ﬁ EasyChair Preprint

Ne 12877

API Performance Testing using Postman Tool

V S Rini Susan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 4, 2024

AP| Performance Testing using Postman
Tool

By
Rini Susan V S

Background

Postman is an API platform for building and testing Application Programming Interfaces [API]. Postman
streamlines the stages in the API lifecycle and promotes collaboration to generate APls, better and faster.
Postman supports APl development with the APl Builder and also provides the option to write scripts to
perform API tests. Postman has a Collections feature that helps to organize a group of saved APl requests.
Postman also provides integrations with various Cl/CD, APM, Cloud, and Collaboration tools like Jenkins,
Splunk, NewRelic, AWS API Gateway, GitHub, Slack, etc.

GoVERNANcE

COLLABORAT

Py\ UFECYC((:

WdV (5)

¥ SoupcE conTRO

Wikipedia defines software testing as, an investigation conducted to provide stakeholders with
information about the quality of the software product or service under test. Performance testing is a type
of testing in which the speed, responsiveness, and stability of a software, product, or network is evaluated
under peak workload. Performance testing checks and validates an application's capacity and ensures that
it works well within the acceptable Service Level Agreements.

API| Performance Testing

Performance testing is done to evaluate APl performance and system capacity under expected
traffic/load. It helps to identify performance bottlenecks under unusual traffic. Some of the essential
information regarding API performance testing is provided below,

e Types of APIs tested — REST, SOAP

e Types of APl performance tests - Smoke, Load, Stress, Spike, Endurance

e Tools used for API testing - Postman, SoapUl, Apache JMeter, LoadRunner, Gatling

Performance Testing using Postman

The performance testing feature in Postman is designed to test the APl endpoints under varying loads and
to assess how well the APIs handle different loads. Accordingly, potential performance bottlenecks in API
can be identified and performance-tuning recommendations can be provided by the performance team.
It helps to optimize and enhance the overall API performance.

Q Testing
Ternplates that help you keep your API's performance, quality, and stability in check

All templates

Recommended

Roles

sl

Integration testing

Verify if your APIs work as

e

Regression testing

Check if your API continues to

i

Performance testing

Set up performance tests and

identify potential bottlenecks o

Backend Developers expected work as expected after introducing r
changes or updates issues with your APIs.
Frontend Developers
Fullstack Developers
Quality Engineers
) QO ar
=l a D)

Use cases

API basics

Developer productivity

Documentation

Infrastructure

Security

Testing

Currently, the load profile feature in the tool enables testers to execute performance tests with fixed,
ramp up, spike, and peak loads. The data file feature enables the testers to use the dataset file required

Run collection with data file

Test your requests with multiple

values in a single run

]

Response shapshot testing

Verify if your API responses are

consistent and reliable.

to load test APl with different data sets in each iteration.

Run order

Deselect All Select

All

Performance

Functional

Generate fake test data

Generate sample data that you can

use to test your API extensively.

oer Langerquery, pacams Test how your APIs perform under load X
GET Small query params Simulate real-world traffic from your local machine and observe the
performance of your APIs. Learn more about performance testing #
Set up your performance test
Load profile ©® Virtual users @ Test duration
Peak v 10 10 mins
Fixed
S 8 S
Ramp up
Spike
 Peak
0 10 mins

Base load @

2

Data file @ FEATURE TRIAL

Select file

Test Monitoring

Load test execution can be monitored in real-time through the Postman Summary tab. A summary of
performance metrics is available in tabular and graphical format and includes test duration, virtual user
count, the total request count, requests/second, average response time, and errors of APIs.

OpenAl, Mar 04, 2024 14:40:47 (#1) INPROGRESS — m

Globals (=) Performance - 5 VU - 5mins - Peak - data_file.csv

Summary Errors

Performance (V]
Total requests sent @ Requests/second @ Avg. response time @ Error rate ©
998 393 137 ms 0.00 %
Reset Get_Models v Avg. response v
80 300

250
60

200
40 150

Performance details for total duration

Request Total requests Requests/s Resp. time (Avg. ms) Min (ms) Max (ms) 90th (ms)
GET Get_Models 499 1.96 161 127 571 179
GET Get_Specific_Model 499 196 13 95 504 132

Test summary will be displayed after execution in the Summary tab as shown below.

OpenAl - APl Performance Test, Mar 04, 2024 17:19:18 (#2) £ Share ove
10 VU - 10 mins - Peak - data_file.csv

Summary Errors

Total requests sent @ Requests/second () Avg. response time @ Error rate @
3,550 5.85 156 ms 0.03%
Filter by requests Avg.response v
% 100 633 ms
90
80 500
70
80 400
50 200
40
30 200
20
100
10
o o
17:19:20 17:20:21 17:21:22 17:22:23 172324 17:24:25 172526 17:26:27 17:27:28 17:28:29
Reguests/second == Avg.response == Errorrate Virtual users

Performance details for total duration

Request Total requests Requests/s Resp. time (Avg. ms) Min (ms) Max (ms) 90th (ms) Error %

GET Get_Models 1775 292 181 130 7316 185 0.06 '

Test Report

Reports are generated after test execution and can be downloaded in pdf or html format. Test dashboard
details can also be shared as a link.

Performance test report - Mar 4, 2024 (#2)

Postman collection: OpenAl - API Performance Test
Report exported on: Mar 4, 2024, 17:35:33 (PST)

Test setup

Virtual users Start time Load profile
10 VU Mar 4, 17:19:19 (PST) Peak
Duration End time Environment
10 minutes Mar 4, 17:29:26 (PST) =

1. Summary

Total requests sent Throughput Average response time Error rate
3,550 5.85 requests/second 156 ms 0.03 %

2. Metrics for each request

The requests are shown in the order thev were sent by virtual users.

Total Min 90th Max
Request requests Requests/s (ms) Avg (ms) (ms) (ms) Error %
GeT Get_Models 1775 2.92 130 191 195 7,316 0.06
https:/fapi.openai.com/v1/models
GET Get_Specific_Model 1,775 2.92 95 122 123 7,290 0]

https:/fapi.openai.com/v1/models/{{model_name}}

Details of each performance metric are also available in the test report. Transaction response time and
throughput are displayed in graphical format, while the top 5 requests with the slowest response times
and errors are displayed in tabular format.

1.1 Response time

Response time trends during the test duration.

vu 10 8000 ms
: 7000
7 6000
& 5000
5 4000
4 N 3000
g / N\ 2000
1 / N 1000
o — = (8]
17:19:20 17:20:20 17:21:20 17:22:20 17:23:20 17:24:20 17:25:20 17:26:20 17:27:20 17:28:20 17:29:20
Virtual users @ Avg. response time 90th percentile @ 95th percentile @ 99th percentile
1.2 Throughput
Rate of requests sent per second during the test duration.
vu 10
9 .
8 i N
7 . s .
6 A N .
5 £ 5
4 > ~ -
5 o .
2 4 .
D — . . S -
0~ -~
17:19:20 17:20:20 17:21:20 17:22:20 17:23:20 17:24:20 17:25:20 17:26:20 17:27:20 17:28:20 17:29:20

Virtual users @ Throughput

1.3 Requests with slowest response times

Top 5 slowest requests based on their average response times.

Resp. time (Avg 90th 95th 99th 3 Max
Request ms) (ms) (ms) (ms) Min (ms) (ms)
GET Get_Models 191 195 250 580 130 7,316
https://api.openai.com/v1/models
GET Get_Specific_Model 122 123 134 195 95 7,290
https://api.openai.com/vi1/models/{{model_name}}
1.4 Requests with most errors
Top 5 requests with the most errors, along with the most frequently occurring errors for each request.
Total error Other
Request count Error1 Error 2 Pt]
GET Get_Models 1 ECONNRESET = 0

M

https://api.openai.com/vi/models

Error Analysis

Detailed error analysis is available in the Errors tab and provides information about the API name, error
class, error code, number of errors, and data set that caused the error. The error code and error class help
testers easily identify the root cause of the error, whether it is an issue caused by incorrect data or a code
error. In case of a data issue, the ability to view the request and response of the specific error request in
the Error tab is very beneficial. It helps to pinpoint the exact data that caused the error during execution.

Summary Errors

Error rate (O Errored requests [Total requests sent Top error (O Top request with errors

0.03 % 1/ 3,550 ECONNRESET GeT Get_Models

Filter by requests v

Errored requests

0
17:19:20 17:20:21 17:21:22 17:22:23 17:23:24 172425 17:25:26 17:26:27 17:27:28 17:28:29

GET Get_Models X
https://api.openai.com/vl/models

Error Class Total Counts

~ ECONNRESET 1
Data used from row 2 of data_file.csv

GET Get_Models 1 Response Headers Request

~ General

URL: https://api.openai.com/vl/models
Method: GET

Closing Thoughts

The Postman tool provides options to develop and test different aspects of API efficiently. The tool enables
team members to collaborate in team workspaces to develop and test different aspects of APl. To sum
up, the performance testing capability introduced in the Postman is a valuable feature that enhances the
overall scalability feature of API. It provides an option to reuse existing API collections for performance
testing with minimal effort. From a testing tool standpoint, there is still scope for improvement in terms
of features and capabilities.

Beneficial Aspects

The performance test team can use the API collections created by the development or functional
testing team as a base and make necessary modifications. It would reduce the overall scripting
effort and time taken in the project.

The capability to test with 100 virtual users even in the Postman Free plan is very beneficial for
small projects with budget and resource constraints.

The test reports available in shareable PDF and HTML formats help in easy test reporting and
analysis.

Areas of Improvement

Timer features to manage the frequency of requests based on test requirements and sleep time
optiontointroduce a delay between the requests to emulate real-world scenarios are unavailable,
unlike other load-testing tools.

The test scenario can have only one data file, which is an unlikely scenario in load testing.
Normally, load test scenarios have multiple data set files and require options to control and
format the data.

References
https://www.postman.com/product/what-is-postman/

https://learning.postman.com/docs/introduction/overview/

https://www.postman.com/product/what-is-postman/
https://learning.postman.com/docs/introduction/overview/

