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Abstract. Detecting and tracking vehicles in urban scenes is a crucial
step in many traffic-related applications as it helps to improve road user
safety among other benefits. Various challenges remain unresolved in
multi-object tracking (MOT) including target information description,
long-term occlusions and fast motion. We propose a multi-vehicle detec-
tion and tracking system following the tracking-by-detection paradigm
that tackles the previously mentioned challenges. Our MOT method ex-
tends an Intersection-over-Union (IOU)-based tracker with vehicle re-
identification features. This allows us to utilize appearance information
to better match objects after long occlusion phases and/or when object
location is significantly shifted due to fast motion. We outperform our
baseline MOT method on the UA-DETRAC benchmark while maintain-
ing a total processing speed suitable for online use cases.

Keywords: Multi-object tracking · Tracking-by-detection · Object re-
identification.

1 Introduction

In smart cities, intelligent transportation systems that rely on cameras and other
sensors play a critical role in ensuring road users safety. Autonomous vehicles,
for example, require superior computer vision algorithms to comprehend their
surroundings and to have the ability to interact with them. In order to navi-
gate between two points, they must be able to recognize road signs, traffic sig-
nals, people, and automobiles. Detecting traffic violations and managing parking
spaces are illustrations of other applications. Automated parking management,
for example, necessitates recognizing when vehicles enter the parking area and
following their path until they reach the parking place. This aids in saving ex-
penses and eliminating manual work. The ability to describe a vehicle trajectory
is also important for the user’s safety because it tracks their movement and, as
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a result, can detect how it interacts with surrounding moving objects in order to
avoid crashes. Therefore, video monitoring has several advantages for both road
users and those in charge of them.

When tracking vehicles, a surveillance system can offer information about
an object category, location, and trajectory utilizing multi-target detection and
tracking algorithms. We aim to develop a method to detect and track multiple
vehicles in single-camera views in an online use case. We also tackle challenges
like motion-related displacements and long-term occlusions.

To solve this, there are numerous approaches to this problem, which we review
in section 2. We approach this problem from a tracking-by-detection perspective,
in which detection and tracking are performed in two steps. The first task, known
as multi-object detection, identifies and locates vehicles in a video frame. Multi-
object tracking is the next phase, which assigns unique identifiers to detected
objects, extracts information describing them, and connects detections in each
frame to create trajectories.

Within this approach, some methods use the IOU metric to match detections
through time by measuring the overlap between candidate bounding boxes [1, 2,
17]. The main appeal of this approach is its low execution time. These methods
can process a high number of frames per second making them well suited for real-
time or online use cases. Yet there is still room for improvement by incorporating
other types of features to describe the candidate objects. Therefore, in our work,
we build upon V-IOU [2] and add an appearance feature component from a
vehicle re-identification model [3] thus yielding more robust results in challenging
scenes with large displacements due to fast motion and long-term occlusions.

Our contributions in this work are the following:

– Performance improvement in terms of multi-object tracking metrics by ex-
tending data association with re-identification features.

– Online/fast end-to-end detection and tracking achieved through the choice
of models as well as the design of the data association step.

2 Background and Related Works

Challenges in MOT

Multi-object tracking is an active topic in computer vision research, owing to
the numerous challenges it presents. A tracking model faces difficulties due to
potential crossing tracks, which can alter identities or produce gaps in tracks,
similar to how a human struggles to keep track of multiple things in a video
sequence. The following are some of the most significant issues encountered:

– Occlusion: Another target or a background item can partially or completely
obscure a target’s view. During the occlusion phase, the object features be-
come erroneous or outdated. The features of the front target interfere with
those of the occluded target when partial occlusion is used. Full occlusion,
on the other hand, renders the features of the target irreversible.
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– Fast motion: When an object moves at a high speed in a video, its position
changes notably between frames. As a result, spatial data about a target
becomes unreliable. Fast movement can also lead to motion blur, causing
appearance descriptors to be inaccurate.

– Scale changes: When a target travels closer or further away from the cam-
era, its scale changes, and its size changes as well. As a result, the tracking
technique must react to these changes and update the target bounding box
in order to prevent losing information about the whole object or accidentally
adding background data.

– Illumination variations: Changes in illumination surrounding the targets,
such as those caused by the weather, might affect the look of the objects.
A hazy sky or a night setting may also drastically alter the appearance of
objects. In the dark, for example, a vehicle headlights seem like spotlights on
the camera, preventing it from properly capturing the vehicle. These flaws
make tracking more difficult and make identity switches more frequent.

– Target similarity: Because of the significant resemblance in appearance,
tracking several items of the same category increases the complexity of the
task. This makes distinguishing between two or more targets and maintaining
their individual identities difficult.

Object detection algorithms have improved dramatically in recent years ow-
ing to advances in deep learning and sophisticated CNN architectures [7–11]. To
take advantage of the excellent detection results, the majority of top-performing
MOT techniques employ the tracking-by-detection approach. In this method, an
object detector is applied to each frame, and the MOT method is then used to
find the best match between objects.

As opposed to batch tracking methods like IHTLS [12], revisited JPDA [13]
and GOG [14], which process a number of frames or a whole video sequence
before giving results, online MOT techniques process one frame at a time without
having visibility or knowledge about future frames. As a result, online MOT
techniques are more naturally suited to real-time systems, yet not all online
MOT algorithms are real-time. Due to access to information from previous and
future frames, offline MOT techniques naturally perform better in terms of MOT
performance measures. Offline techniques can use this information to link/fill
gaps in fragmented tracks, for example. Consequently, online MOT is a more
difficult task by definition.

Optimization approaches

Detection-based tracking method frequently present the following four compo-
nents: object detection, object state propagation, data association, and track
lifespan management. SORT [17], an early online tracking method, proposed
a simple approach for enhancing frame-to-frame association. They accomplish
so by employing the Faster R-CNN object detection model, then modeling the
target state by spatial and motion information. The IOU metric is used to asso-
ciate detections to tracks by measuring the amount of overlap between bounding
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boxes. When a match is made, the target state is updated using the detection
information and a Kalman [15] motion model. The Hungarian algorithm [16] is
applied to solve the cost matrix computed with the IOU scores, with a minimum
overlap threshold to select assignments. While this approach has been reported
to analyze video sequences at a speed of up to 260 frames per second (FPS), it
struggles with long-term occlusions, resulting in an increase in the number of ID
change errors. DeepSORT [18] was later proposed as an improvement by adding
appearance information extracted from a person re-identification (ReID) model.
This combination of spatial cues from the IOU score and the ReID features, give
results in terms of tracking metrics that are more robust.

Similarly to SORT, the data association component of the IOU tracker [1]
is reduced to a simple IOU between detected bounding boxes in frame pairs.
The authors argue that having strong high-accuracy detections enables for sim-
pler tracking techniques to reach greater processing rates while still competing
with more complex MOT approaches in terms of tracking performance, with-
out relying on visual or motion characteristics. Yet, a small number of missed
detections can dramatically increase the number of ID switches and fragmenta-
tion errors. Hence, the IOU tracker was improved later by adding visual object
tracking in V-IOU [2]. Forward visual tracking predicts a target location when
detections are not matched, for a fixed number frames TTL (time to live). When
new tracks are created, backward visual tracking is used to see if they can be
linked to previously terminated tracks. V-IOU tracker achieves a good trade-off
between speed and tracking performance with inference speeds of over 200 FPS,
thus maintaining its primary selling feature. However, this technique does not
include appearance elements for full occlusion circumstances when the visual
tracker fails, therefore there is still space for development. The IOU-based as-
sociation cost is also greatly affected by displacements caused by fast motion.
When an item travels quickly between two frames, the bounding boxes may be
widely apart, resulting in little or no overlap. This lowers the IOU score which
in turn raises the association cost, making it impossible to link the boxes even
if they represent the same target.

Neural network approaches

While previous approaches represented data association as an optimization prob-
lem, works like DAN [19] and DMAN [20] use end-to-end neural networks to
tackle the challenge. DAN (Deep Affinity Network) learns the appearance cues
of objects and their affinities at different abstraction levels and then computes
correlations between pairs of features vectors. DMAN (Dual Matching Attention
Networks) proposes the use of a cost-sensitive loss function, as well as temporal
and spatial attentions, in a single object tracker for each candidate detection
in a frame. While these methods achieve comparable performances with top
performers on some MOT benchmarks, they significantly compromise on speed,
with around 6 FPS for DAN and 0.3 FPS for DMAN.

Recurrent neural networks are also used in other works [21, 22] to describe
temporal relationships between targets. Recurrent networks are used to combine
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detections into tracks based on different features (spatial, appearance or motion
cues). The initial findings in [21] reveal that this technique has a significant rate
of false positives and ID switches, thus the authors recommend using ReID cues
for occluded objects.

Braso et al. [23] suggested a graph-based method that makes use of the MOT
usual network flow. Instead of estimating pairwise costs, the neural solver for
the MOT approach learns to predict final trajectories directly from graphs. To
accomplish so, a message passing network (MPN) that employs appearance and
geometry characteristics is used to train on the MOT graph domain. Lee et al.
suggested FPSN [24], or Feature Pyramid Siamese Network, that employed a Fea-
ture Pyramid Network to extract target features from multiple levels, resulting
in a multi-level discriminative feature. FPSN-MOT adds spatio-temporal mo-
tion characteristics to address the absence of motion information in traditional
Siamese networks. Osep et al. presented Track, then Decide: Category-Agnostic
Vision-based Multi-Object Tracking [25], a tracking by segmentation approach
based on pixel-level information. To create object segmentations, this technique
is model-free and employs category-agnostic picture segmentation. Objects are
then tracked by using semantic information to conduct mask-based association
on pixels.

3 Proposed Solution

We present the approaches we used for both the object detection and multiple
object tracking components of our system in this section. An overview of our
tracker is presented in Figure 1.

This work focuses on identifying vehicles in surveillance video sequences,
then assigning unique IDs to each target and keeping track of them throughout
the video stream. Given the good performance of such approaches in terms of
MOT metrics and speed on numerous MOT challenges and benchmarks, as well
as their modularity/adaptability to diverse applications, we chose a tracking-
by-detection scheme to solve this problem. This means that our work is built
around two key components: an object detection model for predicting vehicle
locations and a multi-object tracker for linking detections across frames.

Object detection

We focused on selecting a model that can identify vehicles in urban scenes with
a variety of constraints, such as occlusions and changing weather. As a result
of these difficulties, object detection is a difficult task that necessitates ongoing
study and the usage of relevant datasets tailored to the application. Our work
confirms the idea that robust object detection, which enables effective object
localization in difficult settings, is critical to the object tracking method overall
performance.

For a good balance of speed and precision, we chose SpotNet [11] as our
vehicle detection model to recognize vehicles in video frames. Perreault et al. have
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Fig. 1. Overall pipeline: (a) Our method takes as input RGB video frames. (b) Our
detector of choice SpotNet [11] generates candidate detections (bounding boxes, class
labels and confidences) in each frame. (c) Detections are then passed to both the feature
extractor and the association step. (d) Association costs are computed using the cosine
similarity for each pair of ReID feature vectors and the IOU scores between bounding
boxes. Visual object tracking is also employed forward and backward for unmatched
tracks. (e) The final output is the established trajectories with their unique IDs.

proposed a model that utilises a CNN backbone, regression, and segmentation
heads to create a simple and efficient detector. This model uses a dual Hourglass
network composed of down-sampling and up-sampling layers to construct a rich
feature map. The inclusion of a self-attention mechanism in this detector is
its novelty, represented by multi-task learning, with object segmentation being
learned as an additional task to guide the model. The segmentation branch
was trained with semi-supervised segmentations obtained using PAWCS [27] for
background subtraction for fixed camera configurations, and Farneback optical
flow [28] for moving camera settings. On two object detection benchmarks with
traffic scenarios, SpotNet outperformed the competition.

Base MOT method

We build on the V-IOU tracker [2] that follows the tracking-by-detection scheme
in which the tracking method input is the object detection model bounding
boxes, which supports our choice of a robust detector. This technique, like its
predecessor [1], uses the IOU metric to assess the degree of overlap between
previously detected bounding boxes and the predicted bounding boxes in the
current frame to connect detections between frames. Then, it solves a linear
assignment problem with a configurable minimum IOU threshold σIOU . When
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no association is detected, it reverts to visual object tracking to predict the
next locations of a target within a time window defined by a parameter TTL,
both forward and backward. We resort to MedianFlow [33] in our pipeline to
temporarily track each unmatched target. The authors’ findings show that V-
IOU lowers fragmentation and ID switch rates compared to the base IOU tracker.
However, this model has two flaws: it generates a moderately high number of
false positives, which is likely due to the visual object tracker predictions, and
it only uses spatial information from bounding boxes to make the association,
which suggests a vulnerability in urban settings where vehicle appearances can
change after being occluded.

Proposed ReID extension

To address the problems above, we extend the matching process of the chosen
V-IOU tracker with information characterizing the vehicle visual appearance to
deal with long-term occlusions and large spatial displacements due to fast motion
in order to develop a more efficient and robust MOT system. By minimizing
fragmentation and ID switches, appearance cues have been shown to increase
association outcomes.

Particularly, we chose to enhance the data association component of our
MOT technique with vehicle ReID elements based on Miah et al.’s comprehen-
sive analysis of different appearance features for MOT in urban scenarios [30].
We utilize the feature extraction module from [3], which has been trained on
three vehicle ReID datasets. The CNN feature extractor is trained using Triplet
loss and cross-entropy loss on a ResNet [31] architecture with 50 layers. When
training using classification annotations, cross-entropy was utilized so that the
CNN could learn to minimize the classification loss amongst vehicle models, re-
sulting in the acquisition of robust discriminative features. An adaptive feature
learning approach presented in the same publication is also used to fine-tune the
feature extraction model. From unlabeled video sequences, this method tries to
extract positive and training examples to better adapt the visual domain to test
sequences.

We include the ReID feature in our tracker in the following way. Vehicle
bounding boxes are output from the object detector and supplied to the feature
extractor model, which generates feature vectors of size 2048 describing object
appearances, as well as to the MOT method, which performs the data association
step. Our new cost function is as follows:

cost(di, tj) = 1 − α ∗ IOU(di, tj) − β ∗ cosine(Rdi , Rtj ) (1)

for a detection di and a track tj , with Rdi
, Rtj respectively their 2048-

dimensional ReID feature vectors, and α + β = 1. The association cost of the
bounding boxes is evaluated with the IOU, while the ReID feature vectors are
compared with the cosine similarity.

While visual object tracking can aid with short-term occlusions, ReID fea-
tures are invariant to viewing angle and orientation change problems since they
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are derived from a CNN trained on numerous pictures of the same item with var-
ied orientations and illumination conditions. The new association function will
compute the spatial and appearance similarity between the anticipated bounding
boxes and candidate detections when an item is occluded for a long duration.
As a result, the object is more likely to be recovered after longer occlusions
when utilizing the ReID model rather than simply employing IOU for matching.
The anticipated locations and candidate detections would be far apart in cases
where the vehicles travel at comparatively higher speeds, resulting in an IOU
score near to zero. Because it helps minimize association costs, the ReID exten-
sion plays a key role in enhancing the chance of accurately matching predictions
to detections in rapid motion scenarios. Backward predictions are also matched
to terminated tracks using ReID vectors to generate more cohesive trajectories
with fewer gaps. Finally, mismatched detections start new tracks, which are vi-
sually monitored until they are linked to fresh detections in the following TTL
frames, at which point they are terminated. Tracks shorter than tmin are also
eliminated. We include a custom cosine similarity function written in Python
and accelerated using a package called Numba to keep the overall processing
time of our system as low as feasible. This decreases the cosine affinity execution
time to about 1/36th when compared to a conventional implementation.

4 Results and Discussion

Dataset and evaluation

For all our fine-tuning and tests, we used the UA-DETRAC [29] dataset and
benchmark suite. It provides around 10 hours of video collected from real-world
traffic settings at a frame rate of 25 FPS and a 960 x 540 pixels resolution.
This results in more than 140,000 frames and a total of 1.21 million bounding
boxes from 8250 vehicles. This dataset presents 4 vehicle classes (Car, Bus, Van,
Other) and 4 weather conditions (Sunny, Cloudy, Rain, Night).

To examine the influence of the detection model on tracking, the evalua-
tion procedure of UA-DETRAC processes detection and tracking data for each
threshold in the range 0.0 to 1.0 with a step of 0.1. This implies that the
detections with confidence scores less than or equal to the current threshold
are chosen for each iteration, and the MOT technique is then assessed for this
subset. The benchmark proposes a set of metrics called DETRAC-MOT which
are PR-MOTA (MOT accuracy), PR-MOTP (MOT precision), PR-MT (mostly
tracked), PR-ML (mostly lost), PR-IDS (ID switches), PR-FM (fragmentation),
PR-FP (false positives) and PR-FN (false negatives). All of these metrics are
based on the detector precision-recall curve.

We fine-tuned our proposed MOT method on the UA-DETRAC train split
of 60 sequences. The best parameter values we obtained are:

σIOU : 0.6, α : 0.7, β : 0.3, TTL : 15 and tmin : 3
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Results

During our tests, we observed that SpotNet is rather safe with its confidence
scores. It rarely outputs confidences higher than 90%. So we multiplied the scores
for the top 50 detections per frame by 1.25 and clipped them to 100% to spread
out the confidence score distribution between 0 and 1 to be compatible with
the test procedure of UA-DETRAC. Finally, the results of our tracker shown in
Table 2 confirm that our proposed method outperforms our baseline on the UA-
DETRAC tracking benchmark, V-IOU with Mask R-CNN, particularly in terms
of PR-MOTP with a 13.9% increase. We also score a marginal improvement for
PR-MOTA with a 0.5% increase. Thus, we get state-of-the-art results of 31.2%
PR-MOTA and 50.9% PR-MOTP. While the base V-IOU method still has the
lead in terms of PR-MT, PR-IDS, PR-FM, we outperform it in terms of PR-
ML, PR-FP and PR-FN. Altogether, our method is more consistent and better
performing on most PR-MOT metrics. Our approach produces approximately
three times less false positives than V-IOU with Mask R-CNN. This illustrates
the considerable gain achieved by upgrading the object detector to SpotNet, a
far more robust model capable of handling a variety of demanding circumstances.
We also see a slight reduction in the number of false negatives.

On PR-ML, we see a noticeable improvement from 22.6 to 18.5. This measure
quantifies the proportion of ground truth tracks that are tracked 20% or less of
the time. This supports the concept that integrating visual object tracking with
ReID cues is a better method for improved trajectory maintenance, resulting
in more consistent tracks overall. Nonetheless, we leave opportunity for addi-
tional studies with alternative values to fine-tune the weights of the spatial and
appearance criteria α and β.

Table 1. DETRAC-MOT results on the UA-DETRAC test set with top 50 SpotNet
detections. Bold: best result in each metric. Results * taken from [29]. Results & taken
from [2]. Results # taken from [32]. The last line presents results of our method.

Detector Tracker
PR-

MOTA
PR-

MOTP
PR-
MT

PR-
ML

PR-
IDS

PR-
FM

PR-
FP

PR-
FN

DPM GOG* 5.5 28.2 4.1 27.7 1873.9 1988.5 38957.6 230126.6

EB KIOU* 21.1 28.6 21.9 17.6 462.2 712.1 19046.9 159178.3

M-RCNN V-IOU& 30.7 37.0 32.0 22.6 162.6 286.2 18046.2 179191.2

SpotNet
Kalman
+IOU#

30.6 42.7 - - 3634 - - -

SpotNet
V-IOU
+ReID

31.2 50.9 28.1 18.5 252.6 329.1 6036.4 170700.6

In Table 2, we give a more detailed view about the impact of each step
with an ablation study. When compared to utilizing SpotNet with the standard
version of V-IOU, adding the ReID features substantially reduces the frequency
of ID switches and fragmentation. Adding the ReID component results in the
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highest increase in PR-MOTA and PR-MOTP, while utilizing spotNet results in
the biggest improvement in PR-FP. Through the design of our cost function, we
interpret the gain in terms of PR-MOTP. Our cost is responsible for 30% of the
ReID feature similarity. The more we visually track an item using Medianflow
[33] in circumstances with relatively long occlusions, the more inaccuracies are
incorporated into the predicted boxes. As a result, IOU would assign low scores
between the anticipated vehicle position and candidate detections. By lowering
the association cost, the ReID scores will appropriately compensate for the IOU,
allowing our technique to fill gaps in trajectories. It also helps in a similar way
for detections that are spatially distant for smaller objects moving at fast speeds.
This would result in extremely short tracks of length one, which would be rejected
by the assessment process using the base V-IOU tracker. We can link these
detections despite the displacement when ReID features are implemented.

Table 2. Ablation study on the UA-DETRAC test set. Bold: best result in each metric.
Results & taken from [2].

Detector Tracker
PR-

MOTA
PR-

MOTP
PR-
MT

PR-
ML

PR-
IDS

PR-
FM

PR-
FP

PR-
FN

M-RCNN V-IOU& 30.7 37.0 32.0 22.6 162.6 286.2 18046.2 179191.2

SpotNet V-IOU 27.6 39.8 23.6 20.9 293.1 382.4 4783.9 194784.4

SpotNet
V-IOU
+ReID

31.2 50.9 28.1 18.5 252.6 329.1 6036.4 170700.6

Finally, we present the processing speed values for each component of our
system on the RTX 6000, with a detection threshold of 0.7. (yielding up to 20-25
candidates per frame). For the detection step, SpotNet can process up to 9 FPS,
while our V-IOU with ReID and cosine extension can process up to 60 FPS,
resulting in a total end-to-end speed of up to 6 FPS.

5 Conclusion

Our work adopts the popular tracking-by-detection paradigm to propose an
MOT method that combines spatial information with re-identification features
to track vehicles in urban scenes in online use cases. Our data association func-
tion design shows solid performance on the UA-DETRAC benchmark for long-
term occlusions and large shifts due to fast motion. This work enables further
improvement in terms of speed as well as adding more information to further
improvement tracking performance.
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