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Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? It was essentially
mentioned in 1955 from a letter written by John Nash to the United States National Security Agency.
However, a precise statement of the P versus NP problem was introduced independently by Stephen
Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. It is
one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US 1,000,000 prize for the first correct solution. Another major complexity classes are L, 1NL and
NL. Whether L = NL is another fundamental question that it is as important as it is unresolved.
We demonstrate the complexity class NL is equal to NP. This proof is based on NL is closed under
1NL-reductions: Specifically, when in the logarithmic space composition reduction of N(M(x)) on
every input x, the Turing machine M is deterministic and N is nondeterministic in one way.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases complexity classes, completeness, polynomial time, reduction, logarithmic
space, one-way

1 Introduction

In previous years there has been great interest in the verification or checking of computations
[12]. Interactive proofs introduced by Goldwasser, Micali and Rackoff and Babi can be viewed
as a model of the verification process [12]. Dwork and Stockmeyer and Condon have studied
interactive proofs where the verifier is a space bounded computation instead of the original
model where the verifier is a time bounded computation [12]. In addition, Blum and Kannan
have studied another model where the goal is to check a computation based solely on the
final answer [12]. More about probabilistic logarithmic space verifiers and the complexity
class NP has been investigated on a technique of Lipton [12]. In this work, we show some
results about the logarithmic space verifiers applied to the class NP .

The P versus NP problem is a major unsolved problem in computer science [5]. This
is considered by many to be the most important open problem in the field [5]. The precise
statement of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal
paper [5]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer to
be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be independent
of the currently accepted axioms and therefore impossible to prove or disprove, 8 (5%) said
either do not know or do not care or don’t want the answer to be yes nor the problem to be
resolved [9].

The P = NP question is also singular in the number of approaches that researchers have
brought to bear upon it over the years [7]. From the initial question in logic, the focus moved
to complexity theory where early work used diagonalization and relativization techniques
[7]. It was showed that these methods were perhaps inadequate to resolve P versus NP
by demonstrating relativized worlds in which P = NP and others in which P 6= NP [3].
This shifted the focus to methods using circuit complexity and for a while this approach
was deemed the one most likely to resolve the question [7]. Once again, a negative result
showed that a class of techniques known as “Natural Proofs” that subsumed the above
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could not separate the classes NP and P , provided one-way functions exist [14]. There
has been speculation that resolving the P = NP question might be outside the domain of
mathematical techniques [7]. More precisely, the question might be independent of standard
axioms of set theory [7]. Some results have showed that some relativized versions of the
P = NP question are independent of reasonable formalizations of set theory [10].

It is fully expected that P 6= NP [13]. Indeed, if P = NP then there are stunning
practical consequences [13]. For that reason, P = NP is considered as a very unlikely event
[13]. Certainly, P versus NP is one of the greatest open problems in science and a correct
solution for this incognita will have a great impact not only in computer science, but for
many other fields as well [1]. Whether P = NP or not is still a controversial and unsolved
problem [1]. We show some results that could help us to prove this outstanding problem.

2 Theory and Methods

2.1 Preliminaries
In 1936, Turing developed his theoretical computational model [15]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [15]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [15]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [15].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each
string w in Σ∗ there is a computation associated with M on input w [2]. We say that M
accepts w if this computation terminates in the accepting state, that is M(w) = “yes” [2].
Note that M fails to accept w either if this computation ends in the rejecting state, that
is M(w) = “no”, or if the computation fails to terminate, or the computation ends in the
halting state with some output, that is M(w) = y (when M outputs the string y on the
input w) [2].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [6].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [6]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) = “no” [6]. We
denote by tM (w) the number of steps in the computation of M on input w [2]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [2]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [6]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, c) = “yes” for some string c}.
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We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [2]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L1. This information
is called certificate. NP is the complexity class of languages defined by polynomial time
verifiers [13].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[15]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗
is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [8]. A language L1 ⊆ {0, 1}∗ is NP–complete
if:

L1 ∈ NP , and
L′ ≤p L1 for every L′ ∈ NP .

If L1 is a language such that L′ ≤p L1 for some L′ ∈ NP–complete, then L1 is NP–hard
[6]. Moreover, if L1 ∈ NP , then L1 ∈ NP–complete [6]. A principal NP–complete problem is
SAT [8]. An instance of SAT is a Boolean formula φ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. A
satisfying truth assignment is a truth assignment that causes φ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [8]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [6]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [6]. A Boolean formula is in 3-conjunctive normal
form or 3CNF , if each clause has exactly three distinct literals [6].

For example, the Boolean formula:

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2. Another relevant NP–complete language is 3CNF satisfiability,
or 3SAT [6]. In 3SAT , it is asked whether a given Boolean formula φ in 3CNF is satisfiable.

A logarithmic space Turing machine has a read-only input tape, a write-only output
tape, and read/write work tapes [15]. The work tapes may contain at most O(logn) symbols
[15]. In computational complexity theory, L is the complexity class containing those decision
problems that can be decided by a logarithmic space deterministic Turing machine [13]. NL
is the complexity class containing the decision problems that can be decided by a logarithmic
space nondeterministic Turing machine [13].

A logarithmic space transducer is a Turing machine with a read-only input tape, a
write-only output tape, and read/write work tapes [15]. The work tapes must contain at most
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O(logn) symbols [15]. A logarithmic space transducer M computes a function f : Σ∗ → Σ∗,
where f(w) is the string remaining on the output tape after M halts when it is started with
w on its input tape [15]. We call f a logarithmic space computable function [15]. We say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is used in the definition of the complete languages for the
classes L and NL [13]. A Boolean formula is in 2-conjunctive normal form, or 2CNF , if
it is in CNF and each clause has exactly two distinct literals. There is a problem called
2SAT , where we asked whether a given Boolean formula φ in 2CNF is satisfiable. 2SAT is
complete for NL [13].

2.2 Hypothesis
We can give a certificate-based definition for NL [2]. The certificate-based definition of NL
assumes that a logarithmic space Turing machine has another separated read-only tape [2].
On each step of the machine, the machine’s head on that tape can either stay in place or
move to the right [2]. In particular, it cannot reread any bit to the left of where the head
currently is [2]. For that reason this kind of special tape is called “read-once” [2].

I Definition 1. A language L1 is in NL if there exists a logarithmic space deterministic
Turing machine M with an additional special read-once input tape polynomial p : N → N
such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃ u ∈ {0, 1}p(|x|) such that M(x, u) = “yes”

where by M(x, u) we denote the computation of M where x is placed on its input tape and the
certificate u is placed on its special read-once tape, and M uses at most O(log |x|) space on
its read/write tapes for every input x where | . . . | is the bit-length function [2]. M is called a
logarithmic space verifier [2].

The two-way Turing machines may move their head on the input tape into two-way (left
and right directions) while the one-way Turing machines are not allowed to move the head
on the input tape to the left [11]. Hartmanis and Mahaney have investigated the classes
1L and 1NL of languages recognizable by logarithmic space deterministic one-way Turing
machine and logarithmic space nondeterministic one-way Turing machine, respectively [11].
We state the following Hypothesis:

B Hypothesis 2. Given a nonempty language L1 ∈ NL, there is a language L2 in NP–complete
under logarithmic space reductions with a deterministic Turing machine M , where:

L2 = {w : M(w, u) = y, ∃ u such that y ∈ L1}

when M runs in logarithmic space one-way in the length of w, u is placed on the special read-
once tape of M , and u is polynomially bounded by w. In this way, there is an NP–complete
language defined by a logarithmic space one-way verifier M such that when the input is an
element of the language with its certificate, then M outputs a string which belongs to a
single language in NL.
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I Definition 3. LS = {A|A is accepted by a logarithmic space deterministic oracle Turing
machine using a language in the class S as its oracle set} [4].

NLS = {A|A is accepted by a logarithmic space nondeterministic oracle Turing machine
using a language in the class S as its oracle set} [4].

In this model the oracle tape is not subject to the space bound, but is write-only and is
erased after each query, and in addition the machine is in deterministic mode while writing
each query, and hence any query is of polynomial size [4].

I Theorem 4. If the Hypothesis 2 is true, then NL = NP .

Proof. We can simulate the computation M(w, u) = y in the Hypothesis 2 by a logarithmic
space nondeterministic Turing machine N such that N(w) = y, since we can read the certific-
ate string u within the read-once tape by a work tape in a logarithmic space nondeterministic
generation of symbols contained in u [13]. Certainly, we can simulate the reading of one
symbol from the string u into the read-once tape just nondeterministically generating the
same symbol in the work tapes using a logarithmic space [13]. We remove each symbol
generated in the work tapes, when we try to generate the next symbol contiguous to the right
on the string u. In this way, the generation will always be in logarithmic space. Moreover,
we know that N is a logarithmic space nondeterministic one-way Turing machine.

For every language L3 ∈ NP , then we can reduce the elements of the language L3 to the
elements of the language L1 by a logarithmic space nondeterministic Turing machine M ′′. In
this way, there is a logarithmic space nondeterministic Turing machine M ′′(x) = N(M ′(x))
which will nondeterministically output an element y ∈ L1 when x ∈ L3. The logarithmic
space deterministic Turing machine M ′ will be the logarithmic space reduction of L3 to
L2, because of L2 is in NP–complete under logarithmic space reductions. Actually, the
logarithmic space nondeterministic reduction is possible, because of N is in one way. Indeed,
it is not necessary to reset the computation of M ′ in the composition N(M ′(x)) on the
input x, because N never moves to the left the head on the input tape (that would be the
output tape of M ′). Since L1 ∈ NL, then we obtain that every problem in NP could be
NL-reduced to another problem in NL when the Hypothesis 2 is true.

Since every problem in NP could be NL-reduced to another problem in NL when the
Hypothesis 2 is true, then we can simulate the writing in the oracle tape in a deterministic
mode just copying nondeterministically the symbols in the work tapes and copying determin-
istically to the oracle tape from the work tapes (instead of copying in the output tape). After
of each one of these copying process, then we erase the symbols that were written in the
work tapes to keep a logarithmic space computation. Since in the oracle tape will remain an
instance of a problem in NL (we interchange the output tape with the oracle tape), then we
have that every problem in NP is in NLNL when the Hypothesis 2 is true. It is known that
NLNL = LNL [4]. Indeed, the proof in [4] shows some practical steps for the transformation
of every problem in NLNL into a problem in LNL. However, every problem in LNL could be
decided by a logarithmic space nondeterministic Turing machine. Furthermore, the result of
NL = coNL provides a direct proof and improvement of the main result in [4], by collapsing
the logarithmic space oracle hierarchy into NL. In this way, we finally obtain the complexity
class NL is equal to NP when the Hypothesis 2 is true. J

3 Results

We show a previous known NP–complete problem:

I Definition 5. MAXIMUM 2-SATISFIABILITY
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INSTANCE: A natural number m, a Boolean formula ψ in 2CNF with m clauses, and a
natural number K < m.

QUESTION: Is there a truth assignment in ψ such that at least K clauses are satisfied?
REMARKS: We denote this problem as MAX2SAT [13]. MAX2SAT ∈ NP–complete

[8].

I Theorem 6. There is a deterministic Turing machine M , where:

MAX2SAT = {w : M(w, u) = y,∃ u such that y ∈ 2SAT}

when M runs in logarithmic space one-way in the length of w, u is placed on the special
read-once tape of M , and u is polynomially bounded by w.

Proof. Given a valid instance (m,ψ,K) for MAX2SAT when ψ should contain m clauses,
we can create a certificate array A which contains K ′ = (m−K) different natural numbers in
ascending order which represents the indexes of the clauses in ψ that we are going to remove
from the instance (we guarantee that K ′ > 0). We read at once the elements of the array A
and we reject whether this is not an appropriated certificate: That is when the numbers are
not sorted in ascending order, or the array A does not contain exactly K ′ elements, or the
array A contains a number that is not between 1 and m. While we read the elements of the
array A, we remove the clauses from the instance (m,ψ,K) for MAX2SAT just creating
another instance φ for 2SAT where the Boolean formula φ does not contain the K ′ different
indexed clauses ψ represented by the numbers in A. Therefore, we obtain the array A would
be valid according to the Theorem 6 when:

(m,ψ,K) ∈MAX2SAT ⇔ (∃ array A such that φ ∈ 2SAT ).

Furthermore, we can make this verification in logarithmic space such that the array A is
placed on the special read-once tape, because we read at once the elements in the array A
and we assume the clauses in the input ψ are indexed from left to right. Hence, we only need
to iterate from the elements of the array A to verify whether the array is an appropriated
certificate and also remove the K ′ different clauses from the Boolean formula ψ when we
write the final clauses to the output. This logarithmic space verification will be the Algorithm
1. We assume whether a value does not exist in the array A into the cell of some position i
when A[i] = undefined. In addition, we reject immediately when the following comparisons:

A[i] ≤ max ∨A[i] < 1 ∨A[i] > m

hold at least into one single binary digit. Note, in the loop j from min to max − 1, we
do not output any clause when max − 1 < min. Finally, we reject whether there exists
an m+ 1 indexed clause within the formula ψ using the statement cmax 6= undefined when
max = m+ 1. To sum up, the Algorithm 1 is in one-way, since this never moves the head on
the input tape to the left. J

I Theorem 7. NL = NP .

Proof. Every NP–complete is logarithmic space reduced to MAX2SAT . Certainly, every
NP problem could be logarithmic space reduced to SAT by the Cook’s Theorem algorithm
[8]. In addition, the problem SAT could be logarithmic space reduced to 3SAT [8]. Moreover,
the problem 3SAT could be logarithmic space reduced to MAX2SAT [13]. Therefore, we
obtain the complexity class NL is equal to NP , since this is a direct consequence of Theorems
4 and 6. J
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Algorithm 1 Logarithmic space verifier
1: /*A valid instance for MAX2SAT with its certificate*/
2: procedure VERIFIER((m,ψ,K), A)
3: /*Initialize minimum and maximum values*/
4: min← 1
5: max← 0
6: /*Initialize the value of K ′*/
7: K ′ ← (m−K)
8: /*Check whether K ≥ m*/
9: if K ′ ≤ 0 then
10: /*Reject*/
11: return “no”
12: end if
13: /*Iterate for the elements of the certificate array A*/
14: for i ← 1 to K ′ + 1 do
15: if i = K ′ + 1 then
16: /*There exists a K ′ + 1 element in the array*/
17: if A[i] 6= undefined then
18: /*Reject*/
19: return “no”
20: end if
21: max← m+ 1
22: else if A[i] = undefined ∨A[i] ≤ max ∨A[i] < 1 ∨A[i] > m then
23: /*Reject*/
24: return “no”
25: else
26: max← A[i]
27: end if
28: /*Iterate for the clauses of the Boolean formula ψ*/
29: for j ← min to max− 1 do
30: /*Output the indexed jth clause in ψ*/
31: output “ ∧ cj”
32: end for
33: min← max+ 1
34: end for
35: if cmax 6= undefined then
36: /*Reject*/
37: return “no”
38: end if
39: end procedure
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