1
q

)
>

eγ

π2

6.4

× log
(
qn − K ×

√
qn

)
.

The previous inequality will be satisfied when

e0.0712132519795 × log qn ≥
eγ

π2

6.4

× log
(
qn − K ×

√
qn

)
due to the Lemma 3.1. That is equivalent to

π2

6.4
× e0.0712132519795 × log qn ≥ eγ × log

(
qn − K ×

√
qn

)
which is true for infinitely many prime numbers qn > 108 under the assumption of the Conjecture
1.13.

5. Main Theorem

Theorem 5.1. Under the assumption of the Conjecture 1.13 and the Riemann Hypothesis, we
prove that there is not any odd perfect number at all.
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Proof. Suppose that N is the smallest odd perfect number, then we will show its existence implies
that the Conjecture 1.13 or the Riemann Hypothesis is false. There is always a large enough
superabundant number n such that n is a multiple of N. We would have

f (n) ≤ f (N) × f (
n
N

)

according to the Proposition 1.2. That is the same as

f (n) ≤ 2 × f (
n
N

)

since f (N) = 2, because N is a perfect number. Hence,

f (n)
2
=

(2 − 1
2a2 ) × f ( n

2a2 )
2

= f (
n

2a2
) ×

(2 − 1
2a2 )

2

= f (
n

2a2
) ×

2a2+1 − 1
2a2+1

when 2a2 ∥ n due to the Proposition 1.2. In this way, we have

f ( n
2a2 )

f ( n
N )
≤

2a2+1

2a2+1 − 1
.

However, we know that p < 2a2 because of p > 108 > 11 and the Propositions 1.7 and 1.12,
where p is the largest prime factor of n. Consequently,

2a2+1

2a2+1 − 1
≤

2 × p
2 × p − 1

since x
x−1 decreases when x ≥ 2 increases. In addition, we know that

2 × p
2 × p − 1

≤ f (p)

where we know that f (p) = p+1
p from the Proposition 1.2. Certainly,

2 × p2 ≤ (p + 1) × (2 × p − 1)

= 2 × p2 + 2 × p − p − 1

= 2 × p2 + p − 1

where this inequality is satisfied for every prime number p. So,

f ( n
2a2 )

f ( n
N )
≤ f (p)
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where we know that p ∥ n from the Proposition 1.7. Under the assumption of the Riemann
Hypothesis, we have that

eγ > G(n)

=
f ( n

p ) × f (p)

log log n

≥
f ( n

p ) × f ( n
2a2 )

f ( n
N ) × log log n

since f (. . .) is multiplicative and as a consequence of the Propositions 1.3. This is equivalent to

f ( n
p )

f ( n
N )

<
eγ

f ( n
2a2 )
× log log n.

Under the assumption of the Conjecture 1.13 and using the Lemma 4.1 and the Proposition 1.12:

π2

8
×

∏
q≤p

(
1 +

1
q

)
> eγ × log((θ(p))0.8).

From the Propositions 1.1 and 1.7, we know that

f (
n

2a2
) =

 k∏
i=2

qi

qi − 1

 × k∏
i=2

1 − 1

qai+1
i


where qk = p and q1 = 2. We know that

qi

qi − 1
=

qi + 1
qi
×

q2
i

q2
i − 1

.

Using the previous inequality and the Conjecture 1.13, we obtain that

eγ ×
k∏

i=2

1 − 1

qai+1
i

 × log((θ(p))0.8) <
π2

8
×

∏
q≤p

(
1 +

1
q

)
×

k∏
i=2

1 − 1

qai+1
i


= f (

n
2a2

) ×
3
2
×

∏
q>p

q2

q2 − 1

≤ f (
n

2a2
) ×

3
2
× e

2
p

according to the Proposition 1.10. Taking into account that p > 108 > 3 and n is superabundant:

3
2 × e

2
p

log((θ(p))0.8)
>

eγ

f ( n
2a2 )
×

k∏
i=2

1 − 1

qai+1
i

 .
We use the previous inequality to show that

f ( n
p )

f ( n
N )
×

k∏
i=2

1 − 1

qai+1
i

 < 3
2 × e

2
p

log((θ(p))0.8)
× log log n.
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For large enough superabundant number n and p > 108, then

3
2 × e

2
p

log((θ(p))0.8)
× log log n ≤

3
2 × e

2
108

log
(
((1 − 0.068

log 108 ) × 108)0.8
) × log

(
(1 +

0.5
log 108 ) × 108

)
because of the Propositions 1.4 and 1.7. We obtain that

3
2 × e

2
108

log
(
((1 − 0.068

log 108 ) × 108)0.8
) × log

(
(1 +

0.5
log 108 ) × 108

)
< 1.87811.

Thus,
f ( n

p )

f ( n
N )
×

k∏
i=2

1 − 1

qai+1
i

 < 1.87811.

For every prime pi that divides N such that pai
i ∥ N and pai+bi

i ∥ n for ai, bi two natural numbers,
we have that

f (pai+bi
i ) − f (pai

i ) × f (pbi
i ) = −

(pai
i − 1) × (pbi

i − 1)

pai+bi−1
i × (pi − 1)2

in the Proposition 1.2. This is equal to

f (pai+bi
i )

f (pbi
i )
= f (pai

i ) −
(pai

i − 1) × (pbi
i − 1)

f (pbi
i ) × pai+bi−1

i × (pi − 1)2
.

Hence,

f ( n
p )

f ( n
N )
×

k∏
i=2

1 − 1

qai+1
i

 =∏
i

 f (pai+bi
i )

f (pbi
i )

 × k∏
i=2

1 − 1

qai+1
i


=

∏
i

 f (pai
i ) −

(pai
i − 1) × (pbi

i − 1)

f (pbi
i ) × pai+bi−1

i × (pi − 1)2

 × k∏
i=2

1 − 1

qai+1
i


≈

∏
i

(
f (pai

i )
)
×

k∏
i=2

1 − 1

qai+1
i


= f (N) ×

k∏
i=2

1 − 1

qai+1
i


= 2 ×

k∏
i=2

1 − 1

qai+1
i


> 2 ×

(
1 −

1
log p

× (1 +
1.5

log p
) − log(1 −

1
2a2+1 )

)
> 2 ×

(
1 −

1
log p

× (1 +
1.5

log p
) − log(1 −

1
4 × p × log p

)
)

> 2 ×
(
1 −

1
log 108 × (1 +

1.5
log 108 ) − log(1 −

1
4 × 108 × log 108 )

)
> 1.88
> 1.87811
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using the Propositions 1.7 and 1.1 since we know that the expression

(pai
i − 1) × (pbi

i − 1)

f (pbi
i ) × pai+bi−1

i × (pi − 1)2

tends to 0 as bi tends to infinity for every odd prime p. Certainly, the fraction
f ( n

p )
f ( n

N ) gets closer to
2 as long as we take n bigger and bigger. However,

1.87811 <
f ( n

p )

f ( n
N )
×

k∏
i=2

1 − 1

qai+1
i

 < 1.87811

is a contradiction. By contraposition, the number N does not exist under the assumption of the
Conjecture 1.13 and the Riemann Hypothesis. The smallest counterexample N must comply that
N > 101500 and therefore, we will always be capable of obtaining a large enough superabundant
number n that is multiple of N. Note that, this proof fails for even perfect numbers.
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des Nombres de Bordeaux 19 (2) (2007) 357–372. doi:doi:10.5802/jtnb.591.
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