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Abstract. There is a multitude of sample selection-based learning strate-
gies that have been developed for learning with noisy labels. However,
It has also been indicated in the literature that perhaps early stopping
is better than fully training the model for getting better performance.
It leads us to wonder about the behavior of the sample selection strate-
gies under explicit regularization. To this end, we considered four of the
most fundamental sample selection-based models MentorNet, Coteaching,
Coteaching-plus and JoCor. We provide empirical results of applying
explicit L2 regularization to the above-mentioned approaches. We also
compared the results with a baseline - a vanilla CNN model trained with
just regularization. We show that under explicit regularization, the pre-
conceived ranking of the approaches might change. We also show several
instances where the baseline was able to outperform some or all of the
existing approaches. Moreover, we show that under explicit regularization,
the performance gap between the approaches can also reduce.

1 Introduction

Humans tend to learn much better and more quickly when presented with
harder and harder concepts gradually. Yoshua Bengio formalized this notion as
Curriculum learning [2]. Not only does Curriculum learning make the training
process faster, but it also reaches superior quality minima in the case of non-
convex optimization. Building on Curriculum Learning, Kumar [9] proposed
Self-Paced Learning(SPL) for learning a latent variable model. Based on the
findings of [1], according to which a neural network learns easy patterns first,
MentorNet [8] made further progress along this line by using SPL for training
with noisy labels.

Noisy labels are ubiquitous in practice. For example, noise may appear due to
annotations carried out by computer programs on web crawled images [7, 22] or
annotations based on crowdsourcing [27]. Consequently, it is necessary to research
techniques that are robust to noisy labeling.

Since MentorNet, a multitude of sample selection-based techniques has
emerged. Coteaching [5] upgraded the MentorNet by utilizing two Networks.
The mini-batch used for training one network was decided by the loss obtained
on the samples using the second network. Coteaching-plus [36], further argued
that the two networks should be kept diverged by disagreement in predictions,
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which can further benefit the training. JoCoR [30] aimed to reduce the diversity
of the two models as opposed to Coteaching-plus. Recently DivideMix [11], Evi-
dentialMix [25] were proposed, which try to incorporate semi-supervised learning
on noisy classified labels as opposed to leaving them out of training. Another
interesting approach is presented in [35], where a single model has been proposed
for doing sample selection by relying on the consistency of predictions.

Meanwhile, it has also been argued that early-stopping might be a better
strategy than fully training a network. Thus, in the presence of early stopping
regularization, the benefits of MentorNet and other approaches remain unrealized.
Although, finding the instance for early stopping or utilizing early stopping is
an active area of research itself [14,31]. This compelled us to wonder about the
behavior of the sample selection strategies under explicit regularization. Since,
for most of the approaches, either the original results have been provided without
explicit regularization or even if regularization was present, less attention was
paid to regularization while comparing results.

To provide more insights on these matters, we make the following contributions
through this paper.

– We provide empirical results of applying explicit L2 regularization to the
sample selection based approaches. We also compared the results with a
baseline - a vanilla CNN model trained with just regularization.

– We show that under explicit regularization, the pre-conceived ranking of the
approaches might change.

– We also show several instances where the baseline was able to outperform
some or all of the existing approaches.

– Moreover, we show that under explicit regularization, the performance gap
between the approaches can also reduce.

2 Related Works

Various methodologies have been developed to learn with noisy labels. There are
invested efforts in exploiting a noise transition matrix [6, 12, 15, 32], using graph
models [13,33]. Progress has also been made using meta-learning [23,26,29,34].
In [4], authors utilized different pseudo-labeling and sample selection strategies for
Contrastive pre-training. In separate work, authors of [10] argue that even with
overfitting to noise, good hidden representations are learned, which can be used
to train a separate classifier with known correct labels. Authors of [19] learned a
joint probability distribution for noisy and clean labels under the class-conditional
noise process to identify the label errors in the dataset. Meanwhile, SELF [18]
performs self ensembling to filter out the noisy label samples from the dataset,
which are further used for unsupervised loss.

Authors have also tried developing robust surrogate loss functions that can
help to learn in noisy labels setting [3,17,20,37]. In particular, in [16], authors
proposed a curriculum loss(CL) which is a tight upper bound on the 0-1 loss and
can also be used to adaptively select samples. Whereas authors of [28] added
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a reverse cross-entropy element with classical cross-entropy to create metric
cross-entropy loss.

3 Experimentation

We considered four different sample selection algorithms and analyzed their
results under explicit L2 regularization. We first conducted experiments to find
the optimal weight decay value for each combination of algorithm, dataset, noise
type, and noise rate. Next, we compared the results of the algorithms with their
optimal weight decay values, which are provided in this section.

Existing Approaches. We used four different approaches for these experi-
ments, Self-paced MentorNet, Coteaching, Coteaching-plus, and JoCor. We also
considered a Baseline approach - a vanilla model trained only with weight decay.

Datasets. We used four different simulated noisy datasets for benchmarking,
three vision-based datasets, MNIST, CIFAR-10, CIFAR-100, and one text-based
dataset, NEWS. Although, we could only do the testing with JoCor on the
CIFAR-10 and CIFAR-100 datasets, since we also had to find the optimal co-
lambda [30] value for the experiments. We used three different simulated noise
settings for our experiments. Namely, Symmetric noise [24] with 0.2 noise rate,
Symmetric noise with 0.5 noise rate, and Pair-flipping [5] Noise with 0.45 noise
rate.

Hyperparameters. Experiments were run for 200 epochs with three different
seeds. All the other Hyperparameters, including warm-up schedule, were kept
same as the original algorithm.

Network architecture. For all our experiments, we used the following
models(similar to Coteaching-plus).

– MNIST-MLP for MNIST: a 2 layer MLP with ReLU activation

– CNN-small for CIFAR-10: A CNN model with 2 convolutional layers and 3
Dense layers with ReLU activation.

– CNN-large for CIFAR-100: A CNN model with 6 convolutional layers and 1
Dense layer with ReLU activation.

– NEWS-MLP for NEWS: a 3 layer MLP with Softsign activation function on
top of pre-trained word embeddings from GloVe [21].

Table-1 shows the details of these networks(This table is motivated by
Coteaching-plus [36]).
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Table 1: Different architectures used.
MNIST-MLP CNN-small CNN-large NEWS-MLP

Dense 28x28 -> 256

5x5 Conv 6
2x2 Max-pool

3x3 Conv 64, BN,
3x3 Conv 64, BN
2x2 Max-Pool

300-D Embedding
Flatten => 1000x300

Adaptive avg-pool -> 16x300

5x5 Conv 16
2x2 Max-pool

3x3 Conv 128, BN
3x3 Conv 128, BN
2x2 Max-Pool

Dense 16x300 -> 4x300
BN, Softsign

Dense 16x5x5 -> 120
Dense 120 ->84

3x3 Conv 196, BN
3x3 Conv 196, BN
2x2 Max-Pool

Dense 4x300 -> 300
BN, SoftSign

Dense 256 -> 10 Dense84 -> 10/100 Dense 256->10/100 Dense 300 -> 7

Table 2: Average last ten epoch accuracy for different Models at their optimal
weight decay values on the CIFAR-10

dataset type rate model Test Accuracy error(±)

CIFAR-10

sym 0.2

jocor 62.544 0.986
coteaching 60.364 3.317
baseline 59.187 4.667

mentornet 58.392 4.107
coteaching-plus 58.35 0.946

pairflip 0.45

baseline 48.221 1.083
coteaching-plus 39.766 0.356

mentornet 39.666 1.137
coteaching 38.753 3.941

jocor 38.733 0.396

sym 0.5

jocor 51.688 1.36
coteaching-plus 49.881 0.789

baseline 49.2 1.144
coteaching 48.589 4.684
mentornet 45.423 2.498

3.1 Observations

Tables-2, 3, 4, and 5 show the results of experimentation’s on the CIFAR-10,
CIFAR-100, MNIST and NEWS datasets, resp. Test accuracy’s mentioned are
average over last ten epoch across all the seeds . ’type’ column refers to the noise
type and ’rate’ represents the noise rate. In these tables, for ease of analyzing,
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Table 3: Average last ten epoch accuracy for different Models at their optimal
weight decay values on the CIFAR-100 dataset.

dataset type rate model Test Accuracy error(±)

CIFAR-100

sym 0.2

jocor 53.626 0.212
coteaching-plus 49.332 0.32

coteaching 47.812 0.537
mentornet 47.437 0.527
baseline 37.561 0.434

pairflip 0.45

coteaching-plus 30.116 0.374
jocor 29.562 0.351

coteaching 28.811 0.155
mentornet 27.333 0.42
baseline 25.119 0.478

sym 0.5

jocor 43.41 0.401
coteaching-plus 40.445 0.429

coteaching 38.384 0.271
mentornet 37.507 0.485
baseline 22.872 0.472

Table 4: Average last ten epoch accuracy for different Models at their optimal
weight decay values on the MNIST dataset.

dataset type rate model Test Accuracy error(±)

MNIST

sym 0.2

coteaching-plus 97.776 0.111
baseline 97.52 0.119

mentornet 97.496 0.062
coteaching 97.49 0.062

pairflip 0.45

coteaching 91.894 0.41
mentornet 91.852 0.538

coteaching-plus 86.403 4.367
baseline 77.084 0.29

sym 0.5

coteaching 96.311 0.104
mentornet 96.265 0.098

coteaching-plus 95.995 0.113
baseline 95.799 0.062
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Table 5: Average last ten epoch accuracy for different Models at their optimal
weight decay values on the NEWS dataset.

dataset type rate model Test Accuracy error(±)

NEWS

sym 0.2

coteaching-plus 42.266 0.2
coteaching 38.768 0.21
mentornet 38.596 0.73
baseline 36.558 0.383

pairflip 0.45

coteaching-plus 30.195 0.611
mentornet 29.669 0.322
coteaching 29.054 0.425
baseline 27.356 0.4

sym 0.5

coteaching-plus 34.916 0.436
coteaching 33.919 0.562
mentornet 32.857 0.226
baseline 26.217 0.521

(a) 20% symmetric noise (b) 50% symmetric noise (c) 45% pairflip noise

Fig. 1: Results on the CIFAR-10 dataset for different Models at their optimal
weight decay values
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(a) 20% symmetric noise (b) 50% symmetric noise (c) 45% pairflip noise

Fig. 2: Results on the CIFAR-100 dataset for different Models at their optimal
weight decay values

(a) 20% symmetric noise (b) 50% symmetric noise (c) 45% pairflip noise

Fig. 3: Results on the MNIST dataset for different Models at their optimal weight
decay values

(a) 20% symmetric noise (b) 50% symmetric noise (c) 45% pairflip noise

Fig. 4: Results on the NEWS dataset for different Models at their optimal weight
decay values
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entries for a particular combination of dataset, noise type and noise rate are
sorted by the Test Accuracy. Meanwhile, Figures-1, 2, 3, and 4 show the test
accuracy vs epoch plots during the training.

Before we analyze the results, we present a ranking order for existing ap-
proaches and the baseline. Based on the existing claims in the literature, we
can assume the following ranking order, JoCor(1st) > Coteaching-plus(2nd) >
Coteaching(3rd) > MentorNet(4th) > Baseline(5th), where ’>’ implies better in
terms of test-accuracy. Moreover, it is expected that if explicit regularization
doesn’t have any relative effect on the approaches, then this pre-defined rank
order should be maintained in our experiments as well.

Please note that there are 12 different groups of experiments, corresponding
to the twelve different combinations of the dataset, noise type, and noise rate.
Moreover, in each of these groups, a ranking order of the approaches can be
observed(Each Table-2, 3, 4, and 5 show 3 groups based on noise-type and
noise-rate for a particular dataset.). We have made the following observations by
comparing these ranking orders with the pre-defined ranking order.

– In 8 out of the 12 groups, the ranking order was different than the pre-defined
ranking order. This gives a clear indication that explicit regularization can
indeed change the relative ranking of the approaches.

– Among all the combinations, Pairflip-0.45 proved to get most affected by
regularization, where ranking order broke for every dataset value. Pairflip-0.45
is the toughest noise category as can be seen by lowest test accuracy for any
approach-dataset pair. Thus, higher amount of overfitting to noisy labels
happens in Pairflip-0.45 case, thus, the effect of L2-regularization is more
profound.

– There were 4 different groups in which Baseline wasn’t at the bottom of
the ranking order. This includes the group CIFAR-10-Pairflip-0.45, where
Baseline ranked 1st with a difference of 8.455% between Baseline and the 2nd

ranked approach.
– We also observed that the performance gap between the MentorNet and the

Coteaching was reduced significantly(please check the plots). On 3 different
groups, MentorNet was even able to outperform Coteaching. Moreover, on
the remaining 9 groups, the average performance difference between the
Coteaching and the MentorNet was only 1.0212%.

– Following observations were made regarding the individual performance of
each approach. (We denote the group as a failure if the ranking of the
approach in the group was lower than the pre-defined ranking. Similarly, a
win if it was higher than the pre-defined ranking.)
• JoCor failed on 2(33.33%) groups out of 6(since we only experimented
with JoCor on the CIFAR-10 and the CIFAR-100).

• Coteaching-plus failed 3 times and won once, which implies the ranking
order was changed 4(33.33%) times for it.

• Coteaching failed 4 times and won 3 times i.e. 7(58.33%) times the ranking
order was changed.

• MentorNet failed once and won 4 times.
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• Baseline won 4 times as well.

Based on this data, we can say that while the domination of one approach
over the other might not be altered with explicit regularization (for instance,
JoCor still ranks 1st in 4 out of 6 groups), in many instances, it can alter the
outcome of the experiments and change the believed ranking of the approaches.
Moreover, it can also reduce the performance gap between the algorithms as
observed in the case of MentorNet and Coteaching.

4 Conclusion

In this paper, we showed that under explicit regularization, the pre-conceived
ranking of the approaches might change. We also showed several instances where
a vanilla CNN trained with just L2 regularization was able to outperform some
or all of the existing approaches. Moreover, under explicit regularization, the
performance gap between the approaches can also reduce. All these points suggest
that special attention should be given to explicit regularization. Since explicit
regularization can significantly alter the outcome, we suggest that it should be
made sure that the comparison between the two approaches is done with their
optimal regularization values.
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