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Abstract— The development of algorithms for secure state
estimation in vulnerable cyber-physical systems has been gain-
ing attention in the last years. A consolidated assumption is
that an adversary can tamper a relatively small number of
sensors. In this paper, we propose a Lasso-based approach and
we analyse its effectiveness. We theoretically derive conditions
that guarantee successful attack/state recovery and we develop
a sparse state observer. We compare the proposed methods to
the state-of-the-art algorithm via numerical simulations.

I. INTRODUCTION

A cyber-physical system (CPS) is a collection of com-
puting devices that interact with the physical world, through
sensors and actuators, and with one another, through commu-
nication networks. Applications of the CPS paradigm include
industrial control processes, smart power grids, wireless
sensor networks, electric ground vehicles and cooperative
driving technologies. A relevant research line considers the
problem of secure state estimation (SSE) for CPSs in the
presence of sensor attacks, that inject false data to manipulate
the measurements. We expect that an adversary conceives
an unpredictable intrusion, that is, we have no information
on its dynamics. The unique realistic assumption on sensor
attacks is sparsity: only a relatively small number of sensors
is accessible, due to, e.g., large dimensionality and physical
deployment of CPSs.

The identification of the attack support, i.e., the subset
of tampered sensors, is a combinatorial problem that does
not scale well for large dimensional systems. By leveraging
the sparsity assumption, one can exploit /1-based sparsity-
promoting decoders to recast the problem into constrained
convex optimization; see, e.g., [1], [2]. Since these ap-
proaches are still computationally intense, [3] introduces a
faster event-triggered projected gradient (ETPG) approach,
whose structure is prone to recursive SSE. The provided
sufficient conditions for the convergence of ETPG are quite
restrictive. The work [4] addresses this issue by a satisfiabil-
ity modulo theory approach, called Imhotep-SMT, which is
suitable for small/medium dimensional problems.

In this work, we propose a Lasso approach, see [5], to
SSE of CPSs under sparse sensor attacks and we analyse
its effectiveness. Moreover, we design a sparsity-promoting
Luenberger-like observer by starting from the iterative soft
thresholding algorithm for Lasso and we propose some
numerical results.
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II. PROBLEM STATEMENT
As in [1], [3], we consider CPSs that can be modeled as

z(k+1) = Az(k)
y(k) = Cx(k) + a(k)

where (k) € R™ is the state, y(k) € R? is the measurement
vector, a(k) € RP is the attack vector. We assume that each
sensor ¢ takes a measurement y;(k) € R. If a; (k) # 0, sensor
1 is under attack. The SSE problem is as follows.

Problem 1: For some 7 < n and k > 7 — 1 given A,
Candy= (yk—7+1T,...,y(k)T)T € RPT, estimate
2(k — 7+ 1) in the presence of sparse sensor attacks.

Let us denote @ = (a(k —7+1)T,...,a(k)")" € RPT
and T = z(k — 7+ 1) € R", while I € {0,1}P"P7 is the
identity matrix. We have y = ((’) 1 ) ngT ZiT)T where
o= (" (AT (CA™HT) e R If 7 =
n, O is the observability matrix of the attack-free system;
we assume rank(Q) = n.

(D

III. LASSO APPROACH

By taking into account the sparsity of a, we propose the
following Lasso formulation for Problem 1:

(z*,a*) = argmin 1 Hy—Ox—aH;—l-/\HaHl ()
ER™,acRPT 2

where A > 0. An interesting feature of classic Lasso is
that there is a tight condition, denoted as “irrepresentable”,
that guarantees the recovery of the correct support; see, e.g.,
[6]. In this work, we perform an irrepresentable condition
analysis for (2), by taking into account the structure of the
“sensing matrix” ((’) I ) and the ¢; regularization applied
only to variables a.

In the following, S is the support of @ and S is its
complementary set. Os € R"™ and Og € RP"="" are the
submatrices of @ with rows in S and in S, respectively.
Finally, we denote by || - ||oo the {o matrix norm.The
following result holds.

Theorem 1: Let us assume that ((9 Is) € Rrmnth g
full rank. Lasso is successful, i.e., by solving it we identify

the attack support, if H(’)}TOEH < 1 where O}T is the

oo
right pseudo-inverse of Og.

A qualitative interpretation of this result is that the rows
of Os must be “sufficiently orthogonal” to the columns of
(91;. We refer the reader to [7] for the proof of the theorem
and extedend considerations.

IV. SPARSE SOFT OBSERVER FOR ONLINE SSE

In this section, we move towards recursive, online SSE.
We consider Problem 1 in a dynamic perspective: we aim at
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Fig. 1. Lasso vs ETPG vs Imhotep-SMT, n = 20, s = p/5 sensors under
attack. The measurements are either noise-free and with noise bound 10~4.
The results are averaged over 50 runs.

estimating the current state, or a delayed version, using the
last pr measurements. If 7 = 1, this an online (not delayed)
SSE. This calls for fast recursive online algorithms.

In [3], the authors address this problem by developing
a recursive version of ETPG, named ETPL. As an alter-
native, we develop an online version of the iterative soft
thresholding algorithm (ISTA, [8]), that we name sparse
soft observer, summarized in Alg. 1. We use the following
notation: a(k) = (a(k — 7+ 1)",...,a(k)")7, y(k) =
(ylk—7+1)7,..yk)T)T

Algorithm 1 Sparse soft observer

I: forall k =7—-1,7,... do
2:  Measurements and estimated measurements update

y(k) = Ox(k — 7+ 1)+ a(k) 3)
y(k) = Oz(k) + a(k)
3:  ISTA step: gradient step + soft thresholding

(2) =) -ve 0 mw-yo1 @
a(k+1)=S,,[a"] 5)

4:  State update
#(k+1)=Az" (6)
5: end for

V. NUMERICAL RESULTS

A. Lasso approach

We test the proposed Lasso approach on random, synthetic
CPSs and we compare it to ETPG by [3] and Imhotep-SMT
by [4]. We assume that the attack support is time-invariant
with cardinality s. The attacks have magnitude in [4,5],
which is sufficiently large to sabotage the state estimation,
but not enough large to produce clear, plainly detectable
outliers in the measurements. We assess the accuracy in terms
of state estimation error ||Z — Z||2/]|Z||2-

In Fig. 1, we see that Lasso outperforms ETPG both in
accuracy and run time. Since we consider small/medium
dimensions, Imhotep-SMT is the best approach to achieve
the exact solution in fast time, in the noise-free case; never-
theless, it is not robust to noise. In contrast, Lasso and ETPG
are robust to small noise.
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Fig. 2. Sparse soft observer vs ETPL; n = 10, p = 15, s = 3, 7 = 1.

The results are averaged over 100 runs.

B. Sparse soft observer

We test the proposed sparse soft observer for recursive and
online SSE and we compare it to ETPL [3]. We consider
th state estimation error ||& — Z||2/||Z||2 and support error,
defined as In Fig. 2 the corresponding state estimation error
and support error ) [1(&; # 0)—1(a; # 0), where 1(v) =
1 if v is true and O otherwise. The sparse soft observer is
more accurate and ETPL does not always converge to the
right support. The execution times are 7 - 10~ seconds for
ETPL and 4 - 10~% seconds for the sparse soft observer.

VI. CONCLUSIONS

We propose a Lasso approach for secure state estimation
in cyber-physical systems under sparse sensor attacks. We
analyse the properties of Lasso to identify the attack and, as
a consequence, to recover the state. Furthermore, by starting
from the iterative soft thresholding algorithm for Lasso, we
develop a sparse soft observer to perform online estimation.
Through numerical results, we show that the proposed Lasso
approach is valuable with respect to state-of-the-art methods,
although it exploits less information, e.g., on the sparsity
pattern.
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