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Abstract 

In this study is depicted a representation of a pensions fund through a stochastic network 

with two infinite servers ‘nodes. With this representation it is allowed to deduce an 

equilibrium condition of the system with basis on the identity of the random rates 

expected values, for which the contributions arrive to the fund and the pensions are paid 

by the fund. Then, to address situations of imbalance, the generic case of a pensions fund 

that it is not sufficiently auto financed, and it is thoroughly maintained with an external 

financing effort is considered in this chapter. To represent the unrestricted reserves value 

process of this kind of fund, a time homogeneous diffusion stochastic process with finite 

expected time to ruin is proposed. Then it is projected a financial tool that regenerates the 

diffusion at some level with positive value every time the diffusion hits a barrier placed 

at the origin. So, the financing effort can be modeled as a renewal-reward process if the 

regeneration level is preserved constant. The perpetual maintenance cost expected values 

and the finite time maintenance cost evaluations are studied. An application of this 

approach when the unrestricted reserves value process behaves as a generalized Brownian 

motion process is presented. 

Keywords: pensions fund, system equilibrium, Poisson process, Wald’s equation   

diffusion process, first passage times, perpetuity, renewal equation.    

MSC: 60G07 

1.Introduction 

Pension funds represent savings collected throughout people’s working life. Pension 

funds that support personal pension plans are intended to be autonomous. They represent 

the highest level of protection to the beneficiary from bankruptcy of the sponsor, 

especially when the custodian is involved. Non-autonomous pension funds are not legally 

separated from the plan sponsor but are kept on their balance sheet. In this case, there is 

the lowest protection level to the beneficiary from bankruptcy of the sponsor, since the 

sponsor can use pension’s assets to fund its business, see [1].  

First, we present a study on the sustainability of a pensions fund see for instance 

[2,3, and 4] in the field of queuing theory. Two infinite servers’ queues are considered: 

one with the contributors to the fund, which service time is the time during which they 

contribute to the fund; the other with the pensioners which service time is the time during 

which they receive the pension. In both queues, there is no distinction between a customer 

and its server in technical sense. 

The most important consequence of the previous study is that for the fund to be balanced, 

the average pension must be equal to the average contribution. However, due to the 

demographic imbalance that exists in contemporary societies, with the number of 

https://zbmath.org/classification/?q=cc%3A60G07


contributors successively decreasing while the number of retirees increases inexorably, 

this meant that, if the funds were to be balanced autonomously, workers' contributions 

would have to assume unbearable values. 

The usual way to address this problem is to inject capital into these resources through 

transfers from the Public Budget whenever necessary. Therefore, in a disorganized way 

and, in general, in unforeseen situations that may coincide with moments of great 

financial difficulties. 

So, the objective of the subsequent study is to try to make these situations more 

predictable, both in relation to the moment of occurrence and the amount needed, so that 

the protection of these funds occurs as smoothly as possible. 

The financial problem of asset-liability management scheme of a pensions fund requires 

a management program that demands a set of decisions. In particular, the amounts and 

the instants at which it is necessary to inject money in the fund to keep it sustainable. 

Sponsors are obviously interested in an appropriate management of the risk for their 

pension funds. Well and balanced funded pension funds result essential in this process of 

funds management.  

Through this chapter we also will develop a mathematical tool that allows predicting, in 

a probabilistic mode, the appropriate moments to carry out these money injections and 

the respective amounts.  

This issue is particularly relevant since we know that pension funds are continuously 

exposed to the market’s situation. And the recent financial crises and turbulent stock 

markets circumstances made the problem of pension funds management receive attention. 

Many pensions’ funds suffered dramatic losses, and this is a problematic issue that 

managers want to overcome the best they can. So, managerial tools allow a better 

decision-making.   

The protection cost present value expectation for a non-autonomous pensions’ fund is 

considered in this work. Two contexts are considered:  

• The protection effort is perpetual, 

• The protection effort happens for a finite period. 

It is admitted that the unrestricted fund reserves behavior may be modeled as a time 

homogeneous diffusion process. Then a regeneration scheme of the diffusion to include 

the effect of an external financing effort is used. 

In this part, this chapter is an updated and enlarged version of [5], where was mainly 

considered the diffusion process. 

In [6] a similar work is presented. A Brownian motion process conditioned by a reflection 

scheme was considered. With less constraints, but in different conditions, exact solutions 

were then obtained for both problems. 

The work presented in [7] , on asset-liability management aspects, also motivated the use 

of the Brownian motion application example in that domain. 



So, in this chapter we extend the results presented in [5], better specifying the diffusion 

process mathematical details, and deeply exploring the Brownian motion process 

situation 

Other works on this subject are [8, and 9] both dealing with the diffusion process case. 

The works [10, 11, and 12], deal with other financial problems, slightly different from 

the presently considered here, but relevant to their understanding and framing.  

2.The Fund Equilibrium 

Begin assuming two nodes, service centers, A and B, both with infinite servers. The traffic 

through arches a to e is as it is schematized in Figure 1. 
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                                  Figure 2.1. Traffic in the stochastic network 

 

The users arrive to node A by arch a at rate 𝜆𝐴. And the sojourn time at this node is a 

positive random variable with distribution function (d.f.) 𝐺𝐴(. ) and finite mean 𝛼𝐴. After 

node A the users go to node B through b with probability p. Or just abandon the system 

through arch c with probability 1 – p. There may also be users coming directly from 

outside through d at rate 𝜆𝐵 to node B. The sojourn time at this node is a positive random 

variable with d.f. 𝐺𝐵(. ) and finite mean 𝛼𝐵. The system is abandoned by these users 

through arch e.  

This system is suggested as a representation of a pensions fund. Therefore, at node A are 

individuals whose service consists in paying, during their working time, their 

contributions to the fund. The pensioners are at node B, whose service represents their 

pensions payment by the fund. In this representation it is also reflected the functions of 

the common social security funds and that is why it accepts the access of pensioners that 

have not formerly participated, at node A, in the building of the fund. 

By considering this representation, in this approach, the objective is to obtain results about 

the transient behavior of the system from the point of view of its equilibrium and 

autonomy. 

So, name 𝑁𝐴(𝑡) and 𝑁𝐵(𝑡) be the random variables (r.v.) that represent the number of 

individuals by time t at nodes A and B, respectively. Also define the sets of random 



variables, i.i.d: 𝑋𝐴1
(𝑡), 𝑋𝐴2

(𝑡), 𝑋𝐴3
(𝑡), … , (𝑋𝐵1

(𝑡), 𝑋𝐵2
(𝑡), 𝑋𝐵3

(𝑡), … ) which designate 

the unitary contributions, pensions by time t, with mean 𝑚𝐴(𝑡) and 𝑚𝐵(𝑡)1. 

Assuming that the system is in equilibrium when the expected values of the rates at which 

the contributions are being received and the pensions are being paid by the fund are 

identical:  

 

𝐸 [ ∑ 𝑋𝐴𝑖
(𝑡)

𝑁𝐴(𝑡)

𝑖=1

] = 𝐸 [ ∑ 𝑋𝐵𝑗
(𝑡)

𝑁𝐵(𝑡)

𝑗=1

]           (2.1). 

 

That is, by Wald’s equation:  

 

𝑚𝐴(𝑡)𝐸[𝑁𝐴(𝑡)] = 𝑚𝐵(𝑡)𝐸[𝑁𝐵(𝑡)]               (2.2). 

 

So, at each instant the mean value of the unitary pension should be proportional to the 

mean value of the unitary contribution, with the ratio between the averages of the numbers 

of contributors and pensioners as proportionality factor. Being t = 0 the origin time, its 

solution corresponds, for t > 0, to the following pairs:  

 

(𝑚𝐴(𝑡); 𝑚𝐵(𝑡)) = (𝑚𝐴(𝑡);
𝑚𝐴(𝑡)𝐸[𝑁𝐴(𝑡)]

𝐸[𝑁𝐵(𝑡)]
)             (2.3), 

 

where 𝑚𝐴(𝑡) is independent of the equilibrium. 

If the mean value of the unitary pension is initially 1, and grows continuously with an 

interest rate r,  

𝑚𝐵(𝑡) = 𝑒𝑟𝑡

𝑚𝐴(𝑡) = 𝑒𝑟𝑡(𝐸[𝑁𝐵(𝑡)]/𝐸[𝑁𝐴(𝑡)])
         (2.4)        

 

It is elementary, after (2.1)), that 

 

𝐸[𝑁𝐴(𝑡)] < 𝐸[𝑁𝐵(𝑡)] ⇒ 𝑚𝐴(𝑡) > 𝑚𝐵(𝑡)      (2.5). 

 

 
1 Under the term unitary contribution/pension, it is meant the amount of money that one individual pays/ 

receives, by unit of time. 



Thus, being the system in equilibrium, the mean value of the unitary pension is smaller 

than the mean value of the unitary contribution whenever the mean number of pensioners 

at B is bigger than the mean number of contributors at A.  

3.Poisson Arrivals Situation 

When considering the arrivals from outside at nodes A and B according to a Poisson 

process, with rates 𝜆𝐴 and 𝜆𝐵, respectively, the system may be seen as a two nodes 

network where the first node is a 𝑀|𝐺|∞ queue and second 𝑀𝑡|𝐺|∞ queue, see for 

instance [13]. So, 𝑁𝐴(𝑡) is exponentially distributed with parameter, see also [13], 

 

𝜆𝐴 ∫ (1 − 𝐺𝐴(𝑣))
𝑡

0

𝑑𝑣    (3.1). 

 

The output of the first node is a non-homogeneous Poisson process with intensity function 

𝜆𝐴𝐺𝐴(𝑡) and, consequently, the global arrivals rate at node B is 𝑝𝜆𝐴𝐺𝐴(𝑡) + 𝜆𝐵. Under 

this conditions 𝑁𝐵(𝑡) is quasi-exponentially distributed with parameter, see [13] : 

 

∫ (𝑝𝜆𝐴𝐺𝐴(𝑣) + 𝜆𝐵)(1 − 𝐺𝐵(𝑡 − 𝑣))𝑑𝑣           (3.2).
𝑡

0

 

 

And (2.2) is now written as: 

 

              𝑚𝐴(𝑡)𝜆𝐴 ∫ (1 − 𝐺𝐴(𝑣))
𝑡

0
𝑑𝑣 = 𝑚𝐵(𝑡)  ∫  (𝑝𝜆𝐴𝐺𝐴(𝑣)  +  𝜆𝐵)(1 −

𝑡

0

                                                    𝐺𝐵(𝑡 − 𝑣))𝑑𝑣                                                                 (3.3).             

 

Now, versions of these results some concrete examples of service times distributions 

follow: 

Uniformly Distributed Service Times 

Assuming the service times are uniformly distributed, supposing that 𝛼𝐵 < 𝛼𝐴, it is 

obtained for (2.2) in 0 ≤ 𝑡 < 2𝛼𝐴 + 2𝛼𝐵: 

𝑖)   𝑚𝐴(𝑡)𝜆𝐴 (𝑡 −
𝑡2

4𝛼𝐴
) = 𝑚𝐵(𝑡)𝜆𝐵 (𝑡 −

𝑡2

4𝛼𝐵
) + 𝑚𝐵(𝑡)𝑝𝜆𝐴 (

𝑡2

4𝛼𝐴
−

𝑡3

24𝛼𝐴𝛼𝐵
), 0 ≤

𝑡

2
< 𝛼𝐵 

(3.4), 

𝑖𝑖)   𝑚𝐴(𝑡)𝜆𝐴 (𝑡 −
𝑡2

4𝛼𝐴
) = 𝑚𝐵(𝑡)𝜆𝐵𝛼𝐵 + 𝑚𝐵(𝑡)𝑝𝜆𝐴 (−

𝛼𝐵
2

3𝛼𝐴
−

𝑡𝛼𝐵

2𝛼𝐴
) , 𝛼𝐵 ≤

𝑡

2
< 𝛼𝐴  

(3.5),  



𝑖𝑖𝑖)  𝑚𝐴(𝑡)𝜆𝐴𝛼𝐴 = 𝑚𝐵(𝑡)𝜆𝐵𝛼𝐵 + 𝑚𝐵(𝑡)𝑝𝜆𝐴 (−𝛼𝐴 −
𝛼𝐴

2

12𝛼𝐵
+ 𝑡 −

            (𝑡−𝛼𝐴)2

4𝛼𝐵
+

                             
(𝑡−2𝛼𝐵)3

24𝛼𝐴𝛼𝐵
),  𝛼𝐴 ≤

𝑡

2
< 𝛼𝐴 + 𝛼𝐵     (3.6). 

Exponentially Distributed Service Times 

Now, considering that the service times are exponentially distributed the equilibrium 

distribution is given by: 

𝑖)   𝑚𝐴(𝑡)𝜆𝐴𝛼𝐴 (1 − 𝑒
−

𝑡

𝛼𝐴) =  𝑚𝐵(𝑡)(𝑝𝜆𝐴 +        𝜆𝐵)𝛼𝐵 (1 − 𝑒
−

𝑡

𝛼𝐵) −

𝑚𝐵(𝑡)
𝜌𝜆𝐴𝛼𝐴𝛼𝐵

𝛼𝐴−𝛼𝐵
(𝑒

−
𝑡

𝛼𝐴 −        𝑒
−

𝑡

𝛼𝑩), 𝛼𝐴 ≠ 𝛼𝐵  (3.7), 

 

𝑖𝑖)   𝑚𝐴(𝑡)𝜆𝐴𝛼𝐴 (1 − 𝑒
−

𝑡

𝛼𝐴) = 𝑚𝐵(𝑡) (𝑝𝜆𝐴 +        𝜆𝐵)𝛼𝐴 (1 − 𝑒
−

𝑡

𝛼𝑨) −

 𝑚𝐵(𝑡)𝑝𝜆𝐴𝑡𝑒
−

𝑡

𝛼𝐴 ,   𝛼𝐴 = 𝛼𝐵       (3.8). 

Service Times with a Particular Distribution Function 

To solve (2.2) in the way presented above becomes quite difficult with other standard 

distributions for the service times. So now it will be presented a collection of d.f.’s, see 

[14, and 15], for the service times given by 

𝐺𝑖(𝑣) = 1 −
(1−𝑒−𝜌𝑖)(𝛾𝑖+𝛽𝑖)

𝛾𝑖𝑒−𝜌𝑖(𝑒(𝛾𝑖+𝛽𝑖)𝑣−1)+𝛾𝑖

, 𝑣 ≥ 0, 𝛾𝑖 > 0, 𝜌𝑖 > 0, −𝛾𝑖 ≤ 𝛽𝑖 ≤
𝛾𝑖

𝑒−𝜌𝑖−1
, 𝑖 =

𝐴, 𝐵  (3.9).   

The mean distribution is 𝛼𝑖 = 𝜌𝑖 𝛾𝑖⁄ . In this case (2.2) becomes: 

𝑚𝐴(𝑡)
𝜆𝐴

𝛾𝐴
𝑙𝑛

𝑒(𝛾𝐴+𝛽𝐴)𝑡

𝑒−𝜌𝐴(𝑒(𝛾𝐴+𝛽𝐴)𝑡 − 1) + 1
      

= 𝑚𝐵(𝑡)
𝑝𝜆𝐴 + 𝜆𝐵

𝛾𝐵
𝑙𝑛

𝑒(𝛾𝐵+𝛽𝐵)𝑡

𝑒−𝜌𝐵(𝑒(𝛾𝐵+𝛽𝐵)𝑡 − 1) + 1
− 𝑚𝐵(𝑡)𝑝𝜆𝐴𝐼(𝑡) 

 where 𝐼(𝑡) = ∫
(1−𝑒−𝜌𝐴)(𝛾𝐴+𝛽𝐴)

𝛾𝐴𝑒−𝜌𝐴(𝑒(𝛾𝐴+𝛽𝐴)𝑣−1)+𝛾𝐴

𝑡

0
×

(1−𝑒−𝜌𝐵)(𝛾𝐵+𝛽𝐵)

𝛾𝐵𝑒−𝜌𝐵(𝑒(𝛾𝐵+𝛽𝐵)(𝑡−𝑣)−1)+𝛾𝐵

𝑑𝑣,   (3.10). 

𝐼(𝑡) is non-negative and not bigger than 

(𝛾𝐴 + 𝛽𝐴)(𝛾𝐴 + 𝛽𝐴)𝑡

𝛾𝐴 + 𝛾𝐵
, (3.11) 

Approximations 

The solutions for (2.2) appear to be significantly more complex in circumstances different 

from those that have been mentioned. For instance, if the service times follow a 

Lognormal, Gama or Weibull distributions. In some cases, only the numerical solution 

can eventually be stained.  



For appropriate values of t, the following approximations concerning the equilibrium 

conditions are suggested:  

𝑚𝐵(𝑡)

𝑚𝐴(𝑡)
≅

𝜆𝐴𝛼𝐴

(𝑝𝜆𝐴 + 𝜆𝐵)𝛼𝐵
          (3.12); 

 

𝑚𝐵(𝑡)

𝑚𝐴(𝑡)
≅

𝜆𝐴

𝜆𝐵
                               (3.13). 

 

Equation (3.13) seems reasonable for values of t big enough and (3.13) is preferrable for 

t close to zero. For details see  [4]. 

 

 

Observations: 

-Some values of the parameters 𝑝 and 𝜆𝐵 have a special influence in the system behaviour. 

One may consider the suppression of the arch b when 𝑝 = 0, of the arch c when 𝑝 = 1 or 

of the arch d for  𝜆𝐵 = 0. Under those circumstances the traffic in those arches can be 

neglected, 

-It may be admitted that the ratio 𝑚𝐵(𝑡) 𝑚𝐴(𝑡)⁄  remains constant. This corresponds to 

the assumption that all the users of the system face identical conditions of effort and 

benefit, independently of the moment they join the system. Equation (3.12) supplies a 

natural candidate for the value of that constant: 𝜆𝐴𝛼𝐴 (𝑝𝜆𝐴 + 𝜆𝐵)𝛼𝐵.⁄  In such situation 

(3.3) should include an “excess” functions ℎ(𝑡): 

ℎ(𝑡) = 𝑚𝐵(𝑡)
𝜆𝐴𝛼𝐴

(𝑝𝜆𝐴+𝜆𝐵)𝛼𝐵
∫ (𝑝𝜆𝐴𝐺𝐴(𝑣) + 𝜆𝐵)(1 − 𝐺𝐵(𝑡 − 𝑣))

𝑡

0
𝑑𝑣 − 𝑚𝐴(𝑡)𝜆𝐴 ∫ (1 −

𝑡

0

𝐺𝐴(𝑣))𝑑𝑣       (3.14). 

The function ℎ(𝑡) is also interpreted in the sense of the expected value of a random 

variable depending on t. This approach can be generalized in a natural way to some other 

predefined function 𝑚𝐵(𝑡) 𝑚𝐴(𝑡)⁄ , 

-Assuming that the system is initially empty appears to be a strong restriction of the 

analysis performed. When someone meets the system already in operation and does not 

know when it did start, the results that have been mentioned seem to have a lesser utility. 

In such case, there re-evaluation or finding an estimation procedure for the initial time 

are determinant for practical purposes. 

- Evidently, if contributors successively decrease while the number of retirees increases, 

this means that, if the funds were to be balanced autonomously, workers' contributions 

would have to assume unbearable values. The usual way to address this problem is to 

inject capital into these resources through transfers from the Public Budget whenever 

necessary. Next, we will present a model to study this procedure. 



4. Pensions Fund Reserves Behavior Stochastic Model 

Think X(t), t ≥ 0 the reserves value process of a pensions fund given by an initial reserve 

amount a, a > 0 added to the difference between the total amount of contributions 

received and the total amount of pensions paid both up to time t. Assume  X(t)  is a time 

homogeneous diffusion process, with X(0) = a, defined by drift μ(x), and diffusion 

coefficient   σ2(x). 

 Call Sa the first passage time of X(t) by 0, coming from a. The funds to be considered in 

this work are non-autonomous funds. So 

                            E[Sa] < ∞, for any a > 0       (4.1), 

That is: funds where the pensions paid consume in finite expected time any initial positive 

reserve and the contributions received. Then other financing resources are needed to fund 

survival. 

The condition (4.1) may be fulfilled for a specific diffusion process using criteria based 

on the drift and diffusion coefficients. In this context, the work presented in 

[16, pg. 418 − 422], will be followed.  

So, accept P(Sa < ∞) = 1 if the diffusion scale function is q(x) = ∫ e
− ∫

2μ(y)

σ2(y)
dy

z
x0 dz,

x

x0
 

where x0 is a diffusion state space fixed arbitrary point, fulfilling q(∞) = ∞. Then the 

condition (4.1) is equivalent to p(∞) < ∞, where  p(x) = ∫
2

σ2(z)
e

∫
2μ(y)

σ2(y)
dy

z
x0 dz,

x

x0
 is the 

diffusion speed function. 

It is admitted that whenever the exhaustion of the reserves happens an external source 

place instantaneously an amount θ, θ > 0 of money in the fund so that it may keep on 

performing its function. 

The reserves value process conditioned by this financing scheme is denoted by the 

modification X̌(t) of  X(t) that restarts at the level θ whenever it hits 0. As X(t) was 

defined as a time homogeneous diffusion, X̌(t) is a regenerative process. Call T1, T2, T3, … 

the sequence of random variables where Tn denotes the nth  X̌(t) passage time by 0. It is 

obvious that the sequence of time intervals between these hitting times D1 = T1, D2 =

T2 − T1, D3 = T3 − T2, … is a sequence of independent random variables where D1 has 

the same probability distribution as Sa and D2, D3, … the same probability distribution 

as Sθ.  

First Passage Times Laplace Transforms  

Call fa(s) the probability density function of Sa(related to D1). The corresponding 

probability distribution function is denoted by Fa(s). The Laplace transform of Sa is 

denoted φa(λ). 

Consequently, the density, distribution and transform of Sθ (related to  D2, D3, … )will be 

denoted by fθ(s), Fθ(s) and φθ(λ), respectively. 

The transform φa(λ) satisfies the second order differential equation 



             

1

2
σ2(a)uλ

´´(a) + μ(a)uλ
´ (a) = λuλ(a),

uλ(a) = φa(λ), uλ(0) = 1, uλ(∞) = 0
      (4.2), 

See  [16, pg.  243; 17, pg. 478; 18, pg.  89]. 

Perpetual Maintenance Cost Present Value  

Consider the perpetual maintenance cost present value of the pension’s fund given by the 

random variableV(r, a, θ) = ∑ θe−rTn∞
n=1 , r>0, where r represents the appropriate 

discount rate. Note that V(r, a, θ) is a random perpetuity. What matters is its expected 

value which is simple to calculate through Laplace transforms. Since the Tn Laplace 

transform isE[e−λTn] = φa(λ)φθ
n−1(λ), 

vr(a, θ) = E[V(r, a, θ)] =
θφa(r)

1 − φθ(r)
        (4.3). 

It is relevant to note that 

lim
θ⟶0

vr(a, θ) =
ur(a)

−ur
´ (0)

          (4.4) . 

Finite Time Period Maintenance Cost Present Value  

Define the renewal process N(t) as N(t) = sup{n: Tn ≤ t} , generated by the extended 

sequence T0 = 0, T1, T2, … . The present value of the pensions fund maintenance cost up 

to time t is represented by the stochastic process 

                   W(t; r, a, θ) = ∑ θe−rTn , W(t; r, a, θ) = 0 if 
N(t)
n=1  N(t) = 0. 

To calculate the expected value function of the process evaluation: wr(t; a, θ) =

E[W(t; r, a, θ)], begin noting that it may be expressed as a numerical series. Indeed, 

evaluating the expected value function conditioned by N(t) = n, it is obtained 

E[W(t; r, a, θ)|N(t) = n] = θφa(r)
1−φθ

n(r)

1−φθ(r)
. Repeating the expectation: 

               wr(t; a, θ) = E[E[W(t; r, a, θ)]|N(t)] = θφa(r)
1−γ(t,φθ(r))

1−φθ(r)
     (4.5). 

Here γ(t, ξ) is the probability generating function of N(t). 

Denote now the Tn probability distribution function by Gn(s) and assume G0(s) = 1,

for s ≥ 0. Recalling that P(N(t) = n) = Gn(t) − Gn+1(t), the above-mentioned 

probability generating function is 

              γ(t, ξ) = ∑ ξn∞
n=0 P(N(t) = n) = 1 − (1 − ξ) ∑ ξn−1∞

n=1 Gn(t)     (4.6). 

Substituting (4.6) in (4.5), wr(t; a, θ) is expressed in the form of the series: 

 

wr(t; a, θ) = θφa(r) ∑ φθ
n−1(r)

∞

n=1

Gn(t)               (4.7). 



 

Call the wr(t; a, θ) ordinary Laplace transform ψ(λ). The probability distribution 

function Gn(s), of Tn, ordinary Laplace transform is given φa(λ)
φθ

n−1(λ)

λ
 and performing 

the Laplace transforms in both sides of (4.7) it is obtained ψ(λ) =
θφa(r)φa(λ)

λ(1−φθ(r)φθ(λ))
 or 

ψ(λ) = θφa(r)
φa(λ)

λ
+ ψ(λ)φθ(r)φθ(λ)       (4.8). 

Inverting Laplace transforms in both sides of (4.8) the following defective renewal 

equation is got: 

wr(t; a, θ) =  θφa(r)Fa(t) + ∫ wr(t − s; a, θ)φθ(r)fθ(s)ds      (4.9) 
t

0

. 

Now an asymptotic approximation of wr(t; a, θ) will be obtained through the key renewal 

theorem, see [16, pg.  376]. 

If in (4.9) t → ∞ 

                              wr(∞; a, θ) =  θφa(r) + wr(∞; a, θ)φθ(r)    (4.10). 

Or wr(∞; a, θ) =
θφa(r)

1−φθ(r)
= vr(a, θ). 

This is the expression (4.3) for vr(a, θ). Subtracting each side of (4.10) from each side of 

(4.9), and performing some elementary calculations is obtained the following, still 

defective, renewal equation 

                                J(t) = j(t) + ∫ J(t − s)φθ(r)fθ(s)ds       (4.11)
t

0
. 

Here J(t) = wr(∞; a, θ) −  wr(t; a, θ)andj(t) =  θφa(r)(1 − Fa(t)) +
θφa(r)φθ(r)

1−φθ(r)
(1 −

Fθ(t)). 

Now, to obtain a common renewal equation from (4.11), it must be admitted the existence 

of a value k > 0 such that ∫ eksφθ(r)fθ(s)ds =
∞

0
φθ(r)φθ(−k) = 1. 

So, the transform φθ(λ) is defined in a domain different from the initially considered. 

That is, a domain including a convenient subset of the negative real numbers. 

Multiplying both sides of (4.11) by ekt the common renewal equation desired is finally 

obtained:  ektJ(t) = ektj(t) + ∫ ek(t−s)J(t − s)ekst

0
φθ(r)fθ(s)ds from which, by the 

application of the key renewal theorem, it results 

                         lim
t→∞

ektJ(t) =
1

k0
∫ eksj(s)

∞

0
ds     (4.12). 

And k0 = ∫ seks∞

0
φθ(r)fθ(s)ds = φθ(r)φθ

´ (−k), since ektj(t) is directly Riemann 

integrable. The integral in (4.12) may be expressed in terms of transforms as 

∫ eksj(s)
∞

0
ds =

θφa(r)φa(−k)

k
  . So, an asymptotic approximation, in the sense of (4.12) 

was obtained: 



                           wr(t; a, θ) ≈ vr(a, θ) − cr(a, θ)e−kr(θ)t (4.13).       

Here kr(θ) is the positive value of k that fulfills:  

                                     φθ(r)φθ(−k) = 1               (4.14). 

And                                     

cr(a, θ) =
θφa(r)φa(−kr(θ))

−kr(θ)φθ(r)φθ
´ (−kr(θ))

      (4.15). 

5. Particularizing for Brownian Motion           

Suppose the diffusion process X(t) , underlying the reserves value behavior of the 

pension’s fund, is a generalized Brownian motion process, with drift μ(x) = μ, μ < 0 and 

diffusion coefficient  σ2(x) = σ2, σ > 0. Observe that the setting satisfies the conditions 

that were assumed above in this work. Namely  μ < 0  implies condition (4.1). Everything 

else remaining as previously stated, will be proceeded to present the consequences of this 

particularization. In general, it will be added (∗) to the notation used before because it is 

intended to use these specific results later.  

To obtain the first passage time Sa Laplace transform, remember (4.2), it must be solved 

the equation: 
1

2
σ2(a)uλ

∗´´(a) + μ(a)uλ
∗´(a) = λuλ

∗ (a), uλ
∗ (a) = φa(λ), uλ

∗ (0)=1 uλ
∗ (∞) =

0. This is a homogeneous second order differential equation with constant coefficients, 

which general solution is uλ
∗ (a) = β1eα1a + β2eα2a, with α1, α2 =

−μ±√μ2+2λσ2

σ2 . 

Condition uλ
∗ (∞) = 0 implies β1 = 0 and  uλ

∗ (0)=1 implies β2=1 so that the solution is 

achieved: 

uλ
∗ (a) = e−Kλa (= φa

∗(λ)), Kλ =
μ + √μ2 + 2λσ2

σ2
       (5.1). 

In this case, the perpetual maintenance cost present value of the pensions fund is given 

by, following (4.1) and using (5.1),  

vr
∗(a, θ) =

θe−Kra

1 − e−Krθ
        (5.2). 

Note that vr
∗(a, θ) is a decreasing function of the first variable and an increasing function 

of the second. Proceeding as before: 

                                                 lim
θ⟶0

vr
∗(a, θ) =

e−Kra

Kr
           (5.3). 

This expression has been obtained in [6] , in a different context and using different 

methods but, obviously, with identical significance. In [6], the authors acted with a 

generalized Brownian motion, with no constraints in what concerns the drift coefficient, 

conditioned by a reflection scheme at the origin. 

A way to reach an expression for the finite period maintenance cost present value, is 

starting by the computation of kr
∗(θ), solving (4.14). This means to determine a positive 

number k satisfying e−Krθe−K−λθ = 1 or  Kr + K−λ = 0. 



This identity is verified for the value of k: 

            kr
∗(θ) =

μ2−(−2μ−√μ2+2rσ2)
2

2σ2 , if μ < −√
2rσ2

3
      (5.4). 

Note that the solution is independent of θ in these circumstances. A simplified solution, 

independent from 𝑎 and 𝜃, for cr
∗(a, θ) was also obtained. Using (4.15) the result is  

cr
∗(a, θ) =

2σ2(−2μ − √μ2 + 2rσ2)

μ2 − (−2μ − √μ2 + 2rσ2)
2           (5.5). 

Combining these results, (5.4) and (5.5), as in (4.13) it is observable that the asymptotic 

approximation for this particularization reduces to wr
∗(t; a, θ) ≈ vr

∗(a, θ) − πr(t), where 

the function πr(t) is, considering (5.4) and (5.5), 

πr(t) =
2σ2(−2μ − √μ2 + 2rσ2)

μ2 − (−2μ − √μ2 + 2rσ2)
2  e

−
μ2−(−2μ−√μ2+2rσ2)

2

2σ2 t
, if μ < −√

2rσ2

3
        (5.6). 

6.The Assets and Liability Behavior Representation 

In this section it is presented an application of the results obtained above to an asset-

liability management scheme of a pension fund. Assume that the assets value process of 

a pensions fund may be represented by the geometric Brownian motion process 

                    A(t) = bea+(ρ+μ)t+σB(t)  with  μ < 0 and  abρ + μσ > 0   (6.1),  

where B(t) is a standard Brownian motion process. Suppose also that the fund liabilities 

value process performs such as the deterministic process L(t) = beρt. 

Consider now the stochastic process Y(t) obtained by the elementary transformation 

of A(t), Y(t) = ln
A(t)

L(t)
= a + μt + σB(t). This is a generalized Brownian motion process 

exactly as the one studied before, starting at a, with drift μ and diffusion coefficient σ2. 

Note also that the firs passage time of the assets process A(t)  by the mobile barrier Tn , 

the liabilities process, is the first passage time of  Y(t) by 0-with finite expected time 

under the condition, stated before, μ < 0. 

Consider also the pensions fund management scheme that raises the assets value by some 

positive constant θn, when the assets value falls equal to the liabilities process by the nth 

time. This corresponds to consider the modification A̅(t) of the process A(t) that restarts 

at times Tn when A(t) hits the barrier L(t) by the nth time at the level L(Tn ) + θn. For 

purposes of later computations, it is a convenient choice the management policy where 

θn = L(Tn )(eθ − 1), for some   θ > 0    (6.2).     

The corresponding modification   Ỹ(t) of Y(t) will behave as a generalized Brownian 

motion process that restarts at the level ln
L(Tn)+θn

L(Tn )
= θ when it hits 0 (at timesTn ). 



Proceeding this way, it is reproduced via  Ỹ(t) the situation observed before when the 

Brownian motion example was treated. The Laplace transform (5.1) is still valid. 

Pensions Fund Perpetual Maintenance Cost Present Value Expectation 

Similarly, to former proceedings, the results for the present case will be distinguished 

with the symbol (#). It is considered the pensions fund perpetual maintenance cost 

present value, because of the proposed asset-liability management scheme, given by the 

random variable:V#(r, a, θ) = ∑ θne−rTn ∞
n=1 = ∑ b(eθ − 1)e−(r−ρ)Tn , r > ρ∞

n=1 , where 

r represents the appropriate discount interest rate. To obtain the above expression it was 

only made use of the L(t) definition and (6.1). Note that it is possible to express the 

expected value of the above random variable with the help of (6.2) as 

vr
#(a, θ) =

b(eθ − 1)

θ
vr−ρ

∗ (a, θ) =
b(eθ − 1)e−Kr−ρa

1 − e−Kr−ρθ
            (6.3). 

As θ → 0  

                                       lim
θ→0 

vr
#(a, θ) =

be−Kr−ρa

Kr−ρ
   (6.4). 

 

Another expression that may be found in [6]. 

Maintenance Cost up to Time t Expected Value 

In a similar way, the maintenance cost up to time t in the above-mentioned management 

scheme, is the stochastic processW#(t; r, a, θ) = ∑ b(eθ − 1)e−(r−ρ)Tn N(t)
n=1 ,  

W#(t; r, a, θ) = 0 if N(t) = 0, with expected value function 

wr
#(t; a, θ) =

b(eθ − 1)

θ
wr−ρ

∗ (t; a, θ)        (6.5). 

7.Conclusions 

We initially started by establishing an equilibrium condition for pension funds, using a 

queuing network model with infinite servers at each node. In this condition, financial and 

demographic aspects were considered. 

Then, with a view to rebalancing unbalanced funds, through external financing, we 

studied its modeling using diffusion processes 

In the general diffusion scenery, the main results are formulae (4.3) and (4.13). The whole 

work depends on the possibility of solving equation (4.2) to obtain the first passage times 

Laplace transforms. Unfortunately, the solutions are known only for rare cases. An 

obvious case for which the solution of the equation is available is the one of the Brownian 

motion diffusion process. The main results concerning this particularization are formulae 

(5.2) and (5.6). Some transformations of the Brownian motion process that allowed to 

make use of the available Laplace transform may be explored as it was done in section 6. 

Formulae (6.3) and (6.5) are this application most relevant results.  

In [20, and 21] an alternative approach based on gambler’s ruin problem is presented. 



Acknowledgements 

This work is financed by national funds through FCT - Fundação para a 

Ciência e Tecnologia, I.P., under the project FCT UIDB/04466/2020. 

Furthermore, the author(s) thank the Iscte-Instituto Universitário de Lisboa 

and ISTAR-IUL, for their support. 

Competing Interests 

Authors have declared that no competing interests exist. 

8.References 

[1] Impavido (2012). Pension Funds. In: Gerard Caprio Jr, Douglas W. Arner, Thorsten 

Beck, Charles W. Calomiris, Larry Neal, Nicolas Veron (Eds.), Handbook of Key 

Global Financial Markets, Institutions and Infrastructure. Elsevier. 

[2] Ferreira, M. A. M. (2016). Results and applications in statistical queuing theory. 15th 

Conference on Applied Mathmatics 2016, APLMAT 2016; Bratislava; Slovakia; 362-

375. 

[3] Ferreira, M. A. M., M. Andrade, and J. A. Filipe (2012). Studying pensions funds 

through an infinte servers nodes network: a theoretical problem. SPMCS 2012, JPCS- 

Journal of Physics Conference Series 394 (2012) 012035, IOP Publishing.  

http://dx.doi.org/10.1088/1742-6596/394/1/012035 

[4] Figueira, J. and M. A. M. Ferreira (1999). Representation of a pensions fund by a 

stochastic network with two nodes: an exercise. Portuguese Review of Financial 

Markets, 2 (1), 75-81. 

[5] Ferreira, M. A. M. (2012). Non-autonomous pensions funds maintenance costs study 

through a diffusion process. International Journal of Academic Research, Part A, 4 

(6), 51-56. DOI :10.7813/2075-4124.2012/4-6/A.7 

[6] Gerber, H. U. and G. Parfumi (1998). Stop-loss a tempo continuo e protezione 

dinamica di un fondo d’investimento. Revista di Matematica per le Scienze 

Economiche e Sociale, 21, 125-146. 

[7] Refait, C. (2000). Default risk estimation and stochastic calculus: application to 

French industrial firms, 4. International Congresso in Insurance and Mathematics, 

Barcelona, Espanha. 

[8] Figueira, J. and M. A. M. Ferreira (2003). Cost of non-autonomous pensions funds 

via an application of diffuson processes. Review of Financial Markets, 5 (1), 39-50. 

[9] Figueira, J. (2003). Aplicação dos processos de difusão e da teoria do renovamento 

num estudo de reservas aleatórias. PhD Thesis presented at ISCTE-IUL, Lisboa, 

Portugal. 

[10] Filipe, J. A., M. A. M. Ferreira, and M. Andrade (2012). Reserves represented by 

random walks. SPMCS 2012, JPCS- Journal of Physics Conference Series 394 (2012) 

012034, IOP Publishing.  http://dx.doi.org/10.1088/1742-6596/394/1/012034 

[11] Andrade, M., M. A. M. Ferreira, and J. A. Filipe (2012). Representation of 

reserves through a Brownian motion model. SPMCS 2012, JPCS-Journal of Physics: 

http://dx.doi.org/10.1088/1742-6596/394/1/012035
http://dx.doi.org/10.1088/1742-6596/394/1/012034


Conference Series 394 (2012) 012036, IOP Publishing. 

http://dx.doi.org/10.1088/1742-6596/394/1/012036 

[12] Ferreira, M. A. M., M. Andrade, J. A. Filipe and M. Coelho (2011). Statistical 

queuing theory with some applications. International Journal of Latest Trends in 

Finance and Economic Sciences, 1(4), 190-195. 

[13] Ferreira, M. A. M. and M. Andrade (2011). Fundaments of Theory of Queues.  

International Journal of Academic Research, 3 (1), Part II, 427-429. 

[14] Ferreira M. A. M. and M. Andrade (2009). The Ties Between the M/G/∞ Queue 

System Transient Behaviour and the Busy Period.  International Journal of 

Academic Research, 1 (1), 84-92.  

[15] Ferreira M. A, M. and M. Andrade (2010). Looking to a M/G/∞ System 

Occupation Through a Ricatti Equation.  Journal of Mathematics and Technology, 1 

(2), 58-62. 

[16] Bhattacharya R. N. and E. Waymire (1990). Stochastic Processes with 

Applications. John Wiley & Sons, New York, U. S. A. 

[17] Feller W. (1971). An Introduction to Probability Theory and its Applications 

(vol. II, 2nd ed.). John Wiley & Sons, New York, U.S.A. 

[18] Karlin S., H. and Taylor (1981). A Second Course on Stochastic Processes. 
Academic Press, New York, U. S. A. 

[19] Bass R. F. (1998). Diffusions and Elliptic Operators. Springer –Verlag, New 

York, U. S. A.  

[20] Ferreira, M. A. M. and J. A. Filipe, J. (2021). Addressing reserves and pension 

funds through gambler’s ruin and generalized Brownian motion process. In Ferreira 

M. A. M. (Ed.). Recent advances in mathematical research and computer science 

(pp.15-24). Book Publisher International. 10.9734/bpi/ramrcs/v4/14551D. 

[21] Ferreira, M. A. M. (2022). RANDOM WALK AND RESERVES MODELING 

IN STUDYING PENSIONS FUNDS SUSTAINABILITY. In Gežík, P. (Ed.). 

Proceedings of the International Scientific Conference. Quantitative Methods in 

Economics. Multiple Criteria Decision Making XXI (pp. 28 – 33). 978-80-89962-93-

8 (print) 978-80-89962-94-5 (online).  21st International Conference. Quantitative 

Methods in Economics (Multiple Criteria Decision Making XXI). Puchov, Slovakia. 

 

 

 

 

http://dx.doi.org/10.1088/1742-6596/394/1/012036
https://www.webofscience.com/wos/woscc/full-record/WOS:001238686400004
https://www.webofscience.com/wos/woscc/full-record/WOS:001238686400004

