
EasyChair Preprint

№ 415

Automating the Diagram Method to Prove

Correctness of Program Transformations

David Sabel

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 9, 2018

Submitted to:
WPTE 2018

c© D. Sabel
This work is licensed under the
Creative Commons Attribution License.

Automating the Diagram Method to Prove Correctness of
Program Transformations

David Sabel
Goethe-University

Frankfurt am Main, Germany
sabel@ki.cs.uni-frankfurt.de

∗

Our recently developed LRSX Tool implements a technique to automatically prove the correctness of
program transformations in higher-order program calculi which may permit recursive let-bindings as
they occur in functional programming languages. A program transformation is correct if it preserves
the observational semantics of programs- In our tool the so-called diagram method is automated
by combining unification, matching, and reasoning on alpha-renamings on the higher-order meta-
language, and automating induction proofs via an encoding into termination problems of term rewrite
systems. We explain the techniques, we illustrate the usage of the tool, and we report on experiments.

1 Introduction

Program transformations replace program fragments by program fragments. They are applied as opti-
mizations in compilers, in code refactoring to increase maintainability of the source code, and in veri-
fication for equational reasoning on programs. In all cases correctness of the transformations is an in-
dispensable requirement. We focus on program calculi with a small-step operational semantics (in form
of a reduction semantics with evaluation contexts, see e.g. [21]) and a notion of successfully evaluated
programs. Convergence of programs holds, if the program can be evaluated to a successful program. As
program equivalence we use contextual equivalence [9, 10], which holds for program fragments P1 and
P2 if interchanging P1 by P2 in any program (i.e. context) is not observable w.r.t. convergence. We are
particularly interested in extended lambda-calculi with call-by-need evaluation modeling the (untyped)
core languages of lazy functional programming languages like Haskell (see [3, 2, 18]).

The LRSX Tool1 supports correctness proofs of program transformations in those calculi by au-
tomating the so-called diagram method (see e.g. [18, 14] and also [8, 20]) which was used in earlier
work in non-automated pen-and-paper proofs. The diagram method is a syntactic approach that can
roughly be outlined as follows: First all overlaps between standard reduction steps and transformation
steps are computed, then the overlaps have to be joined resulting in a complete set of diagrams. This
step is related to computing and joining critical pairs in term rewrite systems (see e.g. [4]), however,
with two rewrite relations and where for one rewrite relation a strategy (defined by the standard reduc-
tion) has to be respected. Finally, the diagrams are used in an inductive proof to show correctness of the
transformation.

The automation of the method is schematically depicted in Fig. 1. The input consists of a calculus
description and a set of program transformations. First the diagram calculator computes the overlaps
and then tries to join them. If a complete set of diagrams is obtained, it is translated into a term rewrite
system (where the diagrams are represented in an abstract manner, i.e. only the names and directions of

∗This research is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA2908/3-1
1available from http://goethe.link/LRSXTOOL61

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://goethe.link/LRSXTOOL61

2 Automating the Diagram Method to Prove Correctness of Program Transformations

calculus description

program transformations

Input

compute overlaps

overlaps

join overlaps

Diagram calculator

complete
sets of

diagrams

translate diagrams

(I)TRS

prove termination and certify
(AProVE/CeTA)

Automated induction

Figure 1: The overall structure of the automated diagram method

the reduction and transformation steps are kept, but all information on the meta-expressions is removed)
such that termination of the system implies correctness of the program transformations. The automated
termination prover AProVE [1, 7] and the certifier CeTA [5, 19] are used to automate these steps. We
will explain core components of the automated method and illustrate the use of the LRSX Tool.

As a running example, we use the call-by-need lambda calculus with letrec Lneed [17]. Its syntax,
small-step operational semantics (called standard reduction), and the program transformations (gc1) and
(gc2) to perform garbage collection, and transformations (cp-in) and (cp-e) to copy abstractions, are
shown in Fig. 2. Standard reduction implements the lazy evaluation strategy with sharing by applying
small-step reduction rules at needed positions, which are determined by application contexts, reduction
contexts, and chains of letrec-bindings that occur as variable-to-variable bindings and also as chains
{wi = A[wi+1]}m

i=1. Reduction is meant modulo (extended) α-renaming, i.e. α-equivalent expressions
where letrec-bindings are treated like a set are not distinguished.

Outline. In Sect. 2 we explain the meta language and the input for the diagram method. In Sect. 3
we describe the automated correctness proof for the standard cases, and in Sect. 4 we discuss extensions
which are also built in the tool. In Sect. 5 we report on some experiments and we conclude in Sect. 6.

2 Program Calculi and Transformations

The input of the diagram technique is a program calculus – consisting of definitions of contexts, standard
reduction rules, answers representing successfully evaluated programs – and a set of program transforma-
tions. Rules and answers are expressed in the meta-language LRSX (see also [16]). This meta-language
is parametrized over a set F of function symbols and a finite set K of context classes 2. The syntax of
LRSX-expressions Exp = HExp0, a countably-infinite set of variables Var, higher-order expressions of
order n HExpn, environments Env, and bindings Bind is defined by the grammar

x,y,z ∈ Var ::=X |x
s, t ∈HExp0 ::=S | D[s] | letrec env in s | f r1 . . .rar(f) such that ri ∈ τi if f : τ1→ . . .→ τn→ Exp

s ∈HExpn ::=x.s1 if s1 ∈HExpn−1 and n≥ 1
b ∈ Bind ::=x=s where s ∈HExp0 env ∈ Env ::= /0 |E;env |Ch[x,s];env |b;env

Every f ∈F has a syntactic type of the form f : τ1 → . . .→ τar(f) → Exp, where τi may be Var, or
HExpki . We assume {var,λ} ⊆F where var of type Var→ Exp lifts variables to expressions, and
λ has type HExp1 → Exp. To distinguish term variables, meta-variables, and meta-symbols, we use
different fonts and lower- or upper-case letters: concrete term-variables of type Var are denoted by x,

2In the LRSX-Tool the set K has to be defined explicitly while the set F is extracted from the used symbols in the input.

D. Sabel 3

Expressions e and enviroments Env where v,vi,w,wi are variables,
e ::= w | λw.e | (e1 e2) | letrec Env in e where Env 6= /0 Env ::= /0 | w1=e1, . . . ,wn=en

Application contexts A and reduction contexts R
A ::= [·] | (A e) R ::= A | letrec Env in A | letrec {wi=Ai[wi+1]}m−1

i=1 ,wm=Am,Env in A0[w1]

Standard reduction sr−→
(sr,lbeta) R[((λw.e1) e2)]→ R[letrec w=e2 in e1]
(sr,lapp) R[(letrec Env in e1) e2]→ R[letrec Env in (e1 e2)]

(sr,cp-in) letrec {wi=wi+1}m−1
i=1 ,wm=λw.e,Env in A0[w1]

→ letrec {wi=wi+1}m−1
i=1 ,wm=λw.e,Env in A0[λw.e]

(sr,cp-e) letrec{wi=Ai[wi+1]}m−1
i=1 ,wm=Am[v1],{v j=v j+1}n−1

j=1,vn=λw.e,Env inA[w1]

→ letrec {wi=Ai[wi+1]}m−1
i=1 ,wm=Am[λw.e],{v j=v j+1}n−1

j=1,vn=λw.e,Env inA[w1]

where Am 6=[·],m≥1,n≥1
(sr,llet-in)letrec Env1 in letrec Env2 in e→ letrec Env1,Env2 in e
(sr,llet-e) letrec {wi=Ai[wi+1]}m−1

i=1 ,wm=(letrec Env1 in e),Env2 in A0[w1]

→ letrec {wi=Ai[wi+1]}m−1
i=1 ,wm=e,Env1,Env2 in A0[w1]

Garbage Collection
(gc1)letrec w1=e1, . . . ,wn=en,Env in e→ letrec Env in e, if for all i : wi does not occur in Env,e
(gc2)letrec w1=e1, . . . ,wn=en in e→ e, if for all i : wi does not occur in e
Copy Transformation
(cp-in)letrec w=λv.e,Env in C[w]→ letrec w=λv.e,Env in C[λv.e]
(cp-e) letrec w1=λv.e,w2=C[w1],Env in e′→ letrec w1=λv.e,w2=C[λv.e],Env in e′

Figure 2: The calculus Lneed: Weak head normal forms (WHNFs) are λw.e or letrec Env in λw.e

y, and x,y are used as meta-symbols to denote a concrete term variable or a meta-variable. Similarly,
s, t denote expressions, env denotes environments, and b denotes bindings. Meta-variables are written in
upper-case letters, where X ,Y are of type Var, S is of type Exp, E is of type Env, D is a context variable,
and Ch is a two-hole environment-context variable (chain variable, for short) that occurs with a Var-
argument x, and an Exp-argument s. Each context variable D has a class cl(D) and each Ch-variable has
a class cl(Ch). An LRSX-expression s is ground (written as s) iff it does not contain any meta-variable.

Example 2.1. The syntax of the λ -calculus (and also of our running example Lneed) can be expressed in
LRSX, by the function symbols var, λ , and app where app is a binary function symbol of type Exp→
Exp→ Exp. The application of the identity function to itself can be written as the LRSX-expression
app (λ (x.var x)) (λ (x.var x)). Lists can be represented by function symbols nil :: Exp and cons ::
Exp→ Exp→ Exp. A case-expression – usually written as case l of (Nil→ e1) (Cons x xs→ e2) –
to deconstruct lists can be represented as caselist l e1 x.xs.e2 where caselist is a function symbol
of type Exp→ Exp→HExp2→ Exp.

Contexts are expressions, where the hole [·] occurs instead of one subexpression. With d we denote a
ground context and d denotes LRSX-contexts, i.e. contexts, that may contain meta-variables. Filling the
hole of d with s is written as d[s]. Multi-contexts with k > 1 holes are written with several hole symbols
[·1], . . . , [·k]. A context class K ∈ K is a set of contexts which is defined by a context free grammar
describing the syntax of contexts and by a prefix and a forking table, which are used in the matching and
unification algorithms to proceed with equations of the form D1[s1]

.
= D2[s2]: The prefix table is a partial

function that maps pairs of classes (K1, K2) to a pair of classes (K3, K4) such that for context variables

4 Automating the Diagram Method to Prove Correctness of Program Transformations

define A ::= [.] | (app A S)

define T ::= [.] | (app T S) | (app S T) | letrec X=T;E in S | letrec E in T where E /= {}

declare prefix A A = (A,A)

declare prefix A T = (A,T)

declare prefix T A = (A,A)

declare prefix T T = (T,T)

declare fork A T = (A,A,T,(app [.1] [.2]))

declare fork T T = (T,T,T,(app [.1] [.2]))

declare fork T T = (T,T,T,(app [.2] [.1]))

declare fork T T = (T,T,T,(letrec X=[.1];E in [.2]))

declare fork T T = (T,T,T,(letrec X=[.2];E in [.1]))

declare fork T T = (T,T,T,(letrec X=[.1];Y=[.2];E in S))

declare fork T A = (A,T,A,(app [.2] [.1]))

Figure 3: Definition of application and top-contexts as input for the LRSX Tool

Di with cl(Di) = Ki an equation D1[s]
.
= D2[t] where D1 is a prefix of context D2, can be replaced by

the equation s .
= D4[t] and the substitution {D1 7→ D3, D2 7→ D3[D4]}. Undefined cases express that

the prefix situation is impossible. The forking table is a partial function that maps pairs of classes (K1,
K2) to a set of tuples of the form (K3, K4,K5,d[·1, ·2]) such that for context variables Di of class Ki an
equation D1[s]

.
= D2[t] where the paths to the holes of D1 and D2 fork, the equation can be removed by

guessing one tuple in the set and substituting D1 7→ D3[d[D4[·],D5[t]]],D2 7→ D3[d[D4[s],D5[·]]].
For calculus Lneed, it suffices to define classes for application contexts A, top contexts T and arbitrary

contexts C. The definition of the former two classes as input for the LRSX Tool is shown in Fig. 3. We
illustrate some exemplary entries of the prefix and forking table: The prefix table maps (A,T) to (A,T),
since for every application context D1 that is a prefix of a top-context D2, we can substitute D1 7→D3 and
D2 7→ D3[D4] where D3 must be an application context (since D1 is one) and D4 must be a top context
(since D2 is one). The prefix table maps (T,A) to (A,A), since for every top-context D1 that is a prefix
of an application context D2, we can substitute D1 7→ D3 and D2 7→ D3[D4] where D3 and D4 must be
application contexts to ensure that D2 is an application context. The forking table for (A,T) has only one
entry (A,A,T,app [·1] [·2]), since an application context D1 and a top context D2 can only have different
hole pathes, if there is an application where the hole path of D1 goes through the first argument, while
the hole path of D2 goes through the second argument, the expression above this application must belong
to application contexts (to ensure that D1 is an application context) the context inside the first argument
of the application must be an application context (again to ensure that D1 is an application context), and
the context inside the second argument must be a top context (to ensure that D2 is a top context) . For
(T,T) there are more entries, since the forking of two top-contexts may happen in an application or in
a letrec-expression: There are two cases for the application depending on whether the hole path of
the first context goes through the first or the second argument, and there are three cases for letrec:
the hole path of the first context may go through the in-expression while the other goes through the
letrec-environment, or vice versa, or both hole pathes go through the enviroment, but through different
bindings. In any case the context above the two parallel holes is a top-context and the contexts below
must both be top-contexts.

The semantics of meta-variables is straight-forward except for chain-variables: Ch[x,s] with cl(Ch)=
K stands for x.d[s] or chains x.d1[(var x1)];x1.d2[(var x2)];. . . ;xn.dn[s] with fresh xi and contexts d,di

of class K . For expression e, MV(e) denotes the meta-variables of e, FV(e) denotes the free variables,
BV(e) denotes the bound variables, and Var(e) := FV(e)∪BV(e). For a ground context d, CV(d) (the
captured variables) is the set of variables x which become bound if plugged into the hole of d. For

D. Sabel 5

environment env, LV(env) are the let-bound variables in env. Let ∼let be the reflexive-transitive closure
of permuting bindings in a letrec-environment, and∼α be the reflexive-transitive closure of combining
∼let and α-equivalence. An LRSX-expression s satisfies the let variable convention (LVC) iff a let-bound
variable does not occur twice as a binder in the same letrec-environment; and s satisfies the distinct
variable convention (DVC) iff BV(s) and FV(s) are disjoint and all binders bind different variables.

A constrained expression (s,∆) consists of an LRSX-expression s and a constraint tuple ∆=(∆1,∆2,∆3)
such that ∆1 is a finite set of context variables, called non-empty context constraints; ∆2 is a finite set
of environment variables, called non-empty environment constraints; and ∆3 is a finite set of pairs (t,d)
where t is an LRSX-expression and d is an LRSX-context, called non-capture constraints (NCCs). A
ground substitution ρ satisfies ∆ iff ρ(D) 6= [·] for all D ∈ ∆1; ρ(E) 6= /0 for all E ∈ ∆2; and Var(ρ(t))∩
CV(ρ(d)) = /0 for all (t,d) ∈ ∆3. The concretizations of (s,∆) are γ(s,∆) := {ρ(s) | ρ is a ground
substitution, ρ(s) fulfills the LVC, ρ satisfies ∆}3.

Definition 2.2. For `,r ∈ Exp, a constraint tuple ∆, κ ∈ {SR,T}, a name n, `
κ,n−−→∆ r is called a letrec

rewrite rule, provided that MV(∆)⊆MV(`)∪MV(r) and in each of the expressions ` and r, every variable
of type S occurs at most twice; every variable of kind E,Ch, D occurs at most once; if κ = SR, then Ch-
variables occurring in ` must occur in one letrec-environment only; for any ground substitution ρ that
satisfies ∆, ρ(`) fulfills the LVC iff ρ(r) fulfills the LVC. A letrec rewrite rule represents the set of

ground rewrite rules γ(`
κ,n−−→∆ r) :=

{
ρ(`)→ ρ(r)

ρ is a ground substitution for `,r,
the LVC holds for ρ(`),ρ(r), ρ satisfies ∆

}
. For a

set {` κ,ni−−→∆ r | i = 1, . . . ,m} of letrec rewrite rules, we write s
κ,ni−−→ t if (s→ t) ∈ γ(`

κ,ni−−→∆ r) and s
κ−→ t

if s
κ,ni−−→ t for some 1≤ i≤ m. We write s α

κ,ni−−→ s′ if there exists s′′ such that s∼α s′′
κ,ni−−→ s′.

Standard reductions are letrec rewrite rules that are always applicable to expressions which fulfill the
DVC, and answers represent successful programs:

Definition 2.3. A letrec rewrite rule `
κ,n−−→∆ r is a standard reduction if κ=SR and: If for ground expres-

sions s1,s2 with s1
SR,n−−→ s2 ∈ γ(`

κ,n−→∆ r), then for all ground expressions t1, such that s1 ∼α t1 and t1

fulfills the DVC, there exists t2 ∼α s2, such that t1
SR,n−−→ t2 ∈ γ(`

κ,n−→∆ r). An answer set Ans is a finite
set of constrained expressions (t,∆) such that if s ∈ γ(t,∆), then for all s′ ∼α s such that s′ fulfills the
DVC we have s′ ∈ γ(t,∆). If s ∈ γ(t,∆) for some (t,∆) ∈ Ans and s′ ∼α s, then s′ is called an answer.
A program calculus is a pair (SR,Ans) of a finite set of standard reductions SR and an answer set Ans,

such that whenever s
SR,n−−→ s′ and s is an answer, then also s′ is answer.

In the LRSX Tool, standard reduction `
SR,n−−→∆ r is written “{SR,n,k} ` ==> r where Constraints”

such that k is a number (the variant of the rule4) and Constraints are the constraints in ∆ written as in
constrained expressions. Answers are defined in the LRSX Tool by “ANSWER e where Constraints.”

For the calculus Lneed, the conditions on standard reductions hold. An excerpt of the description of
Lneed as input of the LRSX Tool is in Fig. 4, where several rule variants are used for the different cases of
a reduction context and side conditions of the rules (see Fig. 2) are expressed by constraints. For instance,
rule (SR, lbeta) is “implemented” by three rules {SR,lbeta,1}, {SR,lbeta,2}, and {SR,lbeta,3}:
one variant for each variant of the reduction contexts R, and the rule {SR,llet-in,1} requires a NCC
to ensure that let-bound variables in E2 are disjoint from the variables in E1. Answers in Lneed are the
weak head normal forms, i.e. abstractions perhaps with an outer letrec.

3In the LRSX Tool constrained expressions are written as “e where Constraints” such that Constraints is a list of constraints,
where non-empty context constraints are written as D /= [.], non-empty environment constraints are written as E /= {}, and
non-capture constraints can occur as (s,d), but also as [env,d] representing the NCC (letrec env in c,d) for some constant c.

4In short representation of rule names, the LRSX Tool unions all variants of a rule of the same name.

6 Automating the Diagram Method to Prove Correctness of Program Transformations

{SR,lbeta,1} A[app (\X.S1) S2] ==> A[letrec X=S2 in S1] where (S2,\X.[.])

{SR,lbeta,2} letrec E in A[app (\X.S1) S2] ==> letrec E in A[letrec X=S2 in S1]

where E /= {}, (S2,\X.[.])

{SR,lbeta,3} letrec E; Ch^A[X1,app (\X.S1) S2] in A1[var X1]

==> letrec E; Ch^A[X1,letrec X=S2 in S1] in A1[var X1]

where (S2,\X.[.])

{SR,cp-in,1} letrec VC|Xn,\X.S|; E in A[var Xn] ==> letrec VC|Xn,\X.S|; E in A[\X.S]

{SR,cp-e,1} letrec VC|Xn,\X.S|; Ch^A[Y,A1[var Xn]];E in A[var Y]

==> letrec VC|Xn,\X.S|; Ch^A[Y,A1[\X.S]]; E in A[var Y]

where A1 /= [.]

{SR,llet-in,1} letrec E1 in letrec E2 in S ==> letrec E1;E2 in S

where E1 /= {}, E2 /= {}, [E1,letrec E2 in [.]]

{SR,llet-e,1} letrec E1;X=letrec E2 in S in A[var X] ==> letrec E1;E2;X=S in A[var X]

where E2 /= {},[E1,letrec E2 in [.]],(A[var X],letrec E2 in [.])

{SR,llet-e,2} letrec E1;X=letrec E2 in S;Ch^A[Y,var X] in A[var Y]

==> letrec E1;E2;X=S;Ch^A[Y,var X] in A[var Y]

where E2 /= {},[E1;Ch^A[Y,var X],letrec E2 in [.]],

(var X,letrec E1;E2;Ch^A[Y,var X] in [.]),

(A[var Y],letrec E2 in [.])

{SR,lapp,1} A[app (letrec E in S1) S2] ==> A[letrec E in (app S1 S2)]

where E /={},(S2,letrec E in [.])

{SR,lapp,2} letrec E1 in A[app (letrec E in S1) S2]

==> letrec E1 in A[letrec E in (app S1 S2)]

where E1 /= {},E /={},(S2,letrec E in [.])

{SR,lapp,3} letrec E1;Ch^A[X,app (letrec E in S1) S2] in A1[var X]

==> letrec E1;Ch^A[X,letrec E in app S1 S2] in A1[var X]

where E/={},(S2,letrec E in [.])

ANSWER \X.S

ANSWER letrec E in \X.S where E /= {}

The notation Ch^A means that chain variable Ch is of context class A, and VC|.,.| denotes the chain variable VC of context
class Triv which is the (built-in) class containing only the empty context.

Figure 4: Standard reductions and answers for Lneed as input for the LRSX Tool

Definition 2.4. For a program calculus (SR,Ans), a ground expression s0, s0 converges (written s0↓)
iff there exists a sequence s0 α

SR−→ s1 α

SR−→ . . . α

SR−→ sk where sk is an answer and k ≥ 0. We write s ≤↓ t
iff s↓ =⇒ t↓ (≤↓ is called convergence approximation), and s ∼↓ t iff s ≤↓ t and t ≤↓ s (∼↓ is called
convergence equivalence). If for all contexts d we have d[s] ≤↓ d[t], then we write s ≤c t and say that t
contextually approximates s. Expressions s, t are contextually equivalent (s∼c t) if s≤c t and t≤c s.

Meta transformations are letrec rewrite rules that fulfill some form of stability w.r.t. α-renaming:
Definition 2.5. A letrec rewrite rule with κ =T is a meta transformation, if the following conditions hold

(see also Fig. 5): For all s1,s2, t1 with s1
T,n−−→ s2, s1 ∼α t1, such that t1 fulfills the DVC: 1. If t1 ∈ γ(t,∆)

for some (t,∆) ∈ Ans, then there exists s′1 ∈ γ(t,∆) such that s′1 ∼α s1 and s′1
T,n−−→ s′2 with s′2 ∼α s2. 2. If

t1
SR,n′−−−→ t2, then there exist s′1 ∼α s1, s′2 ∼α s2, t′2 ∼α t2 such that s′1

T,n−−→ s′2, and s′1
SR,n′−−−→ t′2.

A meta transformation `
T,n−−→∆ r is correct iff γ(`

T,n−−→∆ r) ⊆∼c. A meta transformation `
T,n−−→∆ r is

called overlapable if no Ch-variable occurs in ` and r and the transformation is closed w.r.t. a sufficient

context class for ∼c, i.e. s
T,n−−→ t, s≤↓ t imply s≤c t.

The conditions on meta transformations allow us to inspect overlaps between transformations and
standard reductions and answers without considering α-renaming steps. A sufficient criterion to fulfill

D. Sabel 7

s1
T,n //

∼α

∼α

s2
∼α

t1∈
γ(t,

∆
)

s′1∈
γ(t,

∆
)

T,n
// s′2

s1
T,n //

∼α

∼α

s2
∼α

t1

SR,n′
��

s′1 T,n
//

SR,n′ ��

s′2

t2 ∼α
t2
′

Figure 5: Illustration of Cond. 1 and 2 in Def. 2.5:
solid lines are given relations, dotted / dashed lines are
existentially quantified relations, t1 fulfills the DVC.

·
SR,n ��

T,n′ // ·
SR,n′2��·

SR,n2 ��

SR,nk �� SR,n′l��
·

T,nk+1

//
T,nm

// ·

Figure 6: Representation of a forking diagram

Conditions (1) and (2) from Definition 2.5 is that applicabilty of a transformation to an expression s
implies applicabilty of the transformation to all α-renamed expressions s′ ∼α s that fulfill the DVC (see
Proposition A.1 in the appendix). In the calculus Lneed, this conditions holds for most of the transfor-
mations under consideration. An exception is the reversed copy transformation, (e.g. the reversal of
T,cp-in−−−−→ in Fig. 2). The rule does not fulfill the mentioned condition, since all ground instances of the
left hand side violate the DVC. However, the conditions (1) and (2) from Definition 2.5 hold, since two
occurrences of λv.e do not forbid the application of a standard reduction.

Meta transformations `
T,n−−→∆ r are written in the LRSX Tool as “{n,k} ` ==> r where Constraints”

where k is a non-negative integer representing the variant of the rule. For the calculus Lneed a context
lemma [15] holds, which shows that top contexts are a sufficient class for ∼c, thus it suffices to consider
the closure of garbage collection w.r.t. top contexts. We can represent the rules for garbage collection as:

{gcT,1} T[letrec E1;E2 in S] ==> T[letrec E1 in S]

where E1 /= {}, E2 /= {}, [E1,letrec E2 in [.]], (S,letrec E2 in [.])

{gcT,2} T[letrec E in S] ==> T[S] where E /= {}, (S,letrec E in [.])

3 Computing Diagrams and Automated Induction

For proving γ(gcT) ⊆ ≤↓, we have to compute all overlaps between an answer and the left hand side
of (gcT) (called answer overlaps5) and all overlaps between the left hand sides of a standard reduction
and of (gcT) (called forking overlaps)6. Clearly, computing the overlaps cannot be done using the con-
cretizations w.r.t. γ but has to be done on the meta-syntax, i.e. by unifying the left hand sides of the
meta-transformation with the left hand sides of the standard reductions and the answers, respecting the
constraint tuples corresponding to the rules. An appropriate unification algorithm for LRSX was devel-
oped in [16] and implemented in the LRSX Tool. Calling the tool produces 99 (93, resp.) overlaps of
(gcT,1) ((gcT,2) resp.) with all standard reductions and answers.

For joining the overlaps and computing so-called answer diagrams and forking diagrams (consisting
of the overlap and a join), we have to apply standard reductions and transformation rules to the con-
strained expressions (again on the meta-syntax) of the overlaps until a common successor is found. For

an answer s and an answer overlap s
T,n′−−→ t, a join is a sequence tk

SR,nk←−−−α · · ·
SR,n1←−−−α t where k ≥ 0 and

tk ∈ γ(Ans). For a forking overlap s1
SR,n←−− t

T,n′−−→ t1, a join is a sequence s1 α

SR,n2−−→ ·· · α

SR,nk−−→ sk α

T,nk+1−−−→
5Internally computing answer overlaps is done by adding special standard reduction rules of the form `→ answer where

` ∈ Ans and answer is a new constant.
6In the LRSX Tool the commands to overlap the left hand sides with all standard reductions are overlap (gcT,1).l all

and overlap (gcT,2).l all.

8 Automating the Diagram Method to Prove Correctness of Program Transformations

· gcT //
SR,lbeta ��

·
SR,lbeta��

·
gcT

// ·

· gcT //
SR,cp ��

·
SR,cp��

·
gcT

// ·

· gcT //
SR,lll ��

·
SR,lll��

·
gcT

// ·

· gcT //
SR,lll ��

·

· gcT

77

Figure 7: Diagrams for (gcT), pictorial

<-SR,lbeta- . -gcT-> ~~> -gcT-> . <-SR,lbeta-

<-SR,cp- . -gcT-> ~~> -gcT-> . <-SR,cp-

<-SR,lll- . -gcT-> ~~> -gcT-> . <-SR,lll-

<-SR,lll- . -gcT-> ~~> -gcT->

<-ANSWER- . -gcT-> ~~> <-ANSWER-

Figure 8: Diagrams for (gcT), textual

gcT(SRlbeta(x)) -> SRlbeta(gcT(x))

gcT(SRcp(x)) -> SRcp(gcT(x))

gcT(SRlll(x)) -> SRlll(gcT(x))

gcT(SRlll(x)) -> gcT(x)

gcT(Answer) -> Answer

Figure 9: Obtained TRS for (gcT)

· · · α

T,nm−−→ sm ∼α tl
SR,n′l←−−α · · ·

SR,n′2←−−α t1 where m,k, l ≥ 1 and k > 1 is only allowed if (SR,Ans) is deter-
ministic7. The forking overlap together with a join builds a forking diagram which can be depicted as
shown in Fig. 6 (where steps from the overlap are written with solid arrows, and (existentially quantified)
steps of the join are written with dashed arrows) .

To apply the letrec rewrite rules a matching algorithm for LRSX is used which is described in [13]. A
peculiarity of the matching problem is, that constrained expressions of the overlap have to be matched
against meta-expressions from the rewrite rule which also come with constraint tuples, and thus the
algorithm has to guarantee that the given constraints imply the needed constraints before delivering a
matcher. A further specialty is that the rewrite mechanism has to guarantee completeness w.r.t. ground
instances, i.e. each rewrite step on the meta-level (applying meta rewrite rules to constrained expressions)
must also be possible for all ground instances. The LRSX Tool uses an iterative and depth-bounded depth
first search to bound the number of applied transformations and reductions. Since sometimes no join is
found, since a possible rewriting requires more knowledge on the (non-)emptiness of environment and
context variables, the LRSX Tool uses backtracking: If no join is found for an overlap, then first a case
distinction for context variables in the problem is done (whether they are empty or non-empty) and then
the case distinction is done for environment variables.

For checking if a join is found, we have to test equivalence of constrained expressions. A simple
check is testing ∼let, but however, also the constraint tuples have to be checked. In Appendix B a sound
check for proving equivalence of constrained expressions is provided.

The join-command of the LRSX-Tool tries to join the found overlaps and to compute forking and
answer diagrams: The diagrams are rewrite rules where the left hand side represents the overlap and
the right hand represents the join, where on both sides the diagrams are abstracted from the concrete
expressions (and thus they represent string rewrite systems where the alphabet are names or reductions
and transformations and the abstract symbol <-ANSWER-). For our example, the computed forking dia-
grams and answer diagrams (in textual representation, and condensed form) are shown in Fig. 8 and a
pictorial representation of the forking diagrams is in Fig. 7. In a pen-and-paper proof of γ(gcT) ⊆≤↓,
an induction on the length of a converging reduction sequence s

SR,∗−−→ s′ for s with s
gcT−−→ t is used to

show that t converges. The induction base is covered by the answer diagrams, and for the induction

step, let s SR−→ s1
SR,∗−−→ s′. Applying a forking diagram to s1

SR←− s
gcT−−→ t shows existence of some t ′ with

s1
gcT−−→ t ′ SR←− t or s1

gcT−−→ t ′ = t and by the induction hypothesis t ′↓ which also implies t↓. This induction

7For each ground expression s, there exists at most one t such that s SR−→ t ∈ γ(SR).

D. Sabel 9

·
SR,a
��

·gcToo

SR,a
��

· ·
gcT
oo

·

SR,a

��

·gcToo

SR,lll,+
��
·

SR,a
��

· ·
gcT
oo

·

SR,lbeta

��

·gcToo
SR,lll,+��
·

SR,lbeta��
·

SR,lll��
· ·

gcT
oo

Figure 10: Commuting Diagrams for (gcT)

gcT(SRlbeta(x)) -> W24(k,x)

W24(s(k),x) -> SRlll(W24(k,x))

W24(s(k),x) -> SRlll(SRlbeta(gcT(x)))

Figure 11: A term rewrite rule for the sec-
ond diagram

(even with more complex induction measures) can be automatized by interpreting the answer and forking
diagrams as term rewrite system and by showing (innermost) termination of them (see [11]). From the
obtained answer and forking diagrams for (gcT), the LRSX Tool generates the term rewrite system show
in Fig. 9 which is shown to be innermost terminating using the prover AProVE and the certifier CeTA.

4 Extended Techniques and Limitations of the Method

The previous example (proving γ(gcT)⊆≤↓) is quite simple where unification and matching for LRSX-
expressions and usual term rewrite systems for the automated induction are successful. However, the
LRSX Tool provides more sophisticated techniques that are for instance required when proving the re-
maining part, i.e. γ(gcT) ⊆ ≥↓, to complete the correctness proof of garbage collection. First observe
that the diagram technique works as before with the difference that the reversal of (gcT) is used (i.e. with
writing (gcT)− for reversing the transformation (gcT) we have to show γ((gcT)−)⊆≤↓). However, this
means that we have to overlap left hand sides of standard reductions and answers with right hand sides
of (gcT). The obtained overlaps are called answer and commuting diagrams. Computing the overlaps
results in 99 overlaps for (gcT,1) and 203 overlaps for (gcT,2). However, using the presented techniques
for computing joins fails. An overlap (we omit the constraints) which cannot be joined is

A[(λX .S) T [letrec E1 in S′]]
SR,lbeta,1 ��

A[(λX .S) T [letrec E1;E2 in S′]]
gcT,1oo

A[letrec X .T [letrec E1 in S′] in S]

The automated method cannot apply a (SR,lbeta)-reduction to the upper-right expression, since it can-
not infer that variable X does not occur in E2. However, this problem can be solved by α-renaming
the expression such that the DVC holds. That is why symbolic α-renaming (see [12]) is built into
the LRSX Tool which is quite more complex than usual α-renaming, since it has to be performed
on the meta syntax, e.g. internally symbolic renamings of the form α · S are required. Even with
α-renaming, the LRSX Tool cannot join all overlaps. E.g., for the overlap (we omit the constraints)

A[letrec X .S′ in S] A[(λX .S) S′]
SR,lbeta,1oo A[(letrec E in (λX .S)) S′]

gcT,2oo a meta-argument is re-
quired to close the overlap stating that the standard reduction moves the environment E to the top of the

expression, i.e. a sequence A[(letrec E in (λX .S)) S′]
SR,lll,+−−−−→ letrec E in A[(λX .S)) S′] where

SR,lll,+−−−−→ is the transitive closure of
SR,lll−−−→. In the LRSX Tool such transitive closures can be defined and

with these rules it is able to compute a complete set of commuting diagrams for the (gcT)-transformation.
A pictorial representation of the commuting diagrams for a ∈ {lbeta,cp, lll} is shown in Fig. 10.

The automated induction has to treat the transitive closure in the rules. A naive encoding leads to
term rewrite systems with infinitely many rules. The LRSX Tool generates a term rewrite system with

10 Automating the Diagram Method to Prove Correctness of Program Transformations

overlaps # meta joins
meta joins
with α-renaming

diagram computation time
forking answer forking answer forking answer

Calculus Lneed (11 SR rules, 16 transformations, 2 answers)
→ 2215 27 5398 27 93 0 48 secs.
← 2963 38 7235 38 1399 3 116 secs.

Calculus L+seq
need (17 SR rules, 18 transformations, 2 answers)

→ 4869 29 14700 29 143 0 149 secs.
← 6394 43 18046 43 2374 3 255 secs.
Calculus LR (76 SR rules, 43 transformations, 17 answers)
→ 85455 1586 389678 1586 73601 0 ∼ 19 hours
← 105053 2280 426664 2440 93075 155 ∼ 16 hours

Table 1: Statistics of executing the LRSX Tool

free variables on the right hand sides (or alternatively integer term rewrite systems, see [11, 6]) where
these variables are interpreted as variables representing constructors. Every transitive closure is encoded
as a guessing of the number of steps it represents. E.g., the second diagram is encoded by three term
rewrite rules in Fig. 11. The termination prover AProVE and the certifier CeTA support such termination
problems with free variables on right-hand sides interpreted as arbitrary constructor term. For (gcT),
innermost termination can be proved and certified.

Now consider the transformations (cp-in) and (cp-e) from Fig. 2 closed by top-contexts. Computing
commuting diagrams results in the following diagrams and the corresponding term rewrite system:

·
SR,a ��

·cpToo
SR,a��

· ·
cpT
oo

·
SR,cp ��

·cpToo
SR,cp��

· ·
cpT
oo ·

cpT
oo

·
SR,lbeta

��

·cpToo

SR,lbeta}}· ·
SR,lbeta}}·

cpT(SRlbeta(x)) -> SRlbeta(cpT(x))

cpT(SRlbeta(x)) -> SRcp(SRlbeta(x))

cpT(SRcp(x)) -> SRcp(cpT(x))

cpT(SRcp(x)) -> SRcp(cpT(cpT(x)))

cpT(SRlll(x)) -> SRlll(cpT(x))

The TRS is non-terminating. If we split the transformation (cpT) into transformations where the copy
target is a top-context (tcpT) , and another transformation (dcpT) where the target is below an abstraction,
then the diagram set becomes

·
SR,a ��

·tcpToo
SR,a��

· ·
tcpT
oo

·
SR,a ��

·dcpToo
SR,a��

· ·
dcpT
oo

·
SR,lbeta ��

·dcpToo
SR,lbeta��

· ·
tcpT
oo

·
SR,cp ��

·dcpToo
SR,cp��

· ·
dcpT
oo ·

dcpT
oo

·
SR,lbeta

��

·tcpToo

SR,lbetaww·
SR,lbetaww·

and termination of the corresponding TRS can be proved.

5 Implementation and Experiments

The Haskell-implementation of the automated diagram method to prove correctness of program trans-
formation is available as a Cabal-package from http://goethe.link/LRSXTOOL61. We tested our imple-
mentation with three different program calculi and a lot of program transformations. The tested calculi
are the calculus Lneed [17] – a minimal call-by-need lambda calculus with letrec – the calculus L+seq

need
which extends Lneed by the seq-operator, where seq e1 e2 first evaluates the first argument e1 and after

http://goethe.link/LRSXTOOL61

D. Sabel 11

obtaining a successful result it evaluates argument e2, and the calculus LR [18] which extends L+seq
need by

data constructors for lists, booleans and pairs together with corresponding case-expressions, and can be
seen as an untyped core language of Haskell. The tested program transformations include all calculus
reductions which can be summarized as “partial evaluation”, several copying transformations and rules
for removing garbage and inlining of let-bindings which are referenced only once.

The results of our experiments are in Table 1, where we also list the numbers of standard reduc-
tions, transformations, and answers in the input. The table shows the numbers of computed overlaps,
corresponding joins (which is higher due to the branching in unsuccessful cases), joins which use the
α-renaming procedure. The row marked with → represent the forking diagrams, and ← represent the
reversed transformations, i.e. commuting diagrams. In all cases, termination of the termination problems
was proved by AProVE and certified by CeTA. The last column lists the execution time8 for calculating
the overlaps and the joins. The time to compute (more) joins in the calculus LR for commuting diagrams
than for computing forking diagrams, can be explained: we optimized the diagram computation (but
cutting down unusual search paths) for the commuting case much more than for the forking case.

6 Conclusion

We presented a system to automatically prove correctness of program transformations which is imple-
mented as the LRSX Tool. We illustrated its use by an example and discussed peculiarities of its design
and its implementation. By providing the results of experiments, we demonstrated the success of the
method and the tool. Future work is to extend the tool to prove correctness of program translations
where source and target language are different.

Acknowledgments. We thank René Thiemann for support on AProVE and CeTA.

References

[1] AProVE (2018): Homepage of AProVE. http://aprove.informatik.rwth-aachen.de.

[2] Zena M. Ariola & Matthias Felleisen (1997): The Call-By-Need lambda Calculus. J. Funct. Program. 7(3),
pp. 265–301.

[3] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky & Philip Wadler (1995): A call-by-need
lambda calculus. In: POPL 1995, ACM, pp. 233–246.

[4] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press.

[5] CeTA (2018): Homepage of CeTA. http://cl-informatik.uibk.ac.at/software/ceta.

[6] Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp & Stephan Falke (2009): Proving Termi-
nation of Integer Term Rewriting. In: RTA 2009, LNCS 5595, Springer, pp. 32–47.

[7] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Carsten Otto, Martin
Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski & René Thiemann (2014): Proving
Termination of Programs Automatically with AProVE. In: IJCAR 2014, LNCS 8562, Springer, pp. 184–191.

[8] Elena Machkasova & Franklyn A. Turbak (2000): A Calculus for Link-Time Compilation. In: ESOP 2000,
LNCS 1782, Springer, pp. 260–274.

[9] James H. Morris (1968): Lambda-Calculus Models of Programming Languages. Ph.D. thesis, MIT.

[10] Gordon D. Plotkin (1975): Call-by-name, call-by-value, and the lambda-calculus. Theoret. Comput. Sci. 1,
pp. 125–159.

8Tests ran on a system with Intel i7-4790 CPU 3.60GHz, 8 GB memory using GHC’s -N option for parallel execution

http://aprove.informatik.rwth-aachen.de
http://cl-informatik.uibk.ac.at/software/ceta

12 Automating the Diagram Method to Prove Correctness of Program Transformations

[11] Conrad Rau, David Sabel & Manfred Schmidt-Schauß (2012): Correctness of Program Transformations as
a Termination Problem. In: IJCAR 2012, LNCS 7364, Springer, pp. 462–476.

[12] David Sabel (2017): Alpha-renaming of Higher-order Meta-expressions. In: PPDP 2017, ACM, pp. 151–162.
[13] David Sabel (2017): Matching of Meta-Expressions with Recursive Bindings. In: Informal Proceedings of

UNIF 2017.
[14] David Sabel & Manfred Schmidt-Schauß (2008): A Call-by-Need Lambda-Calculus with Locally Bottom-

Avoiding Choice: Context Lemma and Correctness of Transformations. Math. Structures Comput. Sci.
18(03), pp. 501–553.

[15] Manfred Schmidt-Schauß & David Sabel (2010): On generic context lemmas for higher-order calculi with
sharing. Theoret. Comput. Sci. 411(11-13), pp. 1521 – 1541.

[16] Manfred Schmidt-Schauß & David Sabel (2016): Unification of Program Expressions with Recursive Bind-
ings. In: PPDP 2016, ACM, pp. 160–173.

[17] Manfred Schmidt-Schauß, David Sabel & Elena Machkasova (2010): Simulation in the Call-by-Need
Lambda-Calculus with letrec. In: RTA 2010, LIPIcs 6, Schloss Dagstuhl, pp. 295–310.

[18] Manfred Schmidt-Schauß, Marko Schütz & David Sabel (2008): Safety of Nöcker’s Strictness Analysis. J.
Funct. Programming 18(04), pp. 503–551.

[19] René Thiemann & Christian Sternagel (2009): Certification of Termination Proofs Using CeTA. In: TPHOLs
2009, LNCS 5674, Springer, pp. 452–468.

[20] Joe B. Wells, Detlef Plump & Fairouz Kamareddine (2003): Diagrams for Meaning Preservation. In: RTA
2003, LNCS 2706, Springer, pp. 88 –106.

[21] Andrew K. Wright & Matthias Felleisen (1994): A Syntactic Approach to Type Soundness. Inf. Comput.
115(1), pp. 38–94.

D. Sabel 13

Appendix

A Soundness of the Diagram Method

Proposition A.1. Let (SR,Ans) be a program calculus and s
T,n−−→∆ t be a letrec rewrite rule such that

no Ch-variable occurs in ` and r and the transformation is closed w.r.t. a sufficient context class for

contextual equivalence. Assume that s1
T,n−−→ s2 implies that for all s′1 ∼α s1 such that s′1 fulfills the DVC

also s′1
T,n−−→ s′2 for some s′2 ∼α s2. Assume also that s1

T,n−−→ s2 for s1 ∈ γ(Ans) implies that for all s′1 ∼α s1

also s′1
T,n−−→ s′2 holds for some s′2 ∼α s2. Then s

T,n−−→∆ t is overlapable.
We show soundness of the diagram method, where it is important to verify that our conditions in Def-

inition 2.5 imply that it suffices to consider overlaps of standard reductions and transformations without
performing α-renaming.

Let (SR,Ans) be a program calculus, OTR be a set of overlapable meta transformations, and TR ⊇
OTR be a set of meta transformations such that for each (`

T,n−→∆ r) ∈ TR there exists (`
T,n′−−→∆ r) ∈OTR

with γ(`
T,n−→∆ r)⊆γ(`

T,n′−−→∆ r) (we say that n′ subsumes n w.r.t. γ).
A set of forking and answer diagrams is complete for a set OTR iff for all forking overlaps of trans-

formations in OTR with standard reductions and every answer overlap, a diagram in the set is applicable.
Applicabilty means that the concrete overlap is an instance of the overlap described by the diagram, and
that the existentially quantified expressions, reductions, and transformations can accordingly be instanti-
ated.

Already, in [11] it was shown that proving termination of the string rewrite system with infinitely
many rules can be automated by using automated termination provers for term rewrite systems and
showing termination of the integer term rewrite system (or a term rewrite system with free variables
on the right hand side that represent arbitrary construtor terms). Thus, we do not repeat this technqiue
here, and formulate our soundness result in terms of the string rewrite system which is induced by the
diagrams:
Theorem A.2. If a complete set of forking and answer diagrams for OTR is terminating as a string

rewrite system, then all `
T,n−→∆ r ∈ TR are convergence equivalent.

Proof. Since transformations in TR are subsumed by the transformations in OTR it is sufficient to con-

sider `
T,n−−→∆ r ∈ OTR. Assume that s

T,n−−→ t and s↓. Then there exists a sequence s′k ∼α sk
SR←−α · · ·

SR←−α

s
T,n−−→ t where s′k ∈ γ(Ans). We apply modifications to the sequence and replace overlaps by joins ac-

cording to the following rules:

1. If the sequence contains a transformation step s1
T,n′−−→ s2 where

T,n′−−→∆′∈ (TR \OTR), then there

exists
T,n′′−−→∆′′∈ OTR with s1

T,n′−−→s2 ∈ γ(
T,n′′−−→∆′′). Replace s1

T,n′−−→ s2 by s1
T,n′′−−→ s2.

2. If the sequence contains a step s1
SR,n′←−−−α s2, i.e. s1

SR,n′←−−− s′2 ∼α s2, and s′2 does not fulfill the DVC,
then replace s′2 by an expression s′′2 ∼α s′2 such that s′′2 fulfills the DVC. By Definition of standard

reductions, the standard reduction s′1
SR,n′←−−− s′′2 with s′1 ∼α s1 exists. Replace s1

SR,n′←−−− s′2 ∼α s2 by

s1 ∼α s′1
SR,n′←−−− s′′2 ∼α s2.

3. If the sequence contains s1
SR←−α s2 α

SR−→ s3, then the calculus is deterministic and thus s1 ∼α s3

holds. Replace the s1
SR←−α s2 α

SR−→ s3 by s1 ∼α s3.

14 Automating the Diagram Method to Prove Correctness of Program Transformations

4. If the sequence has a prefix s1 α

SR−→ s3 where s1 is an answer, then the calculus is deterministic and
s3 is answer and we replace the prefix s1 α

SR−→ s3 by s3.

5. Subsequences s1 ∼α s2 ∼α s3 are replaced by s1 ∼α s3.

6. If the left-most expression of the sequence is s1 ∈ γ(Ans) and does not fulfill the DVC, then
replace s1 by s′1 ∼α s1 such that s′1 fulfills the DVC. Note that due to our assumption on answers,
s′1 ∈ γ(Ans).

7. If the sequence has a prefix t1 ∼α s1
T,n′−−→ s2, where t1 fulfills the DVC and t1 ∈ γ(Ans), then

first apply Condition (1) of Definition 2.5, i.e. replace the prefix by t1 ∼α s′1
T,n−−→ s′2 ∼α s2 where

s′1 ∈ γ(Ans) and s′1 ∼α t. Now the answer overlap s′1
T,n−−→ s′2 is replaced by the corresponding join.

8. If the sequence contains t2
SR,n′←−−− t1 ∼α s1

T,n′′−−→ s2, then t1 fulfills the DVC (by the modification

in item 2) and we can use Condition 2 of Definition 2.5 and replace t2
SR,n′←−−− t1 ∼α s1

T,n′′−−→ s2 by

t2 ∼α t′2
SR,n′←−−− s′1

T,n′′−−→ s′2 ∼α s2. Now replace the forking overlap t′2
SR,n′←−−− s′1

T,n′′←−− s′2 by its join.

The modifications show that we can replace overlaps by joins until the sequence is of the form sn
SR←−α

· · · SR←−α t. Termination of the string rewrite system and the observation that α

SR−→-reductions which are
introduced by joins can always be removed by the modifications (3) and (4), shows that the replacement
together with the modifications terminates. Since, the left end of the sequence is always an expression in
γ(Ans), this shows t↓.

B Checking Equivalence of Constrained Expressions

We define an NCC-implication check for constrained expressions. Before providing the implication
check, we define how to split NCCs into atomic NCCs (u,v) such that u,v are variables or meta-variables.
For a set S of NCCs, let splitncc(S) :=

⋃
(s,d)∈S VarM(s)×CVM(d) where VarM(s) = MV(s)∪Var(s),

and CVM collects all concrete variables that capture variables of the context hole, and all meta-variables
which may have concretizations that introduce capture variables. A ground substitution ρ satisfies an
atomic NCC (u,v) iff Var(ρ(u))∩CVA(ρ(v)) = /0 where CVA(x) = {x} for all variables x and CVA(r) =
CV(r) for all other constructs r. It is easy to verify that for a set of NCCs S , ρ satisfies all constraints
in S if and only if ρ satisfies all atomic NCCs in splitncc(S).

We now define the NCC-implication check.

Definition B.1. Let (s,∇) and (t,∆) be constrained expressions with s∼let t, γ(s,∇) 6= /0,γ(t,∆) 6= /0 and
MV(s) = MV(t). Then ∇ implies ∆ iff i) for all D ∈ ∆1 : D ∈ ∇1, ii) for all E ∈ ∆2: E ∈ ∇2 and iii) for
all (u,v) ∈ splitncc(∆3)∪NCCdvc(t) one of the following cases holds:

1. u = x and v = y where x 6= y.

2. (u,v) ∈ splitncc(∇3)∪NCCdvc(s).

3. u=v, u∈MV(∆)\MV(∇) and u∈{Ch,D,E} such that E 6∈∆2.

4. u 6= v, u ∈MV(∆)\MV(∇) and u=Ch, or u=S, or u=D or u=E, or u=X .

5. u 6= v, v ∈MV(∆)\MV(∇) and v ∈ {Ch,D,E,X}.

6. u = E or u = Ch with cl(Ch) = Triv, and (u,u) ∈ splitncc(∇3)∪NCCdvc(s).

D. Sabel 15

7. v∈{E,Ch,D} and (v,v)∈splitncc(∇3)∪NCCdvc(s).

8. (u,v) is of the form (X ,y), (x,Y), (X ,Y), (x,D), (X ,D), (x,E), (X ,E), (x,Ch), (X ,Ch), (Ch1,x),
(Ch1,X), (Ch1,E), (Ch1,D), or (Ch1,Ch2) where cl(Ch1)=Triv and in all cases (v,u)∈ splitncc(∇3)∪
NCCdvc(s).

We call (s,∇) and (t,∆) NCC-equivalent iff ∆ implies ∇ and ∇ implies ∆.

Proposition B.2. NCC-equivalence of (s,∇) and (t,∆) implies γ(s,∇)=γ(t,∆).

Proof. It suffices to show that for (s,∇) and (t,∆) such that ∇ implies ∆, the inclusion γ(t,∆) ⊆ γ(s,∇)
holds. Let ρ be a substitution such that ρ(s) satisfies the LVC and ρ satisfies ∇. We show that there
exists a substitution ρ0 such that ρ0 ◦ρ is ground for (t,∆) and with ρ ′ = ρ0 ◦ρ , ρ ′(t) satisfies the LVC
and ρ ′ satisfies ∆.

Let ρ0(Ch) = [·1].[·2] for all Ch ∈MV(t,∆)\MV(s,∇) ρ0(S) = λxS.xS for a fresh variable xS for all
S ∈ MV(t,∆) \MV(s,∇). For all D ∈ MV(t,∆) \MV(s,∇), let ρ0(D) = [·] if D 6∈ ∆1, and ρ0(D) = d
where d is a context with CV(d) = /0. For all E ∈ MV(t,∆) \MV(s,∇), let ρ0(E) = /0 if E 6∈ ∆2 and
ρ0(E) = xE .var xE , otherwise where xE is a fresh variable; For all X ∈MV(t,∆)\MV(s,∇), let ρ0(X) =
xX for a fresh variable xX .

By the definition of the NCC-implication check and the choice of ρ0, ρ ′ satisfies ∆1 and ∆2. For the
remaining parts, we show that ρ ′ satisfies all atomic NCCs in splitncc(∆3)∪NCCdvc(t).

Let (u,v) ∈ splitncc(∆3)∪NCCdvc(t). Then one of the cases of Definition B.1 holds. If u = x and
v = y where x 6= y, the (ρ(u),ρ(v)) is satisfied. If (u,v) ∈ splitncc(∇3)∪NCCdvc(s) then ρ ′ satisfies (u,v)
since ρ satisfies ∇3 or for (u,v) ∈ NCCdvc(s), u,v are let-variables of the same environment and thus ρ

must map u and v to distinct concrete variables, since otherwise the LVC for ρ(s) is violated. If u = v,
u ∈ MV(∆)\MV(∇) and u ∈ {Ch,D,E} such that E 6∈ ∆2 we verify that ρ0 satisfies (u,u) and thus ρ

does. If u 6= v, u ∈MV(∆)\MV(∇) and u=Ch, or u=S, or u=D or u=E, or u=X . ρ0 satisfies (u,u) and
thus ρ does. If u 6= v, v ∈MV(∆)\MV(∇) and v ∈ {Ch,D,E,X}. ρ0 satisfies (u,u) and thus ρ does. If
(u,v) is (X ,y), (x,Y), (X ,Y), (x,D), (X ,D), (x,E), (X ,E), (x,Ch), (X ,Ch), (Ch1,x), (Ch1,X), (Ch1,E),
(Ch1,D), or (Ch1,Ch2) where cl(Ch1) = Triv and in all cases (v,u)∈ splitncc(∇3)∪NCCdvc(s), we verify
that since ρ satisfies (v,u), ρ also has to satisfy (u,v).

	Introduction
	Program Calculi and Transformations
	Computing Diagrams and Automated Induction
	Extended Techniques and Limitations of the Method
	Implementation and Experiments
	Conclusion
	Soundness of the Diagram Method
	Checking Equivalence of Constrained Expressions

