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1 Introduction

Let σ(z) denote the sum of the divisors of z ∈ N, the set of positive integers. Denote the
deficiency [5] of z by D(z) = 2z − σ(z), and the sum of the aliquot divisors [6] of z by
s(z) = σ(z)− z. Note that we have the identity D(z) + s(z) = z.

If n is odd and σ(n) = 2n, then n is said to be an odd perfect number [8]. Euler proved that
an odd perfect number, if one exists, must have the form n = pkm2, where p is the special prime
satisfying p ≡ k ≡ 1 (mod 4) and gcd(p,m) = 1.

Chen and Luo [2] gave a characterization of the forms of odd perfect numbers n = pkm2 such
that p ≡ k (mod 8). Starni [7] proved that there is no odd perfect number decomposable into
primes all of the type ≡ 1 (mod 4) if n = pkm2 and p ̸≡ k (mod 8). Starni used a congruence
from Ewell [3] to prove this result.
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Note that, in general, since m2 is a square, we get

σ(m2) ≡ 1 (mod 2).

This paper provides an alternative proof for Theorem 3.3, equation 3.1 in Chen and Luo’s
article titled “Odd multiperfect numbers” [2]:

Theorem 1.1. Let n = παM2 be an odd 2-perfect number, with π prime, gcd(π,M) = 1 and
π ≡ α ≡ 1 (mod 4). Then

σ(M2) ≡ 1 (mod 4) ⇐⇒ π ≡ α (mod 8).

The method presented in this paper may potentially be used to extend the arguments to con-
sider σ(m2) modulo 8.

2 Preliminaries

Starting from the fundamental equality

σ(m2)

pk
=

2m2

σ(pk)

(which follows from the facts that σ(n) = 2n, σ is multiplicative, and gcd(pk, σ(pk)) = 1) one
can derive

σ(m2)

pk
=

2m2

σ(pk)
= gcd(m2, σ(m2))

so that we ultimately have

D(m2)

s(pk)
=

2m2 − σ(m2)

σ(pk)− pk
= gcd(m2, σ(m2))

and
s(m2)

D(pk)/2
=

σ(m2)−m2

pk − σ(pk)
2

= gcd(m2, σ(m2)),

whereby we obtain
D(pk)D(m2)

s(pk)s(m2)
= 2.

Note that we also have the following equation:

2D(m2)s(m2)

D(pk)s(pk)
=

(
gcd(m2, σ(m2))

)2

. (∗)

Lastly, notice that we can easily get

σ(pk) ≡ k + 1 ≡ 2 (mod 4)

(since p ≡ k ≡ 1 (mod 4)) so that it remains to consider the possible equivalence classes for
σ(m2) modulo 4. Since σ(m2) is odd, we only need to consider two.

We ask: Which equivalence class of σ(m2) modulo 4 makes Equation (∗) untenable?
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3 Discussion and Results

We know that the answer to the question we posed in the previous section must somehow depend
on the equivalence class of p and k modulo 8, but as we only know that p ≡ k ≡ 1 (mod 4), we
need to consider the following cases separately and thereby prove the corresponding results:

Remark 3.1. Suppose that n = pkm2 is an odd perfect number with special prime p. We claim
the truth of the following propositions, which we will need to treat separately later:

1. If p ≡ k ≡ 1 (mod 8), then σ(m2) ≡ 3 (mod 4) is impossible.

2. If p ≡ 1 (mod 8) and k ≡ 5 (mod 8), then σ(m2) ≡ 1 (mod 4) is impossible.

3. If p ≡ 5 (mod 8) and k ≡ 1 (mod 8), then σ(m2) ≡ 1 (mod 4) is impossible.

4. If p ≡ k ≡ 5 (mod 8), then σ(m2) ≡ 3 (mod 4) is impossible.

First, we prove the following lemmas:

Lemma 3.2. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. If p ≡ 1 (mod 8), then σ(pk) ≡ k + 1 (mod 8).

2. If p ≡ 5 (mod 8) and k ≡ 1 (mod 8), then σ(pk) ≡ 6 (mod 8).

3. If p ≡ 5 (mod 8) and k ≡ 5 (mod 8), then σ(pk) ≡ 2 (mod 8).

Proof. Let n = pkm2 be an odd perfect number with special prime p. It follows that p ≡ 1

(mod 4).
We consider two cases:
Case 1: p ≡ 1 (mod 8) We obtain

σ(pk) =
k∑

i=0

pi ≡ 1 +
k∑

i=1

pi ≡ 1 +
k∑

i=1

1i ≡ k + 1 (mod 8),

as desired.
Case 2: p ≡ 5 (mod 8) We get

σ(pk) =
k∑

i=0

pi ≡
k∑

i=0

5i ≡

6 (mod 8), if k ≡ 1 (mod 8)

2 (mod 8), if k ≡ 5 (mod 8)

Lemma 3.3. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. If p ≡ 1 (mod 8) and k ≡ 1 (mod 8), then D(pk) ≡ 0 (mod 8).

2. If p ≡ 1 (mod 8) and k ≡ 5 (mod 8), then D(pk) ≡ 4 (mod 8).

3. If p ≡ 5 (mod 8) and k ≡ 1 (mod 8), then D(pk) ≡ 4 (mod 8).
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4. If p ≡ 5 (mod 8) and k ≡ 5 (mod 8), then D(pk) ≡ 0 (mod 8).

Proof. The proof is trivial and follows directly from Lemma 3.2, using the formula D(pk) =

2pk − σ(pk).

Lemma 3.4. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. If p ≡ 1 (mod 8) and k ≡ 1 (mod 8), then s(pk) ≡ 1 (mod 8).

2. If p ≡ 1 (mod 8) and k ≡ 5 (mod 8), then s(pk) ≡ 5 (mod 8).

3. If p ≡ 5 (mod 8) and k ≡ 1 (mod 8), then s(pk) ≡ 1 (mod 8).

4. If p ≡ 5 (mod 8) and k ≡ 5 (mod 8), then s(pk) ≡ 5 (mod 8).

Proof. The proof is trivial and follows directly from Lemma 3.3, using the formula s(pk) =

pk −D(pk).

Lemma 3.5. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. If σ(m2) ≡ 1 (mod 4), then D(m2) ≡ 1 (mod 4).

2. If σ(m2) ≡ 3 (mod 4), then D(m2) ≡ 3 (mod 4).

Proof. The proof is trivial and follows directly from the fact that m2 ≡ 1 (mod 4) (since m is
odd), using the underlying assumptions and the formula D(m2) = 2m2 − σ(m2).

Lemma 3.6. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. If σ(m2) ≡ 1 (mod 4), then s(m2) ≡ 0 (mod 4).

2. If σ(m2) ≡ 3 (mod 4), then s(m2) ≡ 2 (mod 4).

Proof. The proof is trivial and follows directly from Lemma 3.5, using the formula s(m2) =

m2 −D(m2).

We are now ready to prove our main result.

Theorem 3.7. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. If p ≡ k ≡ 1 (mod 8), then σ(m2) ≡ 3 (mod 4) is impossible.

2. If p ≡ 1 (mod 8) and k ≡ 5 (mod 8), then σ(m2) ≡ 1 (mod 4) is impossible.

3. If p ≡ 5 (mod 8) and k ≡ 1 (mod 8), then σ(m2) ≡ 1 (mod 4) is impossible.

4. If p ≡ k ≡ 5 (mod 8), then σ(m2) ≡ 3 (mod 4) is impossible.
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Proof. Let n = pkm2 be an odd perfect number with special prime p.
Notice that the right-hand side of Equation (∗)

2D(m2)s(m2)

D(pk)s(pk)
=

(
gcd(m2, σ(m2))

)2

. (∗)

is odd. (Furthermore, it is congruent to 1 modulo 8.)
First, suppose that p ≡ k ≡ 1 (mod 8), and assume to the contrary that σ(m2) ≡ 3 (mod 4)

holds. By Lemma 3.3, D(pk) ≡ 0 (mod 8). By Lemma 3.5, D(m2) ≡ 3 (mod 4). By Lemma
3.4, s(pk) ≡ 1 (mod 8). By Lemma 3.6, s(m2) ≡ 2 (mod 4). Thus, from Equation (∗) we
obtain (symbolically)

2(4a1 + 3)(4b1 + 2) = (8x1 + 1)(8c1)(8d1 + 1)

which does not have any integer solutions.
Next, suppose that p ≡ 1 (mod 8) and k ≡ 5 (mod 8), and assume to the contrary that

σ(m2) ≡ 1 (mod 4) holds. By Lemma 3.3, D(pk) ≡ 4 (mod 8). By Lemma 3.5, D(m2) ≡ 1

(mod 4). By Lemma 3.4, s(pk) ≡ 5 (mod 8). By Lemma 3.6, s(m2) ≡ 0 (mod 4). Thus, from
Equation (∗) we obtain (symbolically)

2(4a2 + 1)(4b2) = (8x2 + 1)(8c2 + 4)(8d2 + 5)

which does not have any integer solutions.
Now, suppose that p ≡ 5 (mod 8) and k ≡ 1 (mod 8), and assume to the contrary that

σ(m2) ≡ 1 (mod 4) holds. By Lemma 3.3, D(pk) ≡ 4 (mod 8). By Lemma 3.5, D(m2) ≡ 1

(mod 4). By Lemma 3.4, s(pk) ≡ 1 (mod 8). By Lemma 3.6, s(m2) ≡ 0 (mod 4). Thus, from
Equation (∗) we obtain (symbolically)

2(4a3 + 1)(4b3) = (8x3 + 1)(8c3 + 4)(8d3 + 1)

which does not have any integer solutions.
Finally, suppose that p ≡ k ≡ 5 (mod 8), and assume to the contrary that σ(m2) ≡ 3

(mod 4) holds. By Lemma 3.3, D(pk) ≡ 0 (mod 8). By Lemma 3.5, D(m2) ≡ 3 (mod 4). By
Lemma 3.4, s(pk) ≡ 5 (mod 8). By Lemma 3.6, s(m2) ≡ 2 (mod 4). Thus, from Equation (∗)
we obtain (symbolically)

2(4a4 + 3)(4b4 + 2) = (8x4 + 1)(8c4)(8d4 + 5)

which does not have any integer solutions.
This concludes the proof.

Remark 3.8. To summarize, Theorem 3.7 just states that if n = pkm2 is an odd perfect number
with special prime p, then σ(m2) ≡ 1 (mod 4) holds if and only if p ≡ k (mod 8). Our argu-
ment provides an alternative proof for Theorem 3.3, equation 3.1 in [2] (as reproduced above in
Theorem 1.1).

5



4 An Application

Let n = pkm2 be an odd perfect number with special prime p, and let σ(m2)/pk be a square.
Since σ(m2)/pk is odd, it follows that σ(m2)/pk ≡ 1 (mod 4). But it is known that p ≡ k ≡ 1

(mod 4). In particular, we know that pk ≡ 1 (mod 4). This implies that σ(m2) ≡ 1 (mod 4), if
σ(m2)/pk is a square. By Theorem 3.7, we know that p ≡ k (mod 8).

Moreover, Broughan, Delbourgo, and Zhou proved in [1] (Lemma 8, page 7) that if σ(m2)/pk

is a square, then k = 1 holds.
Thus, under the assumption that σ(m2)/pk is a square, we have

p ≡ k = 1 (mod 8).

This implies that the lowest possible value for the special prime p is 17.
We state this result as our next theorem.

Theorem 4.1. Suppose that n = pkm2 is an odd perfect number with special prime p. If
σ(m2)/pk is a square, then p ≥ 17.

Remark 4.2. Let n = pkm2 be an odd perfect number with special prime p.
Note that if

σ(m2)

pk
=

m2

σ(pk)/2

is a square, then k = 1 and σ(pk)/2 = (p+ 1)/2 is also a square.
The possible values for the special prime satisfying p < 100 and p ≡ 1 (mod 8) are 17, 41,

73, 89, and 97.
For each of these values:

p1 + 1

2
=

17 + 1

2
= 9 = 32.

p2 + 1

2
=

41 + 1

2
= 21 which is not a square.

p3 + 1

2
=

73 + 1

2
= 37 which is not a square.

p4 + 1

2
=

89 + 1

2
= 45 which is not a square.

p5 + 1

2
=

97 + 1

2
= 49 = 72.

A quick way to rule out 41, 73 and 89, as remarked by Ochem [4] over at Mathematics
StackExchange, is as follows: “If (p + 1)/2 is an odd square, then (p + 1)/2 ≡ 1 (mod 8), so
that p ≡ 1 (mod 16). This rules out 41, 73, and 89.”

5 Conclusion

Additional tools are required if we are to push the analysis from σ(m2) modulo 4 to consider
σ(m2) modulo 8. The authors have tried to check Equation (∗) by considering m2 ≡ 1 (mod 8),
and the various corresponding cases for σ(m2) modulo 8 (which are determined by Theorem 3.7),
but so far all their attempts have not resulted in any contradictions.
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