
EasyChair Preprint
№ 15569

Evaluating LLMs for Arabic Code Summarization:
Challenges and Insights from GPT-4

Ahmed Aljohani, Raed Alharbi, Asma Alkhaldi and Wajdi Aljedaani

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 13, 2024

Evaluating LLMs for Arabic Code Summarization: Challenges
and Insights from GPT-4

Ahmed Aljohani∗, Raed Alharbi†, Asma Alkhaldi‡, and Wajdi Aljedaani∗
∗University of North Texas, †Saudi Electronic University, ‡Saudi Data and Artificial Intelligence Authority

{ahmed.aljohani, wajdi.aljedaani}@unt.edu, ri.alharbi@seu.edu.sa, aakhaldi@sdaia.gov.sa

Abstract—GPT-4 —the backbone of ChatGPT—has demon-
strated remarkable performance in both natural language and
source code tasks. Recently, Large Language Models (LLMs)
like GPT-4 have significantly advanced software engineering tasks
such as code summarization. These advancements boost developer
productivity and help address often neglected tasks like code
documentation. While code summarization and commenting are
essential for maintaining code quality and facilitating commu-
nication among developers, writing comments manually is time-
consuming. Although several studies have proposed and evaluated
deep learning-based approaches and LLMs to automate comment
generation, these efforts primarily focus on the English language,
leaving a gap for other languages, particularly Arabic. In this
study, we evaluate the ability of GPT-4 to generate accurate
Arabic comments. We support our evaluation with both manual
and automatic analysis to measure the correctness and nature
of the generated comments. Our findings reveal that while GPT-
4 generally produces correct Arabic summaries, they often do
not align with the developer’s intent as reflected in the BERT-
Similarity, ROUGE and BLEU scores. We also show that GPT-
4’s comments are more verbose due to the morphological richness
of the Arabic language and a systematic approach that tends to
describe each code component in detail. Finally, the readability of
these comments is moderate, with scores ranging from 30.29 to
100.

Index Terms—GPT-4, LLMs, Code Summarization, Arabic
Language.

I. INTRODUCTION

Code summarization – known as comments [29], serves as
an essential bridge between human understanding and machine-
executable code. It provides context, rationale, and explanations
that are often not immediately obvious from the code itself [19],
[28]. Code comments enhance the readability and maintainabil-
ity of software by offering insights into the developer’s intent,
the functionality of complex algorithms, and potential pitfalls
or limitations within the code [7], which can significantly
reduce the time and effort required to debug, extend, or refactor
software. While source code comments are crucial, writing
them is often time-consuming and can be easily neglected by
developers [24]. The effort required to create clear and brief
comments, especially under tight deadlines, leads to prioritizing
coding over documentation.

Several studies [11], [17], [1] have proposed automatic code
summarization techniques based on deep learning-based to
facilitate comment generation. These techniques utilize pow-
erful generative models trained on large-scale code-comment
datasets to translate code snippets into natural language sum-
maries. Building on the success of pre-training and fine-tuning

CodeXGLUE

 Prompt:
یرجى إنشاء تعلیق قصیر في جملة واحدة للدالة التالیة:

Generated Arabic Summarization:

باستخدام ملف في الحالي الكائن بیانات بحفظ تقوم الوظیفة ھذه
مكتبة من

Ground-truth summarization

Extract ground-truth

Evaluation:

Code Only

Figure 1: Overall Approach

paradigms, code models like CodeBERT and CodeT5 [9], [27]
have been introduced to further enhance code-related tasks,
including code summarization. These models are first pre-
trained on general language tasks and then fine-tuned for code-
related tasks such as code summarization.

Recent research has also shown promising results of Large
Language Models (LLMs) like ChatGPT—based on GPT-3.5
and GPT-4—on code-related tasks [6], [15], [5]. For instance,
Sun et al. [24] demonstrated that ChatGPT can generate brief
and accurate code summarizations for a given prompt and
code snippets. The work highlights that ChatGPT is capable of
producing detailed and semantically rich comments compared
to models like CodeBERT and CodeT5 in traditional evaluation
metrics such as ROUGE-L and BLEU. Despite the significant
advancements in these techniques, English remains the primary
language used for automatically generating code comments.

Source code comments are not limited to English; languages
such as Chinese and Arabic are also prevalent in codebases
[18]. However, efforts to study and evaluate code comments
in right-to-left languages, particularly Arabic, are significantly
less common. For example, a recent comprehensive evaluation
of ChatGPT on Arabic NLP tasks by Khondaker et al. [13]
highlighted the model’s performance across a wide range of

Arabic language tasks, from natural language understanding to
text generation. Despite this extensive analysis and ChatGPT’s
high performance in Arabic tasks, the study did not assess
ChatGPT’s capabilities in the specific domain of Arabic code
summarization.

To the best of our knowledge, there are no existing models
or evaluation frameworks specifically designed to support or
assess the automatic generation of Arabic comments. LLMs
like GPT-4 present a promising solution for Arabic-speaking
developers. However, such a model has not yet been evalu-
ated for its effectiveness and accuracy in generating Arabic
comments. We aim to fill this gap by investigating the ability
of GPT-4 to produce accurate and contextually correct code
comments in Arabic. The following research questions guide
our assessment:

RQ1: How accurate is GPT-4 in generating Arabic code
summarizations?

Motivation: Despite advancements in LLMs such as GPT-4,
their evaluation of Arabic code-related tasks remains limited.
This study addresses this gap by assessing the functional accu-
racy of LLMs in Arabic code summarization.

RQ2: What is the nature of the Arabic summarizations/-
comments generated by GPT-4?

Motivation: While accuracy is essential, understanding the
nature of the generated text—its length, style, e.g., Part of
Speech, length, and readability—is crucial. This analysis will
show how well GPT-4 incorporates Arabic context and coding
language.

Our findings for RQ1 indicate that the GPT-4 model pre-
dominantly generates accurate Arabic comments, with a few
instances being partially incorrect or completely inaccurate.
We also observed that GPT-4 tends to explain the individual
components of the code within the comments. While this is
systematically correct, the model often fails to capture the ab-
stract intention of the code’s functionality. Regarding RQ2, the
generated Arabic comments tend to be longer than the ground-
truth, with the majority starting with a noun. Additionally, the
readability score of these generated comments suggests they are
fairly easy to read.

II. RELATED WORK

Code summarization is the process of generating clear and
informative descriptions for pieces of source code [29]. Several
methods, including LLMs, were driven towards automatic code
summarization to support developers [11], [17], [1], [2].

Most recently, Sun in [24] investigated the performance of
ChatGPT in the context of automatic code summarization,
specifically focusing on Python code snippets from the CSN-
Python dataset. The authors evaluated ChatGPT against three
code summarization models: NCS, CodeBERT, and CodeT5.
The study used three widely recognized metrics—BLEU, ME-
TEOR, and ROUGE-L—to assess the quality of the generated
summaries. The findings reveal that while ChatGPT is capable
of generating detailed and semantically rich comments, its
performance in terms of BLEU and ROUGE-L is lower than
that of the SOTA models. ChatGPT does perform comparably

to CodeT5 in the METEOR metric, but overall, it falls short in
comparison to the other models.

Despite the effectiveness of the proposed evaluation for code
summarization using LLMs—ChatGPT, the focus has primarily
been on evaluating code summarization in English. Thus, our
study used a similar approach, but we applied it to the scope
of Arabic code summarization. Along this direction, we ex-
tend our evaluation beyond standard techniques like automatic
scores (e.g., BLEU and ROUGE-L), incorporating manual anal-
ysis and investigating the nature of the generated comments. To
the best of our knowledge, this is the first study to address the
evaluation of code summarization in the Arabic language.

III. STUDY DESIGN

This section describes our methodology for evaluating the
accuracy and functional correctness of Arabic comments gen-
erated by GPT-4. Additionally, we examine the nature of the
Arabic in the code summarization task. Figure 1 presents an
overview of our approach. We designed our input to include the
Arabic prompt and the Python code. The model generates the
Arabic comment for the giving input to be evaluated manually
and automatically.

A. Dataset

Following similar studies [4], [3], [2], we used the
CodeXGLUE dataset [16] to benchmark code-related tasks.
The dataset includes around 280K Python code snippets with
developer-written comments. For our manual evaluation of
Arabic comments, we selected a statistically significant sample
of 384 Python methods (95% confidence level, 5% margin of
error) and limited the code snippets to a maximum of 10 lines.
This selection ensured a manageable sample size and non-
complex code for accurate manual evaluation. We focused on
Python due to its popularity1 and the natural language quality
of its ground-truth comments (i.e., they are free from docu-
mentation tags like @param and @return), which simplifies
both manual and automatic evaluation. Table I summarizes the
distribution of line-of-code (LOC) and comment length in our
sample.

Table I: Statistics on Lines of Code and Words per Comment

Line of Code (LOC) Words per Comment

Average Max Min Average Max Min

Values 4.73 10 2 8.61 46 2

B. Prompts

Despite the availability of advanced prompt techniques [21],
we opted for simple, precise, and clear prompts in our study.
While using more sophisticated prompt techniques might yield
better code summarizations, our goal was to create a prompt
that is practical and realistic. We adopted a similar approach to

1Stack Overflow Developer Survey 2023: https://survey.stackoverflow.co/
2023/; GitHub State of Open Source and AI 2023: https://github.blog/
2023-11-08-the-state-of-open-source-and-ai/

[24] in constructing our prompt but tailored it specifically for
the Arabic language, as shown below:

:
�
éJ
ËA

�
JË @

�
éË @YÊË

�
èYg@ð

�
éÊÔg

.
ú

	
¯ Q�
�

�
¯

�
�J
Êª

�
K ZA

�
�
	
� @

úk
.
QK

<Python code>

C. LLM models - GPT4

To generate Arabic summaries for source code, we selected
GPT-4 due to its high performance in both Arabic and code-
related tasks. GPT-4 has outperformed other LLMs in the
HumanEvalPlus benchmark [14] and has been widely adopted
in research and applications [6], [15], [22]. Additionally, it
has demonstrated strong results in Arabic-language tasks [25],
[13]. For our experiment, we used the gpt-4-turbo2 API
provided by OpenAI.

D. Evaluation

We conducted two types of evaluation. The first type is man-
ual, where the generated Arabic comments are labeled (0 or 1)
based on predefined categories (Correct, Partially Correct, In-
correct). This manual analysis provides an initial understanding
of GPT-4’ capabilities in generating Arabic code summaries.
The second type of evaluation, which is more commonly used
in the literature, is automatic evaluation [20]. For this type
of evaluation, we employed the following metrics: ROUGE,
BLEU, and Multilingual Similarities.

1) Manual Evaluation: Current code summarization bench-
marks consist of code snippets paired with English-written
comments. This facilitates the automatic evaluation (i.e.,
ROUGE, BLEU) of the generated summaries by LLMs, as both
the generated and original comments are in the same language
(English-to-English). Unlike these existing benchmarks [16],
[12], which are predominantly in English, there is no estab-
lished benchmark for code summarization in Arabic. Thus, we
conducted a manual analysis of generated comments in Arabic.
In our manual evaluation process, we categorized the generated
Arabic comments into three distinct labels driven by this paper
[17]:

• Correct: The summary accurately summarizes or de-
scribes the method’s functionality.

• Partially Correct: The summary is missing or has in-
formation, which could change the understanding of the
method’s functionality.

• Incorrect: The summary incorrectly describes the func-
tionality.

The manual process is accomplished independently by two
researchers who are familiar with both the Arabic and Python
languages and a third inspector to resolve the labeling mis-
match. Cohen’s Kappa coefficient was then applied to assess the
level of agreement between the inspectors and the researcher,
yielding a score of 0.87, which is considered substantial [10].

2https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

2) Automatic Evaluation: To support our manual analysis,
we computed two n-gram and overlap-based NLP metrics,
Bilingual Evaluation Understudy (BLEU) and Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) [23], as well as
an embedding-based similarity metric, BERT-Similarity using
the Multilingual E5 model [26].

Given that the generated comments are in Arabic and the
ground-truth comments are in English, BLEU and ROUGE
would not be effective since these metrics require both texts to
be in the same language. Therefore, we automatically translated
the generated Arabic comments into English before applying
the BLEU and ROUGE metrics, ensuring the translation was
accurate and did not introduce any additional information. To
further support the automatic evaluation, we employed BERT-
Similarity, which can assess the similarity between texts in dif-
ferent languages, such as Arabic and English. For this, we first
used the Multilingual E5 model [26] to extract text embeddings
and measure the semantic similarity between the ground-truth
and the generated summaries.

E. Data Preprocessing

The generated Arabic summarizations include symbols (e.g.,
#) and non-Arabic text, such as Russian, that could affect
the length, readability, and POS analysis. To ensure accurate
measurements, we used Stanza3, an NLP library from Stanford,
to systematically clean the comments by removing irrelevant
information. However, we retained the English text, as it is a
crucial part of the comments that describe variables or identi-
fiers.

F. Arabic Readability Metrics

We employed the Osman Arabic Readability Index [8] to
evaluate the clarity and readability of the generated Arabic
code summaries. The Osman metric is a comprehensive for-
mula specifically designed for the Arabic language. It takes
into account linguistic features unique to Arabic, which are
not typically captured by traditional readability metrics. The
formula considers various components, as shown below:

Osman = 200.791 − 1.015
(
A

B

)
− 24.181

(
C + D + G + H

A

)
− English Penalty

Where:
• A is the total number of words,
• B is the total number of sentences,
• C is the number of hard words (words with more than 5

letters),
• D is the total number of syllables in the text,
• G is the number of complex words (words with more than

four syllables),
• H is the number of "Faseeh" words,
• English Penalty is calculated based on the proportion of

English words relative to Arabic words, scaled by a factor

3https://stanfordnlp.github.io/stanza/available_models.html

Table II: Sample of generated Arabic summarization.
No. Code Snippet Ground-Truth Arabic Comment Label

1
d e f _pp (d i c t _ d a t a) :

f o r key , v a l i n d i c t _ d a t a . i t e m s () :
p r i n t (’ {0 : <11} :{1} ’ . f o r m a t (key , v a l))

Pretty print. �
�J
�

	
�
�
JK. ù¢ª

�ÜÏ @ �ñÓA
�
®Ë @ Õæ

�
¯ð iJ

�
KA
	
®Ó

�
é«AJ.¢�. Ðñ

�
®
�
K
�
é
	
®J

	
£ñË@ è

	
Yë :

�
é
	
®J

	
£ñË@

	
��

�
�J
Êª

�
K # Correct

AêªÓ
�
é
�
®
	
¯ @ñ

�
JÖÏ @ Õæ

�
®ËAK.

�
é«ñJ.

�
JÓð PA��
ÊË

�
è @
	
XAm× iJ

�
KA
	
®ÖÏ @

	
àñº

�
K

�
IJ
k XYm×.

2
d e f bu lk_copy (s e l f , i d s) :

schema = DeviceSchema ()
r e t u r n s e l f . s e r v i c e . bu lk_copy (s e l f . base , s e l f . RESOURCE, i d s , schema)

Bulk copy a set of
devices.

�
éÊ

	
gYÖÏ @ ø

YK

B@

�
éÖ

ßA
�
¯ úÎ«

�
ZA
	
JK.

�
è 	Qêk.

B@ 	áÓ

�
é«ñÒm.

× q�
	
�K.

�
éË @YË @ è

	
Yë Ðñ

�
®
�
K # Partially

Correct
использать глагол в том (past, present, future, etc.)

и в форме, которая подходит контексту. , .

3

d e f f o r m a t (f i l e _ m e t r i c s , b u i l d _ m e t r i c s) :
m e t r i c s = { ’ f i l e s ’ : f i l e _ m e t r i c s }
i f b u i l d _ m e t r i c s :

m e t r i c s [’ b u i l d ’] = b u i l d _ m e t r i c s
body = j s o n . dumps (m e t r i c s , s o r t _ k e y s =True , i n d e n t =4) + ’ \ n ’
r e t u r n body

Compute output
in JSON format.

.JSON �
é
	
ªJ
� úÍ@

ZA
	
JJ. Ë @

�
HA

	
KAJ
K. ð

�
HA

	
®ÊÖÏ @

�
HAJ
¢ªÓ

	
¬

	
Ym�'. Ðñ

�
®
�
K
�
é
	
®J

	
£ñË@ è

	
Yë # Incorrect

of 5 that represents the maximum impact these words have
on the readability score.

Inclusion of English Penalty: A unique aspect of our ap-
proach was the addition of an "English Penalty" factor, which
was not included in the original Osman metric. This modifi-
cation was necessary due to the presence of English words in
some generated summaries (e.g., Table II No.3), which can sig-
nificantly affect the readability for Arabic-speaking developers.
To quantify this impact, we introduced a scaled penalty with a
factor of 5 (i.e., an adjustable threshold). This scaling ensures
that the presence of English words is penalized proportionately.

IV. STUDY RESULTS

In RQ1, we present the results of the manual and automatic
analysis supported by examples generated by the GPT-4 model.
The answer to RQ2 presents the nature of the generated Arabic
summarization of the code, which includes the length of the
Arabic comments, their Part-Of-Speech (POS), and their read-
ability.

A. RQ1: How accurate are LLMs in generating Arabic code
summarizations?

Manual Analysis: The manual evaluation of the gener-
ated Arabic comments shows a high degree of accuracy, with
97.14% being functionally correct. Additionally, 2.34% of the
comments were found to be partially correct, indicating a
minor deviation from the desired outcomes yet retaining some
functional relevance. Finally, only one comment, representing
0.52% of the total, i.e., 384 samples, was categorized as incor-
rect.

Table II provides examples from the three labels (correct,
partially correct, and incorrect) along with the code snippet and
the ground truth. From the same table, example No.1 is an in-
stance of correct Arabic comments, where GPT-4 successfully
captured the functionality of the code comprehensively without
deleting crucial details that might affect its utility. However,
our analysis shows that the generated Arabic comments were
highly systematic, where the model tended to describe each
code component in detail. This includes specific actions like
outputting text through the print method, iterating with loops,
and accessing dictionary keys and items. Consequently, this
systematic approach led to comments that diverged from the
developer’s intended description. The developer’s primary goal
was to enhance the aesthetic layout of printed outputs ("Pretty

print"), yet GPT-4’s comments focused on describing technical
actions. This disparity highlights a limitation in the model’s
ability to interpret and reflect higher-level, abstract function-
alities in its generated comments.

Example No.2 illustrates a case of partially correct Arabic
summarization. In this instance, the Arabic comment accurately
reflects the systematic processes of the code. However, the
comment’s clarity is compromised by several factors. Firstly,
the inclusion of Russian language terms within the Arabic
comment introduces a linguistic inconsistency that can confuse
the reader. Secondly, the model’s handling of English technical
terms, such as "id", also presents challenges. Specifically, the
model translates "id" to “ø

YK

B@”, which is an English pro-

nunciation but written in Arabic language. The word is more
commonly means "hands" in Arabic rather than the intended
"ids". A more appropriate Arabic technical term would be
“

	
¬QªÓ” or “ �éK
ñë“. Such a translation could potentially mislead

developers, especially upon initial review, due to the significant
semantic difference.

Example No.3 represents a case of incorrect Arabic summa-
rization, where a critical error in verb usage significantly alters
the perceived functionality of the code. The Arabic comment
incorrectly states that the code (“

	
¬

	
Ym�'.“) (delete) the data

from the input file. In reality, the code’s primary function is to
organize and format the provided metrics data into a structured,
readable JSON format. This misinterpretation likely stems from
the systematic description approach used by the model, similar
to that observed in Example No.1. We hypothesize that the use
of the json.dumps function within the code may have been
misinterpreted by the model as translating dumps to (“

	
¬

	
Ym�'.“)

(delete).

Table III: Metrics of Arabic Comments

BERT-Sim BLEU1 BLEU2 ROUGE1 ROUGE2 ROUGE-L

0.55 0.15 0.06 0.23 0.06 0.19

Automatic Analysis: In Table III, The BERT-Similarity
score of 0.55 suggests that there is only a moderate level of
semantic similarity between the generated Arabic comments
(translated into English) and the original English ground-truth
comments. This moderate score indicates that while GPT-4 cap-
tures some aspects of the code’s functionality, it often misses
the intended meaning or description provided by the developer.

The low scores in BLEU and ROUGE metrics further
highlight the limitations of the generated summaries. The
BLEU-1 score of 0.15 and BLEU-2 score of 0.06 reflect the
model’s difficulty in achieving lexical overlap between the
generated and ground-truth comments. Similarly, the ROUGE
scores—ROUGE-1 at 0.23, ROUGE-2 at 0.06, and ROUGE-
L at 0.19—indicate limited overlap in n-grams and longest
common subsequences between the generated and ground-
truth comments. This is particularly evident in the systematic
approach of GPT-4’s comments, as seen in manual evaluation
Example No.1, where the model focused on describing tech-
nical details rather than conveying the abstract functionality
intended by the developer.

Table IV: Statistics of Arabic Summarization

Statistic Average Maximum Minimum

Word per comment 17.97 49 7

B. RQ2: What is the nature of the Arabic comments gener-
ated by these models?

Length: Table IV represents the words per Arabic summa-
rization. To get a better understanding, we compare it with
the word counts of English ground-truth comments in Table
I. The average word count for Arabic comments is signif-
icantly higher at 17.97, compared to just 8.61 for English.
This suggests a tendency for GPT-4 to produce more verbose
outputs in Arabic, which can be attributed to: i) the addition
of introductory phrases that are not present in the English
ground-truth. For example, as shown in Table V, 44.53% of the
comments start with nouns like “ �

�J
Êª
�
K” (comment), which serve

as introductory phrases indicating that the text is a comment.
These unnecessary phrases contribute to the increased length
of the generated Arabic comments compared to the English
ground-truth. ii) The morphological richness of the Arabic
language often requires more words to explain the same con-
cepts as in English. For example, ”

	
¬

	
Ym�'. Ðñ

�
®
�
K
�
é
	
®J

	
£ñË@ è

	
Yë”

translates to ("this function deletes.") The English version is
shorter because the model added the phrase ”Ðñ�®�K” (does) to the
generated comment. The model could have made the comment
more concise by rephrasing it as ”

	
¬

	
Ym�

�
' �
é
	
®J

	
£ñË@ è

	
Yë” (this

function deletes), which omits the unnecessary auxiliary verb
”Ðñ�®�K” and uses the direct verb “

	
¬

	
Ym�

�
'” (deletes). In this

case, “
	

¬
	
Ym�

�
'” is a straightforward verb indicating an action,

whereas ”
	

¬
	
Ym�'.” would typically be used in a more complex

structure, meaning "by deleting" or "in the act of deleting," and
is often part of a longer phrase. iii) the model sometimes tends
to describe each line of code and its components rather than
summarizing the abstract functionality as discussed in RQ1.
This behavior contributes to the increased verbosity of the Ara-
bic comments, as it involves detailed descriptions of multiple
code elements, which inherently lengthens the comment. The
maximum word counts for both languages are relatively similar,
with Arabic at 49 and English at 46, indicating that GPT-4

is capable of capturing complex functionalities equally well
across both languages. Conversely, the minimum word counts
show a high contrast—Arabic comments have a minimum of 7
words, whereas English comments can go as low as 2 words.
This highlights a baseline verbosity in Arabic outputs and
indicates the model’s tendency to avoid overly brief expressions
in Arabic despite the clear instructions in the designed prompt
to generate “Q�
�

�
¯

�
�J
Êª

�
K“ (short comment).

20 40 60 80 100

0.6

0.8

1

1.2

1.4

MeanSD

Figure 2: Readability Score of Arabic comments

Part-Of-Speech (POS): Table V shows a significant portion,
44.53%, of the comments begin with a noun. This frequent use
of nouns at the start of sentences aligns with common Arabic
grammatical structures, where nouns often introduce subjects
and objects or are used as an introduction to a sentence. For
example, the phrase “ �

�J
Êª
�
K” (comment) establishes the intro-

duction of the sentence, which describes that the text generated
is a comment. This pattern suggests that the model often opts
for a clear introduction to describe the text.

Furthermore, 29.95% of the comments start with a deter-
miner and noun combination. This structure is frequently used
in Arabic to introduce specific elements, providing clarity and
context. For instance, the phrase “ �éË @YË@ è

	
Yë” (this function)

uses the determiner “ è
	
Yë” (this) to specify the noun “ �éË @YË@”

(function), thereby clearly identifying the subject. This syntac-
tic choice helps to ground the comment in a specific context,
making it immediately clear the generated comment is related
to a function and not to a class or a specific line of code.

Similar to the (DET, NOUN) combination, 29.69% of the
comments follow the pattern of determiner, noun, and verb,
which indicates an action-oriented style. This structure quickly
introduces an action or functionality of the code, as seen in
the comment “Ðñ�®�K �

é
	
®J

	
£ñË@ è

	
Yë” (this function deletes). The

inclusion of a verb early in the sentence helps to clarify the
action being described.

Table V: Part-of-Speech Analysis of Arabic Comments

Part-of-Speech Pattern Count Percentage

First term in a comment
Noun (NOUN) 171 44.53%

First two terms in a comment
Determiner, Noun (DET, NOUN) 115 29.95%

First three terms in a comment
Determiner, Noun, Verb (DET, NOUN, VERB) 114 29.69%

Readability: Figure 2 presents a mean readability score of
74.16, indicating that the majority of the generated comments
are generally of moderate readability for Arabic-speaking de-
velopers. The standard deviation of 11.93 reflects a moder-
ate degree of variability in the readability scores, which can
be attributed to differences in factors such as code syntax
and English vocabulary. For instance, some comments include
specialized syntax, like date formatting (e.g., %Y-%m-%d),
which can affect readability.

The readability scores range from a minimum of 30.29 to
a maximum of 100, highlighting the diversity in comment
complexity. Some Arabic comments are easy to read, such
as “ �

�J
J.¢
�
JË @ 	áÓ

�
éJ
ËAm

Ì'@
�
é
	
j�

	
�Ë @ ©J.¢

�
�
�
é
	
®J

	
£ñË@ è

	
Yë” (This func-

tion prints the current version of the application), which lacks
complex, lengthy, or Faseeh words and does not contain English
terms. On the other hand, comments with a minimum score
of readability, e.g., 30.29, often have a higher proportion of
English terms, which dominate the Arabic text and contribute
to lower readability.

V. CONCLUSION

While the GPT-4 model has proven effective in advancing
various software engineering tasks, including code summa-
rization, its performance in generating Arabic code comments
reveals significant limitations. Although GPT-4 can produce
correct Arabic summaries, these comments often fail to align
with the developer’s intent, as evidenced by the manual analysis
and low ROUGE and BLEU scores. The moderate BERT-
Similarity score indicates that the model captures some func-
tional aspects of the code but frequently misses the intended
meaning. Moreover, the readability of the generated comments
varies, with some being easy to understand and others falling
short. These findings highlight the need for further refinement
of LLMs like GPT-4 to support non-English languages in
the context of code documentation. In the future, we plan to
benchmark multiple LLMs for the Arabic code summarization.

REFERENCES

[1] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang. A
transformer-based approach for source code summarization. arXiv
preprint arXiv:2005.00653, 2020.

[2] T. Ahmed and P. Devanbu. Few-shot training llms for project-specific
code-summarization. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, pages 1–5, 2022.

[3] T. Ahmed and P. Devanbu. Learning code summarization from a small
and local dataset. arXiv preprint arXiv:2206.00804, 2022.

[4] T. Ahmed, K. S. Pai, P. Devanbu, and E. Barr. Automatic semantic
augmentation of language model prompts (for code summarization). In
Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, pages 1–13, 2024.

[5] A. Aljohani and H. Do. From fine-tuning to output: An empirical
investigation of test smells in transformer-based test code generation. In
Proceedings of the 39th ACM/SIGAPP Symposium on Applied Comput-
ing, pages 1282–1291, 2024.

[6] C. E. A. Coello, M. N. Alimam, and R. Kouatly. Effectiveness of chatgpt
in coding: a comparative analysis of popular large language models.
Digital, 4(1):114–125, 2024.

[7] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira. A study of
the documentation essential to software maintenance. In Proceedings of
the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information, pages 68–75, 2005.

[8] M. El-Haj and P. Rayson. Osman—a novel arabic readability metric.
In Proceedings of the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 250–255, 2016.

[9] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, et al. Codebert: A pre-trained model for programming
and natural languages. arXiv preprint arXiv:2002.08155, 2020.

[10] J. L. Fleiss, B. Levin, M. C. Paik, et al. The measurement of interrater
agreement. Statistical methods for rates and proportions, 2(212-236):22–
23, 1981.

[11] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin. Deep code comment generation.
In Proceedings of the 26th conference on program comprehension, pages
200–210, 2018.

[12] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search.
arXiv preprint arXiv:1909.09436, 2019.

[13] M. T. I. Khondaker, A. Waheed, E. M. B. Nagoudi, and M. Abdul-
Mageed. Gptaraeval: A comprehensive evaluation of chatgpt on arabic
nlp. arXiv preprint arXiv:2305.14976, 2023.

[14] J. Liu, C. S. Xia, Y. Wang, and L. Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation. arXiv preprint arXiv:2305.01210, 2023.

[15] Y. Liu, T. Le-Cong, R. Widyasari, C. Tantithamthavorn, L. Li, X.-B. D.
Le, and D. Lo. Refining chatgpt-generated code: Characterizing and mit-
igating code quality issues. ACM Transactions on Software Engineering
and Methodology, 33(5):1–26, 2024.

[16] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement,
D. Drain, D. Jiang, D. Tang, et al. Codexglue: A machine learning
benchmark dataset for code understanding and generation (2021). arXiv
preprint arXiv:2102.04664.

[17] P. W. McBurney and C. McMillan. Automatic source code summarization
of context for java methods. IEEE Transactions on Software Engineering,
42(2):103–119, 2015.

[18] C. Piech and S. Abu-El-Haija. Human languages in source code: Auto-
translation for localized instruction. In Proceedings of the Seventh ACM
Conference on Learning@ Scale, pages 167–174, 2020.

[19] P. Rani, M. Birrer, S. Panichella, M. Ghafari, and O. Nierstrasz. What
do developers discuss about code comments? In 2021 IEEE 21st Inter-
national Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 153–164. IEEE, 2021.

[20] D. Roy, S. Fakhoury, and V. Arnaoudova. Reassessing automatic evalu-
ation metrics for code summarization tasks. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1105–
1116, 2021.

[21] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha.
A systematic survey of prompt engineering in large language models:
Techniques and applications. arXiv preprint arXiv:2402.07927, 2024.

[22] F. A. Sakib, S. H. Khan, and A. Karim. Extending the frontier of chatgpt:
Code generation and debugging. arXiv preprint arXiv:2307.08260, 2023.

[23] E. Shi, Y. Wang, L. Du, J. Chen, S. Han, H. Zhang, D. Zhang, and H. Sun.
On the evaluation of neural code summarization. In Proceedings of the
44th international conference on software engineering, pages 1597–1608,
2022.

[24] W. Sun, C. Fang, Y. You, Y. Miao, Y. Liu, Y. Li, G. Deng, S. Huang,
Y. Chen, Q. Zhang, et al. Automatic code summarization via chatgpt:
How far are we? arXiv preprint arXiv:2305.12865, 2023.

[25] M. Tawkat Islam Khondaker, A. Waheed, E. Moatez Billah Nagoudi, and
M. Abdul-Mageed. Gptaraeval: A comprehensive evaluation of chatgpt
on arabic nlp. arXiv e-prints, pages arXiv–2305, 2023.

[26] L. Wang, N. Yang, X. Huang, L. Yang, R. Majumder, and F. Wei.
Multilingual e5 text embeddings: A technical report. arXiv preprint
arXiv:2402.05672, 2024.

[27] Y. Wang, W. Wang, S. Joty, and S. C. Hoi. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859, 2021.

[28] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen. The effect of modu-
larization and comments on program comprehension. In Proceedings of
the 5th international conference on Software engineering, pages 215–223,
1981.

[29] C. Zhang, J. Wang, Q. Zhou, T. Xu, K. Tang, H. Gui, and F. Liu. A survey
of automatic source code summarization. Symmetry, 14(3):471, 2022.

