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Abstract—Animal running has been studied for a long time,
but until now robots cannot repeat the same movements with
energy efficiency close to animals. There are many controllers for
controlling the movement of four-legged robots. The most popular
is the Convex MPC. This paper presents a bioinspirational
approach to increasing the energy efficiency of the state-of-the-
art Convex MPC controller. This approach is to set a reference
trajectory for the Convex MPC in the form of a SLIP model.
This model describes the movements of animals when running.
Adding a SLIP trajectory increases the energy efficiency of the
Pronk gait by 15 percent at a speed of 1 m/s.

Index Terms—quadruped, model predictive control, spring-
loaded inverted pendulum, bioinspiration, energy efficiency

I. INTRODUCTION

The field in the management of four-legged robots is
actively developing. Starting with Raibert [1], there is a desire
to imitate four-legged animals in movement, and in particular
to provide dynamic walking.

Raibert made dynamic walking possible thanks to the spe-
cial design of the jumping robot, whose movement was similar
to the model of a spring inverted pendulum (SLIP), and very
simple control. However, the robot had low maneuverability,
robustness, speed, and limited reproduction of gait types.

To solve these problems, more complex designs have been
developed for working with electric drives: Cheetah 3, Mini
Cheetah, ANYmal. But along with the capabilities, the com-
plexity in managing four-legged robots has also increased.

The main goal in controlling four-legged robots (Fig. 1) is
to calculate the positions of the paws p = (x, y, z) and the
reaction forces of the support f at the moment of contact to
achieve a given type of movement (walking, trot, gallop) at a
given speed.

For static walking (there are always at least 3 legs in
contact), it is enough to solve the optimization problem once,
without predicting the behavior of the robot at the next
moment in time. Commonly, these controllers are based on the
solution of the Quadratic Programming problem. For instance,
Whole Body Control [3].

For dynamic walking, it becomes necessary to predict the
behavior of the robot several steps ahead. These controllers
are based on Model Predictive Control (MPC).

One of the most popular controllers for controlling the
movement of four-legged robots is the Convex Model Pre-

dictive Control (cMPC) [4], which is the central algorithm of
many MIT works. In this controller, an optimization problem is
formulated with a simplified linear model of the robot (Linear
Rigid Body). The control inputs are the ground reaction forces
set by each foot. The positions of the paws are set in advance
by a simplified algorithm using the Raibert heuristic.

In Regulated Predictive Control (RPC) [5] MPC calculates
not only the ground reaction forces but also the positions of
the paws. Because of this, MPC is formulated as nonlinear
and therefore a set of local minima appears, which signifi-
cantly complicates calculations. To reduce the number of local
minima, regularization with heuristics is added.

RPC was implemented on Cheetah 3 [6], and a framework
for finding heuristics was also developed [7]. More details can
be found in the Phd thesis [8].

All these controllers operate at a frequency of about 40
Hz, which is not enough for locomotion at high speeds. For
example, when moving at a gallop, the controller calculates
the reaction forces of the support only 4 times per contact.

To increase stability, a Whole Body Impulse Control
(WBIC) has been developed [9], which operates at a frequency
of 500 Hz. The essence of the algorithm is the relaxation of
the found MPC ground reaction forces. This controller allowed
to increase the maximum speed of the quadruped robot Mini
Cheetah from 2.45 m/s to 3.7 m/s.

The paper [10] presents an algorithm based on RPC and
WBIC with the addition of computer vision for detecting and
avoiding obstacles.

Computer vision is also added [11] using cMPC and WBIC.
And as a development, Depth-based Impulse Control (DIC)
appears [12].

The paper [13] provides an algorithm for generating the
type of gaits adaptively, rather than rigidly setting timings as
before.

MPC is resource-demanding and usually slow. In [14], the
author replaces MPC with a neural network, training it based
on MPC, which allows running the controller on robots with
an on-board computer with small computing capabilities.

Animal imitation is one of the main incentives in legged
robotics. Today, there are works on the imitation of animals
by robots using neural networks [15].



There is a well-known template describing the running
of animals, Spring-Loaded Inverted Pendulum (SLIP). This
template is still widely used today. For example, in [16] the
author uses a SLIP model to train a complex bipedal robot
Cassie to walk and run. In [17], a simple SLIP model and a
Full-model are combined to reduce the MPC calculation time.

This work focuses on setting the trajectory for the Convex
MPC [4] as a SLIP model so that the robot moves similarly
to real animals. This will increase energy efficiency with
locomotion.

In the original controller, z of CoM is constant, and the z
speed is zero. The controller stabilizes the height of the robot
upon contact, which is a braking element when running.

Fig. 1. Model of a quadruped robot [2].

II. MODEL PREDICTIVE CONTROL

Let’s briefly describe the controller [4]. The model in the
MPC controller [4] is a simplified, linear Space Potato.

The robot’s orientation is expressed as a vector of Z-Y-X
Euler angles [18] Θ =

[
ϕ θ ψ

]T
where ψ is the yaw, θ

is the pitch, and ϕ is the roll.
The robot’s position is expressed as a p ∈ R3. The control

inputs are the ground reaction forces fi. For each ground
reaction force fi ∈ R3, the vector from the center of mass
(COM) to the point where the force is applied is ri ∈ R3.

GI and BI are the inertia tensor seen from the global and
local (body) frame, respectively, such as

GI ≈ Rz(ψ)BIRz(ψ)
⊤, (1)

where Rz(ψ) is a rotation matrix translating angular velocity
in the global frame.

The discrete dynamics of the system can be expressed as

x(k + 1) = Akx(k) +Bk f̂(k) + ĝ (2)

where,

x =
[
Θ⊤ p⊤ ω⊤ ṗ⊤

]⊤
f̂ =

[
f1 · · · fn

]⊤
,

ĝ =
[
01×3 01×3 01×3 g⊤ ]⊤

,

A =


13×3 03×3 Rz (ψk)∆t 03×3

03×3 13×3 03×3 13×3∆t
03×3 03×3 13×3 03×3

03×3 03×3 03×3 13×3

 ,

B =


03×3 · · · 03×3

03×3 · · · 03×3

GI
−1 [r1]× ∆t · · · GI

−1 [rn]× ∆t
13×3∆t/m · · · 13×3∆t/m


The MPC formulated as a QP, which minimizes

min
x,f

m∑
k=0

∥∥x(k + 1)− xref(k + 1)
∥∥
Q
+ ∥f(k)∥R (3)

subject to dynamics and initial condition constraints.
In the original, xref is set by the velocity in x, y, rate roll,

and constant z. In this work, the trajectory is formulated by
z, ż from the SLIP model.

III. SPRING-LOADED INVERTED PENDULUM TRAJECTORY

At the abstract level, the robot body can be represented as
a SLIP model (Fig. 2) with mass m, spring stiffness k, spring
length l, the resting length of the spring l0.

Then COM will be described by the SLIP model as[
ml̈

ml2θ̈

]
=

[
mlθ̇2 − k (l − l0)−mg cos θ

−2mlθ̇ +mgl sin θ

]
(4)

Since in the cMPC controller the greatest braking effect
when running occurs along the z axis, let’s take only this part
of (4).

Let’s take into account that the angle θ when running is not
so large, so it can be ignored and take l = z.

Then the dynamics along the z axis will have the form

mz̈ = −mg + k(z0 − z) (5)

We can formulate the dynamic (5) into a state space
equation as,

Ż =

[
0 1

−ω2
z 0

]
Z +

[
0
ω2
z

](
z0 −

g

ω2
z

)
, (6)

where the states of CoM in vertical direction are defined as
Z = [z, ż]T , and we define ωz =

√
k
m . Further, we can denote

z0− g
ω2

z
as uz , and (5) can be written into a linear state space

equation as,

Ż =

[
0 1

−ω2
z 0

]
Z +

[
0
ω2
z

]
uz (7)

We discretize (7) with sampling time ∆t and can obtain

Zk+1 = Az (∆t)Zk +Bz (∆t)uz,k (8)

where,

Az =

[
cos (ωz∆t) sin (ωz∆t) /ω

−ωz · sin (ωz∆t) cos (ωz∆t)

]
Bz =

[
1− cos (ωz∆t)
ωz · sin (ωz∆t)

]
Initial conditions Z0 is taken at each contact with the surface

during the jump.



Fig. 2. The Spring-Loaded Inverted Pendulum (SLIP) model.

IV. RESULTS

This approach was tested in the Pybullet simulator with a
model of a four-legged Unitree A1 robot with a pronk gait.
The stiffness was taken k = 4000, the mass m = 11 kg.

Fig. 3 shows the results without SLIP trajectory. With pronk
gait at a speed of 1m/s, the energy efficiency value COT =
1.27.

Fig. 4 shows the results with SLIP trajectory. With pronk
gait at a speed of 1m/s, the energy efficiency value COT =
1.10. The peak ground reaction forces decreased from 17 to
15.

The desired trajectory is not fully tracked, but it still gives
an increase in energy efficiency of 15 percent.

Fig. 3. Results of pronk running at a speed 1 m/s without SLIP trajectory in
vertical directory.

V. CONCLUSION AND DISCUSSION

Despite the fact that MPC does not fully track the trajectory
in vertical direction, the energy efficiency of running has
increased by 15 percent.

Since the dynamics in the vertical direction is very fast,
we can try to set this trajectory in the MPC itself on the

Fig. 4. Results of pronk running at a speed 1 m/s with SLIP trajectory in
vertical directory.

prediction horizon. This can increase the accuracy of tracking
the trajectory.

In future work, we plan to experiment with other gaits and
implement this approach on the Unitree A1 robot.
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