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Abstract. There are several statements equivalent to the famous Rie-
mann hypothesis. In 2011, Solé and and Planat stated that the Rie-

mann hypothesis is true if and only if the inequality
∏

q≤qn

(
1 + 1

q

)
>

eγ

ζ(2)
· log θ(qn) is satisfied for all primes qn > 3, where θ(x) is the Cheby-

shev function, γ ≈ 0.57721 is the Euler-Mascheroni constant and ζ(x) is
the Riemann zeta function. Using this result, we create a new criterion
for the Riemann hypothesis. We prove the Riemann hypothesis is true
using this new criterion.

Keywords: Riemann hypothesis · Prime numbers · Chebyshev function
· Riemann zeta function.

1 Introduction

Leonhard Euler studied the following value of the Riemann zeta function (1734).

Proposition 1. It is known that[1, (1) pp. 1070]:

ζ(2) =

∞∏
k=1

q2k
q2k − 1

=
π2

6
,

where qk is the kth prime number (We also use the notation qn to denote the
nth prime number).

The Riemann hypothesis is a conjecture that the Riemann zeta function has its
zeros only at the negative even integers and complex numbers with real part 1

2 .
In mathematics, the Chebyshev function θ(x) is given by

θ(x) =
∑
q≤x

log q

with the sum extending over all prime numbers q that are less than or equal to
x, where log is the natural logarithm. We know the following property for the
Chebyshev function and the nth prime number:

Proposition 2. For n ≥ 2 [3, Theorem 1.1 pp. 2]:

θ(qn)

log qn+1
≥ n · (1− 1

log n
+

log log n

4 · log2 n
).
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Proposition 3. For n ≥ 8602 [6, Theorem B (1.11) pp. 219]:

qn ≤ n · (log n+ log log n− 0.9385).

In number theory, Ψ(n) = n ·
∏

q|n

(
1 + 1

q

)
is called the Dedekind Ψ function,

where q | n means the prime q divides n. We say that Dedekind(qn) holds pro-
vided that ∏

q≤qn

(
1 +

1

q

)
>

eγ

ζ(2)
· log θ(qn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant. The importance of
this inequality is:

Proposition 4. Dedekind(qn) holds for all prime numbers qn > 3 if and only if
the Riemann hypothesis is true [9, Theorem 4.2 pp. 5].

We define H = γ − B such that B ≈ 0.2614972128 is the Meissel-Mertens
constant [7, (17.) pp. 54]. We know the following formula:

Proposition 5. We have that [2, Lemma 2.1 (1) pp. 359]:

∞∑
k=1

(
log(

qk
qk − 1

)− 1

qk

)
= γ −B = H.

The following property is based on natural logarithm function:

Proposition 6. [5, pp. 1]. For x > −1:

log(1 + x) ≤ x.

Putting all together yields a proof for the Riemann hypothesis using the Cheby-
shev function.

2 Central Lemma

Lemma 1. For two real numbers y > x > e:

y

x
>

log y

log x
.

Proof. We have y = x+ ε for ε > 0. We obtain that

log y

log x
=

log(x+ ε)

log x

=
log

(
x · (1 + ε

x )
)

log x

=
log x+ log(1 + ε

x )

log x

= 1 +
log(1 + ε

x )

log x



The Riemann Hypothesis 3

and

y

x
=

x+ ε

x

= 1 +
ε

x
.

We need to show that (
1 +

log(1 + ε
x )

log x

)
<

(
1 +

ε

x

)
which is equivalent to (

1 +
ε

x · log x

)
<

(
1 +

ε

x

)
using the Proposition 6. For x > e, we have

ε

x
>

ε

x · log x
.

In conclusion, the inequality
y

x
>

log y

log x

holds on condition that y > x > e. ⊓⊔

3 What if the Riemann hypothesis were false?

Theorem 1. If the Riemann hypothesis is false, then there are infinitely many
prime numbers qn such that Dedekind(qn) does not hold.

Proof. The Riemann hypothesis is false, if there exists some natural number
x0 ≥ 5 such that g(x0) > 1 or equivalent log g(x0) > 0:

g(x) =
eγ

ζ(2)
· log θ(x) ·

∏
q≤x

(
1 +

1

q

)−1

.

We know the bound [9, Theorem 4.2 pp. 5]:

log g(x) ≥ log f(x)− 2

x

where f was introduced in the Nicolas paper [8, Theorem 3 pp. 376]:

f(x) = eγ · log θ(x) ·
∏
q≤x

(
1− 1

q

)
.

When the Riemann hypothesis is false, then there exists a real number b < 1
2

for which there are infinitely many natural numbers x such that log f(x) =
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Ω+(x
−b) [8, Theorem 3 (c) pp. 376]. According to the Hardy and Littlewood

definition, this would mean that

∃k > 0,∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) ≥ k · y−b.

That inequality is equivalent to log f(y) ≥
(
k · y−b · √y

)
· 1√

y , but we note that

lim
y→∞

(
k · y−b · √y

)
= ∞

for every possible positive value of k when b < 1
2 . In this way, this implies that

∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) ≥ 1
√
y
.

Hence, if the Riemann hypothesis is false, then there are infinitely many natural
numbers x such that log f(x) ≥ 1√

x
. Since 2

x = o( 1√
x
), then it would be infinitely

many natural numbers x0 such that log g(x0) > 0. In addition, if log g(x0) > 0
for some natural number x0 ≥ 5, then log g(x0) = log g(qn) where qn is the
greatest prime number such that qn ≤ x0. Actually,

∏
q≤x0

(
1 +

1

q

)−1

=
∏
q≤qn

(
1 +

1

q

)−1

and

θ(x0) = θ(qn)

according to the definition of the Chebyshev function. ⊓⊔

4 A Key Theorem

Theorem 2.

∞∑
k=1

(
1

qk
− log(1 +

1

qk
)

)
= log(ζ(2))−H.
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Proof. We obtain that

log(ζ(2))−H = log(

∞∏
k=1

q2k
q2k − 1

)−H

=

∞∑
k=1

(
log(

q2k
(q2k − 1)

)

)
−H

=

∞∑
k=1

(
log(

q2k
(qk − 1) · (qk + 1)

)

)
−H

=

∞∑
k=1

(
log(

qk
qk − 1

) + log(
qk

qk + 1
)

)
−H

=

∞∑
k=1

(
log(

qk
qk − 1

)− log(
qk + 1

qk
)

)
−H

=

∞∑
k=1

(
log(

qk
qk − 1

)− log(1 +
1

qk
)

)
−

∞∑
k=1

(
log(

qk
qk − 1

)− 1

qk

)

=

∞∑
k=1

(
log(

qk
qk − 1

)− log(1 +
1

qk
)− log(

qk
qk − 1

) +
1

qk

)

=

∞∑
k=1

(
1

qk
− log(1 +

1

qk
)

)
by Propositions 1 and 5. ⊓⊔

5 A New Criterion

Theorem 3. Dedekind(qn) holds if and only if the inequality

∞∑
k=1

(
1

qk
− (χ{x: x>qn}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn)

is satisfied for the prime number qn, where the set S = {x : x > qn} contains
all the prime numbers greater than qn and χS is the characteristic function of
the set S (This is the function defined by χS(x) = 1 when x ∈ S and χS(x) = 0
otherwise).

Proof. When Dedekind(qn) holds, we apply the logarithm to the both sides of
the inequality:

log(ζ(2)) +
∑
q≤qn

log(1 +
1

q
) > γ + log log θ(qn)

log(ζ(2))−H +
∑
q≤qn

log(1 +
1

q
) > B + log log θ(qn)
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∞∑
k=1

(
1

qk
− log(1 +

1

qk
)

)
+

∑
q≤qn

log(1 +
1

q
) > B + log log θ(qn)

after of using the Theorem 2. Let’s distribute the elements of the inequality to
obtain that

∞∑
k=1

(
1

qk
− (χ{x: x>qn}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn)

when Dedekind(qn) holds. The same happens in the reverse implication. ⊓⊔

6 The Main Insight

Theorem 4. The Riemann hypothesis is true if the inequality

log(1 +
1

qm
) + log log θ(qn) ≥ log log θ(qn+1)

is satisfied for all sufficiently large prime numbers qn, where m = ⌊ n
4·log2 n

⌋ and

⌊. . .⌋ is the floor function.

Proof. The inequality

∞∑
k=1

(
1

qk
− (χ{x: x>qn}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn)

is satisfied when

∞∑
k=1

(
1

qk
− (χ{x: x≥qm}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn)

is also satisfied, where the set S′ = {x : x ≥ qm} contains all the prime numbers
greater than or equal to qm (Note that S ̸= S′ for large enough n). In the
inequality

∞∑
k=1

(
1

qk
− (χ{x: x≥qm}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn)

only change the values of

log(1 +
1

qm
) + log log θ(qn)

and
log log θ(qn+1)

between the consecutive primes qn and qn+1. It is enough to show that

log(1 +
1

qm
) + log log θ(qn) ≥ log log θ(qn+1)
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for all sufficiently large prime numbers qn. Indeed, the inequality

∞∑
k=1

(
1

qk
− (χ{x: x≥qm}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn)

is the same as

∞∑
k=1

(
1

qk
− (χ{x: x≥q(m+1)}(qk)) · log(1 +

1

qk
)

)

> B + log log θ(qn+1) + log(1 +
1

qm
) + log log θ(qn)− log log θ(qn+1)

where qn and qn+1 are consecutive primes. From the previous inequality, we note
that if

log(1 +
1

qm
) + log log θ(qn)− log log θ(qn+1) ≥ 0

is satisfied, then

∞∑
k=1

(
1

qk
− (χ{x: x≥q(m+1)}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn+1)

is also satisfied which means that Dedekind(qn+1) holds for large enough n ac-
cording to the Theorem 3. Therefore, if the inequality

log(1 +
1

qm
) + log log θ(qn)− log log θ(qn+1) ≥ 0

is always satisfied starting for some large enough natural number n0, (i.e. it is
always satisfied for n ≥ n0), then we obtain that Dedekind(qn+1) always holds for
n ≥ n0. However, this contradicts the fact that if the Riemann hypothesis is false,
then there are infinitely many prime numbers qn+1 for which Dedekind(qn+1)
does not hold when n ≥ n0. We obtain this contradiction as a consequence of
the Theorem 1. By reductio ad absurdum, we have that the Riemann hypothesis
is true when

log(1 +
1

qm
) + log log θ(qn) ≥ log log θ(qn+1)

is satisfied for all sufficiently large prime numbers qn. In fact, we only need to
guarantee the existence of at least one large enough prime qn where the inequality

∞∑
k=1

(
1

qk
− (χ{x: x≥qm}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn)

holds precisely for n ≥ n0, such that we assume that Dedekind(q(m−1)) holds and
the prime qn implies that θ(qn) < qn−C ·√qn · log log log qn ≤ θ(q(m−1)) [4]. ⊓⊔
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7 The Main Theorem

Theorem 5. The Riemann hypothesis is true.

Proof. The Riemann hypothesis is true when

log(1 +
1

qm
) + log log θ(qn) ≥ log log θ(qn+1)

is satisfied for all sufficiently large prime numbers qn because of the Theorem 4.
That is the same as

log(1 +
1

qm
) ≥ log log θ(qn+1)− log log θ(qn)

log(1 +
1

qm
) ≥ log

(
log θ(qn+1)

log θ(qn)

)
after making the distribution. We would only need to prove that

1 +
1

qm
≥ log θ(qn+1)

log θ(qn)

when we apply the exponentiation to the both sides. That is satisfied when

1 +
1

qn
≥ θ(qn+1)

θ(qn)

since
log θ(qn+1)

log θ(qn)
<

θ(qn+1)

θ(qn)

by Lemma 1. By properties of the Chebyshev function, we have

1 +
1

qm
≥ 1 +

log(qn+1)

θ(qn)

which is

qm ≤ θ(qn)

log(qn+1)
.

We know that

qm ≤ θ(qn)

log(qn+1)

holds when

n

4 · log2 n
·(log( n

4 · log2 n
)+log log(

n

4 · log2 n
)−0.9385) ≤ n·(1− 1

log n
+

log log n

4 · log2 n
)

also holds by Propositions 2 and 3, where n
4·log2 n

≥ m. That would be equal to

(log(
n

4 · log2 n
) + log log(

n

4 · log2 n
)− 0.9385) ≤ (4 · log2 n− 4 · log n+ log log n)

which is trivially true for all sufficiently large prime numbers qn. Consequently,
we prove that the Riemann hypothesis is true. ⊓⊔
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8 Conclusions

Practical uses of the Riemann hypothesis include many propositions that are
known to be true under the Riemann hypothesis and some that can be shown
to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothesis is
closely related to various mathematical topics such as the distribution of primes,
the growth of arithmetic functions, the Lindelöf hypothesis, the Large Prime
Gap Conjecture, etc. Certainly, a proof of the Riemann hypothesis could spur
considerable advances in many mathematical areas, such as number theory and
pure mathematics in general.
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