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ABSTRACT

We present theCheckMate framework for full automation of game-
theoretic security analysis, with particular focus on blockchain
technologies. CheckMate analyzes protocols modeled as games
for their game-theoretic security — that is, for incentive compatibil-
ity and Byzantine fault-tolerance. The framework either proves the
protocols secure by providing defense strategies or yields all possi-
ble attack vectors. For protocols that are not secure, CheckMate
can also provide weakest preconditions under which the protocol
becomes secure, if they exist. CheckMate implements a sound
and complete encoding of game-theoretic security in first-order
linear real arithmetic, thereby reducing security analysis to satisfi-
ability solving. CheckMate further automates efficient handling
of case splitting on arithmetic terms. Experiments show Check-
Mate scales, analyzing games with trillions of strategies that model
phases of Bitcoin’s Lightning Network.

This work is the extended version of our CCS 2023 paper “Check-
Mate: Automated Game-Theoretic Security Reasoning".

CCS CONCEPTS

• Security and privacy→ Formal security models; Logic and
verification.

KEYWORDS

Security Analysis, Automated Reasoning, Game Theory, Secure
Protocols, Decentralized Protocols.

1 INTRODUCTION

Applications of blockchain technology such as cryptocurrencies [26]
and decentralized finance [35] are becoming increasingly popular.
Establishing security guarantees of such applications is mostly
driven by formal analysis of the underlying cryptographic proto-
cols [3, 16, 25, 34].While powerful, these efforts cannot capturemali-
cious actions that are possible in spite of formal cryptographic guar-
antees. Game-theoretic security analysis has therefore emerged [30,
36], introducing variants of extensive form games (EFGs) [28] for
embedding punishment mechanisms within blockchain analysis.

In a nutshell, game-theoretic security analysis enables reason-
ing about incentive-compatibility: that is, whether malicious yet
cryptographically-possible behavior is discouraged via punish-
ment mechanisms. It also enables detecting and even preventing
scenarios that could lead directly to security attack vectors [22].
∗All authors contributed equally to this research.

Feasibility of game-theoretic models for investigating an underly-
ing protocol’s security partially depends on the game completeness,
that is, on expressing all possible interactions between players. In
consequence, accurate models are likely to be rather large and com-
plex games. For example, while [30] introduces a so-called Closing
Game to precisely model the closing phase in Bitcoin’s Lightning
Network [29], we show there are trillions of possible joint strate-
gies (combinations of player strategies) for the Closing Game (see
Example 3.4). As such, manually analyzing game-theoretic security
models is not practically viable.
In this paper, we therefore introduce the CheckMate framework for
automating reasoning about game-theoretic security of blockchain
protocols. To the best of our knowledge, CheckMate provides the
first automated reasoning framework for enforcing game-theoretic
security, (dis)proving, for example, security of real-world protocols
used within Bitcoin’s Lightning Network (Section 6). Related rea-
soning approaches for (extensive form) games exist [17], but current
techniques are limited to processing games with numeric values
as game utility variables enacting punishment or reward mecha-
nisms. In CheckMate, we advocate for the use of symbolic values,
guaranteeing security for every possible numeric value, e.g. every
possible account balance in decentralized finance applications.

The distinctive feature of CheckMate is a formalization of se-
curity properties over game strategies in such a way that the result
can be (dis)proved using “only" first-order arithmetic reasoning
with limited quantification (Section 4). To this end, we turn applica-
tions of blockchain security into a satisfiability modulo theory (SMT)
problem, by showing that first-order linear real arithmetic provides
an expressive logic to formulate and prove game-theoretic secu-
rity (Lemma 4.1). Our first-order encoding is exact and, unlike the
work of [17, 18], does not feature probabilistic (reward) operators.
Instead, we provide a decidable logic for game-theoretic security
and omit the computational burden of reasoning with uncertainty.

The added value of our first-order encoding is witnessed when
formalizing that deviating from the protocol is never rational (incen-
tive compatibility), and that even if adversaries deviate, honest users
are not financially harmed (Byzantine fault-tolerance) (Section 2).
We show the formalization is sound and complete: our security
proofs imply game-theoretic security and vice versa (Theorem 5.2).
In this respect, we introduce novel reasoning approaches on top
of SMT solving, scaling and using formal verification not only for
enforcing game-theoretic security, but also providing counterex-
amples and/or refining preconditions where security properties are
violated (Section 5).

https://orcid.org/0000-0001-8770-4112
https://orcid.org/0000-0002-8299-2714
https://orcid.org/0000-0001-7203-6641
https://orcid.org/0000-0002-8940-4989
https://orcid.org/0000-0001-7834-1567


Lea S. Brugger, Laura Kovács, Anja Petković Komel, Sophie Rain & Michael Rawson

Our Contributions. We bring the following main contributions1.
(i) We formalize game-theoretic security properties as first-

order arithmetic formulas over EFG joint strategies (Sec-
tion 4), reducing security analysis of blockchain transac-
tions to arithmetic reasoning over honest game histories
with symbolic game utilities (Lemma 4.1). The use of sym-
bolic utilities differentiates our work from other game-
theoretic frameworks [17, 18]: symbolic utilities allow us to
avoid concurrent game strategies while providing a deter-
ministic, game-theoretic behavior. As such, we also avoid
reasoning with probabilistic (reward) operators.

(ii) Since players may be willing to forgo some intangible
assets, such as opportunity cost, but not actual resources, we
introduce weaker immunity (Definition 3.6), strengthening
the state of the art in game-theoretic security analysis. Our
formalization is sound and complete with respect to their
game-theoretic definitions (Theorem 5.2), and inhabits a
decidable fragment of first-order arithmetic.

(iii) Unlike [30, 36], our EFG security properties avoid the use
of non-trivial sets, functions and quantifier alternations. We
show that this arguably simple logical formalization is both
sufficient and necessary to precisely capture game-theoretic
security (Theorem 5.2). Moreover, we provide tailored auto-
mated reasoning approaches over EFG strategies and bring
them into the landscape of SMT solving (Algorithm 1).

(iv) Since we reason about symbolic utilities, proving arith-
metic relations naturally yields case splits. We guide these
case distinctions via unsatisfiable (unsat) core computation
in SMT solving (Section 5.1).

(v) For EFG properties that are not secure, we provide attack
vectors as concrete counterexamples to a violated security
property (Section 5.2, Algorithm 2). In addition, we give
weakest ordering conditions on utilities which, if assumed
as preconditions, ensure security (Section 5.3, Algorithm 3).

(vi) We implement our approach in the new tool CheckMate,
a fully-automated security reasoning engine for EFGs that
requires no user guidance (Section 6). We evaluate Check-
Mate on challenging EFGs, including variants of real-world
protocols namely closing and routing phases of Bitcoin’s
Lightning Network. Experiments demonstrate applicabil-
ity and scalability of CheckMate, (dis)proving security of
EFGs with trillions of strategies and thousands of nodes.
While for readability’s sake, our running examples use sim-
plified game models of Lightning’s closing and routing
phases (Figures 1–2), our experiments show that Check-
Mate succeeds when analyzing the respective protocols in
full (Table 1).

2 MOTIVATING EXAMPLES

We motivate and illustrate our work by considering simplified
versions of the closing and routing protocol phases of Bitcoin’s
Lightning Network [30]. Let us emphasize that our running exam-
ples from Figures 1–2 are simplified only for the sake of readability.
In experiments, we also evaluate CheckMate on full models of the
respective protocols of Bitcoin’s Lightning Network (Section 6). In
1with additional proofs and details given in the Appendix
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Figure 1: Simplified Closing Game with 𝛼, 𝑎, 𝜀, 𝑓 , 𝑑𝐴 > 0 and
𝛼, 𝜀 infinitesimals.

particular, the last two entries of Tables 1 and 2 report on our results
when analyzing Bitcoin’s Lightning Network in its full complexity.

The closing and routing phases of the Lightning Network are
modeled as EFGs and visualized as trees in Figures 1 and 2. The
start of an EFG is the root, and players’ choices lead to different
branches. The game ends when a leaf is reached, where a player’s
gain or loss is called their utility.

Example 2.1 (Simplified Closing Game). In the Simplified Closing
Game of Figure 1, player 𝐴 starts the game and chooses between
three options: closing honestly (𝐻 ), collaboratively honestly (𝐶ℎ),
or dishonestly (𝐷). If 𝐴 chooses 𝐻 , both players get the benefit of
closing the channel 𝛼 , but player 𝐴 has to wait until the closing
times out, so the utility is reduced by the opportunity cost 𝜀. If 𝐴
chooses 𝐶ℎ , player 𝐵 gets to choose between ignoring (𝐼 ), i.e. the
funds remain locked, or signing (𝑆), where both players get the
benefit of closing 𝛼 . If 𝐴 chooses to close dishonestly with some
deviating amount 𝑑𝐴 , then if 𝐵 chooses to ignore (𝐼 ), the funds for
𝐵 are lost; however, if 𝐵 proves (𝑃 ) the attempt was dishonest, all
of 𝐴’s funds (𝑎) are redistributed to 𝐵, but the transaction fee 𝑓

has to be paid. Note that the utilities in the leaves of the game tree
are actual variables (𝛼 , 𝑎, 𝑓 , etc.), not numeric values, and 𝛼 , 𝜀 are
infinitesimals (see Section 3).

Example 2.2 (Simplified Routing Game). CheckMate can handle
games with any finite number of players. To show how an attack
vector can arise from collusion between players and outline the
main structure of the model of the routing protocol, we include
in Figure 2 an EFG with five players, modeling a Simplified Routing
Game. Player 𝐴 is the initiator of the routing transaction, player
𝐵 is the receiver and players 𝑃1, 𝑃2 and 𝑃3 are intermediaries. The
routing starts when player 𝐵 sends a hash of a secret to player 𝐴;
this step is modeled with action 𝑆𝐻 . Then, a so-called locking phase
follows (the four actions 𝐿), where players lock funds for the next
player in the routing path to unlock, provided they can present
𝐵’s secret: player 𝐴 locks the amount𝑚 + 3𝑓 (where 𝑓 represents
the routing fee), player 𝑃1 locks 𝑚 + 2𝑓 , player 𝑃2 locks 𝑚 + 𝑓

and player 𝑃3 locks𝑚. Next, the game enters an unlocking phase,
where players choose between the honest action 𝑈 of unlocking
their contracts, or to ignore unlocking (𝐼𝑈 ), resulting in a state
where all contracts still locked expire and a leaf is reached. The
end utilities of players depend on which contracts are unlocked,
which are expired and additionally on two subjective values: the
benefit of updating, modeled as a positive infinitesimal 𝜌 , and the
opportunity cost, modeled as an infinitesimal 𝜀.

The path that represents honest behavior is depicted in thick
blue lines. CheckMate disproves security of the game, as the path
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depicted in dashed purple deviates from the honest behavior and
corresponds to the so-called Wormhole attack [22]. Within this
dishonest behavior (attack), player 𝑃3 can additionally choose to
share the secret with player 𝑃1 and thus bypass player 𝑃2 entirely.
If 𝑃1 then chooses to unlock, it results in a negative utility (−𝜀)
for player 𝑃2, who is further deprived of earning the routing fee 𝑓
for enabling the transaction, which they would get in the honest
scenario depicted in blue.

3 PRELIMINARIES

We introduce game-theoretic material needed for our work. We
assume familiarity with standard first-order logic [32], linear (real)
arithmetic [31], and SMT solving over both [2, 8, 9].

3.1 Game Theory

We define a game to be a static finite object with finitely many play-
ers. Players choose from finitely many actions until the game ends,
whereupon they receive a utility. We focus on perfect-information
Extensive Form Games (EFGs) in which players choose actions se-
quentially with full knowledge of all previous actions. Games may
yield collective benefit or loss, i.e. they are not necessarily zero-sum.

Definition 3.1 (Extensive Form Game — EFG). An extensive form
game Γ = (𝑁,𝐺) is determined by a finite non-empty set of play-
ers 𝑁 together with a finite tree 𝐺 = (𝑉 , 𝐸). A game path ℎ =

(𝑒1, ..., 𝑒𝑛), 𝑒𝑖 ∈ 𝐸 starting from the root of 𝐺 is called a history.
We denote the set of histories by H . There is a bijection between
nodes 𝑣 ∈ 𝑉 and histories ℎ ∈ H that lead to these nodes.

• A history that leads to a leaf is called terminal and belongs
to the set of terminal histories T ⊆ H . Terminal histories
𝑡 are associated with a utility for each player.
• Non-terminal histories ℎ are those histories that are not

terminal ℎ ∈ H \ T . Non-terminal histories ℎ have a
player 𝑃 (ℎ) ∈ 𝑁 whose turn it is, who may choose from a
set of possible actions 𝐴(ℎ) to take after ℎ.

In game theory, utilities are usually real- or integer-valued nu-
meric constants. Similarly to [30], in our work we however consider
utilities as symbolic terms in linear arithmetic capturing all pos-
sible utilities with certain constraints. We evaluate variables and
constants over the real numbers R extended by a finite set of in-
finitesimals, closer to zero than any real number. Infinitesimals
model subjective inconveniences or benefits that do not relate di-
rectly to funds, such as opportunity cost. For our purposes, we
model infinitesimals by considering linear terms over R × R, or-
dered lexicographically: the first component represents the real
part, the second the infinitesimal. We write real for the first pro-
jection and avoid writing pairs; that is, we write 0 for (0, 0). In the
sequel, we use 𝑎, 𝑏, 𝑐 . . . for real variables, and write 𝛼, 𝛽,𝛾, . . . for
infinitesimals. The utility term 𝑎 + 𝛼 − 𝜀 is therefore represented in
our work as (𝑎, 0) + (0, 𝛼) − (0, 𝜀), that is (𝑎, 𝛼 − 𝜀).

Example 3.2. The Simplified Closing Game has two players 𝑁 =

{𝐴, 𝐵}. After empty history ∅, it is the turn of player 𝑃 (∅) = 𝐴 to
choose from actions 𝐴(∅) = {𝐻,𝐶ℎ, 𝐷}. After terminal history (𝐻 ),
player 𝐴 receives utility 𝛼 − 𝜀 and 𝐵 receives 𝛼 .

While utilities depend only on terminal histories, we relate utili-
ties with joint strategies, facilitating formulation of security proper-
ties in the sequel.

Definition 3.3 (EFG Properties). Let Γ = (𝑁,𝐺) be an EFG.
Joint Strategy A joint strategy 𝜎 is a function mapping every

non-terminal history ℎ ∈ H \ T to an action 𝑎 ∈ 𝐴(ℎ).
The set of joint strategies is S .

Single Strategy A strategy 𝜎𝑝 ∈ S𝑝 of player 𝑝 is a function
mapping non-terminal histories ℎ ∈ H \T with 𝑃 (ℎ) = 𝑝

to an action 𝑎 ∈ 𝐴(ℎ). Similarly, a group of players 𝑆 ⊂ 𝑁

may have a strategy 𝜎𝑆 ∈ S𝑆 .
Strategy Deviation If player 𝑝 deviates from a joint strat-

egy 𝜎 ∈ S with another strategy 𝜏𝑝 ∈ S𝑝 , the resulting
joint strategy is denoted 𝜎 [𝜏𝑝/𝜎𝑝 ]. Similarly, for a deviating
group of players 𝑆 ⊂ 𝑁 , we write 𝜎 [𝜏𝑆/𝜎𝑆 ].

Resulting History The resulting terminal history 𝐻 (𝜎) of
a strategy 𝜎 is the unique history obtained by following
chosen actions in 𝜎 from root to leaf.

Extended Strategy An extended joint strategy 𝛽 ∈ S of a
history ℎ ∈ T is a strategy whose resulting history is ℎ.
Thus, 𝐻 (𝛽) = ℎ.

Players’ Subhistories Let H 𝑆
𝑡 denote the set of non-empty

histories leading to terminal history 𝑡 where the last turn
was one of the players’ 𝑝 ∈ 𝑆 . That is, H 𝑆

𝑡 := {(ℎ, 𝑎) |
∃ℎ′ . 𝑡 = (ℎ, 𝑎, ℎ′) ∧ 𝑃 (ℎ) ∈ 𝑆}. For simplicity, let H

𝑝
𝑡 :=

H
{𝑝 }
𝑡 .

Utility Function The utility function 𝑢𝑝 (𝜎) assigns a utility
for every joint strategy 𝜎 ∈ S to player 𝑝 ∈ 𝑁 . We some-
times write all player utilities for a joint strategy as 𝑢 (𝜎),
denoting a tuple of size |𝑁 |. Since utilities only depend on
𝜎’s terminal history ℎ = 𝐻 (𝜎), we define 𝑢𝑝 (ℎ) := 𝑢𝑝 (𝜎).

Subgames Subgames Γ|ℎ of Γ are formed from the same set
𝑁 of players and a subtree of𝐺 , and are therefore identified
by a history ℎ leading to the subtree 𝐺 |ℎ . Histories H |ℎ of
Γ|ℎ are histories in H with prefix ℎ, and similarly for the
utility function 𝑢 |ℎ and strategies 𝜎 |ℎ ∈ S |ℎ .

Example 3.4. In Figure 1, a joint strategy 𝜏 could be player 𝐴
taking action 𝐻 initially, with player 𝐵 taking 𝑆 after (𝐶ℎ) and
𝑃 after (𝐷). Player 𝐴’s single strategy 𝜏𝐴 takes action 𝐻 initially.
Player 𝐵 receives 𝑢𝐵 (𝜏) = 𝛼 . The history resulting from 𝜏 is (𝐻 ),
and 𝜏 is a strategy extending history (𝐻 ). The subgame for history
(𝐶ℎ) has players 𝑁 = {𝐴, 𝐵} and has a tree where player 𝐵 must
choose between action 𝐼 with utility (−𝑎,−𝑏) and action 𝑆 with
utility (𝛼, 𝛼).

The Simplified Closing Game has 3 ·2 ·2 joint strategies as player
𝐴 chooses one out of three possible actions, and independently of
that 𝐵 picks one action out of two in both subtrees. Similarly, we
reach the conclusion that the Closing Game [30] listed in Table 1
has 1.6307 . . . · 1013 (16 trillion) joint strategies.

3.2 Game-Theoretic Security Properties

Since an adversary may perform an attack for one of two rea-
sons (personal gain or harming somebody), a protocol is game-
theoretically secure according to [30, 36], if the following two prop-
erties hold:



Lea S. Brugger, Laura Kovács, Anja Petković Komel, Sophie Rain & Michael Rawson

𝐵 𝐴 𝑃1 𝑃2 𝑃3 𝐵

𝑃3

(𝜌 +𝑚 + 3𝑓 − 𝜀,−𝜀,−𝜀,−𝑚, 𝜌)

𝐼𝑈

𝑃2

(𝜌 +𝑚 + 3𝑓 − 𝜀,−𝜀,−𝑚 − 𝑓 , 𝑓 , 𝜌)

𝐼𝑈

𝑃1

(𝜌 +𝑚 + 3𝑓 − 𝜀,−𝑚 − 2𝑓 , 𝑓 , 𝑓 , 𝜌)

𝐼𝑈

(𝜌, 𝑓 , 𝑓 , 𝑓 , 𝜌)

𝑈

𝑈

𝑈

𝑃1

(𝜌 +𝑚 + 3𝑓 − 𝜀,−𝜀,−𝜀,−𝑚, 𝜌)
𝐼𝑈

(𝜌,𝑚 + 3𝑓 − 𝜀,−𝜀,−𝑚, 𝜌) 𝑈 𝑆𝑆𝑃1

𝑈

(−𝜀,−𝜀,−𝜀,−𝜀, 0)

𝐼𝑈

𝐿𝐿𝐿𝐿𝑆𝐻

Figure 2: Simplified Routing Game with𝑚, 𝑓 , 𝜌, 𝜀 > 0 and 𝜌, 𝜀 infinitesimals.

(P1) (Byzantine fault-tolerance) Even in the presence of adver-
saries, honest players do not suffer loss; thus, in a secure
protocol an honest player will not receive negative utility,
independent of others’ behavior. Therefore, there are no
"attacks" where somebody is harmed.

(P2) (incentive-compatibility) Rational agents do not deviate
from the honest behavior, as the honest behavior yields the
best payoff. Hence, in a secure protocol, a rational "attacker"
is behaving honestly and no adversary gets personal gain
by deviation.

In the sequel, we fix an arbitrary EFG Γ = (𝑁,𝐺) and give all
definitions relative to Γ. Based on [30], property (P1) is ensured by
weak immunity as follows.

Definition 3.5 (Weak Immunity). A joint strategy 𝜎 ∈ S in EFG
Γ is weak immune if all players 𝑝 that follow 𝜎 always receive
non-negative utility:

𝛾wi (𝜎) : ∀𝑝 ∈ 𝑁 ∀𝜏 ∈ S . 𝑢𝑝 (𝜏 [𝜎𝑝/𝜏𝑝 ]) ≥ 0 . (𝛾wi)

Strategy 𝜏 from Example 3.4 is weak immune, as long as 𝛼 ≥ 𝜀

and 𝑎 ≥ 𝑓 .
In our work, we found weak immunity to be too restrictive

(see Section 6). We therefore revise [30] and propose weaker immu-
nity to ensure (P1) as follows:

Definition 3.6 (Weaker Immunity). A joint strategy 𝜎 in EFG Γ is
weaker immune if all players 𝑝 that follow 𝜎 always receive at least
a negative infinitesimal:

𝛾weri (𝜎) : ∀𝑝 ∈ 𝑁 ∀𝜏 ∈ S . real(𝑢𝑝 (𝜏 [𝜎𝑝/𝜏𝑝 ])) ≥ 0 . (𝛾weri)

(P2) is ensured by collusion resilience and practicality. Collusion
resilience requires honest behavior to yield the best payoff, even in
the presence of collusion.

Definition 3.7 (Collusion Resilience). A joint strategy 𝜎 in EFG Γ
is collusion resilient if colluding players 𝑆 ⊂ 𝑁 cannot profit from
deviation:

𝛾cr (𝜎) : ∀𝑆 ⊂ 𝑁 ∀𝜏 ∈ S .
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜎) ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜎 [𝜏𝑆/𝜎𝑆 ]) .

(𝛾cr)

Strategy 𝜏 from Example 3.4 is not collusion resilient, since player
𝐴 could deviate by choosing 𝐶ℎ initially and obtain 𝛼 , while by
following 𝜏 they receive only 𝛼 − 𝜖 . Practicality ensures that for all
player decisions, the honest behavior is also “greedy”: if all players
act selfishly (that is, maximizing their own utilities), the honest
choice yields the best utility.

Definition 3.8 (Practicality). A joint strategy 𝜎 in EFG Γ is practi-
cal if it is a subgame perfect equilibrium, i.e. a Nash equilibrium in
every subgame:

𝛾pr (𝜎) : ∀ℎ ∈ H ∀𝑝 ∈ 𝑁 ∀𝜏 ∈ S |ℎ .

𝑢 |ℎ,𝑝 (𝜎 |ℎ) ≥ 𝑢 |ℎ,𝑝 (𝜎 |ℎ [𝜏𝑝/𝜎 |ℎ𝑝 ]) .
(𝛾pr)

Strategy 𝜏 from Example 3.4 is not practical. In the subgame
after history (𝐶ℎ), the selfish choice for 𝐵 is to choose action 𝑆 .
Assuming player 𝐵 acts this way, player 𝐴’s greedy strategy is to
choose action 𝐶ℎ initially with expected utility 𝛼 instead of 𝛼 − 𝜖 .
Using (𝛾wi), (𝛾cr), and (𝛾pr), we formalize security as in [30]:

Definition 3.9 (Security). A terminal history ℎ∗ of an EFG Γ is
secure if there are three strategies extending ℎ∗ that satisfy (𝛾wi),
(𝛾cr) and (𝛾pr), respectively.

Our notion of security given in Definition 3.9 ensures that play-
ers can defend every attack. As the defense strategy may vary
depending on the attack, different strategies for (𝛾wi), (𝛾cr) and (𝛾pr)
are allowed.

4 FIRST-ORDER ARITHMETIC THEORY OF

SECURITY PROPERTIES

We now introduce our first-order formalization of game-theoretic
security, by exploiting and adjusting the EFG security properties of
Section 3 within the first-order theory of linear real arithmetic. Our
formalization ensures that if a first-order (security) formula is satis-
fiable, a model for the formula provides a joint strategy for a given
honest history of an EFG (Section 4.1). We present our first-order
formalization piecewise, as constraints on such models, imposing
among others that models must form a joint strategy, the joint
strategy should result in a given honest history, and user-supplied
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assumptions should be considered (Section 4.2–Section 4.4). We con-
sider the game utilities to be symbolic terms evaluated over pairs of
real values, as mentioned in Section 3.1. We therefore universally
quantify their symbolic variables in our encoding. As before, EFG
Γ = (𝑁,𝐺) is arbitrarily fixed.

4.1 Joint Strategies and Honest Histories

A joint strategy for an EFG Γ = (𝑁,𝐺) selects exactly one action
for each internal node of the tree. We introduce Boolean action
variables 𝑣ℎ𝑎 to indicate whether at non-terminal history ℎ a player
chooses action 𝑎, and constrain these variables 𝑣ℎ𝑎 so that exactly
one variable is assigned for each ℎ. We thus have∧

ℎ∈H \T

©­«
∨

𝑎∈𝐴(ℎ)
𝑣ℎ𝑎

ª®¬︸        ︷︷        ︸
(ALO)

∧
∧

𝑎𝑖 ,𝑎 𝑗 ∈𝐴(ℎ), 𝑎𝑖≠𝑎 𝑗

(
¬𝑣ℎ𝑎𝑖 ∨ ¬𝑣

ℎ
𝑎 𝑗

)
︸                                  ︷︷                                  ︸

(AMO)

.

(𝜙strat)
Constraint (ALO) ensures that each non-terminal history ℎ has at
least one action variable set. The at-most-one constraint (AMO) [27]
ensures that no more than one 𝑣ℎ𝑎 is set. Our next lemma then
concludes that a model I of 𝜙strat uniquely describes a joint strategy
𝜎 ∈ S and vice versa.

Lemma 4.1 (Model-Strategy Translation). Consider the EFG
Γ with joint strategies S . Let M be models of the formula 𝜙strat.
Then, 𝑓 :M → S , where

𝑓 (I) = 𝜎 ⇐⇒ ∀ℎ ∈ H \T : 𝜎 (ℎ) = 𝑎 ↔ I(𝑣ℎ𝑎 ) = ⊤ (1)

is a well-defined bijection.

Proof. Recall that

S = {𝜎 | 𝜎 : H \T →
⋃

ℎ∈H \T
𝐴(ℎ), 𝜎 (ℎ) ∈ 𝐴(ℎ)} and

M = {I| I : (𝑣ℎ𝑎 )
ℎ∈H \T
𝑎∈𝐴(ℎ) → {⊤,⊥}, I(𝜙strat) = ⊤} .

We start by showing that 𝑓 is well-defined. Let I ∈ M and define
𝜎 := 𝑓 (I). From I(𝜙strat) = ⊤, it follows that for all ℎ ∈ H \ T ,
there exists an action 𝑎 ∈ 𝐴(ℎ) such that I(𝑣ℎ𝑎 ) = ⊤ as well as there
cannot be two different 𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴(ℎ) such that I(𝑣ℎ𝑎𝑖 ) = I(𝑣ℎ𝑎 𝑗

) = ⊤.
By definition of 𝑓 , this says exactly that for every ℎ ∈ H \T , there
exists precisely one action 𝑎 ∈ 𝐴(ℎ) such that 𝜎 (ℎ) = 𝑎. Therefore,
𝜎 is a function from H \T to

⋃
ℎ∈H \T 𝐴(ℎ) with 𝜎 (ℎ) ∈ 𝐴(ℎ)

for all ℎ. Hence, 𝜎 ∈ S .
Next, we show the injectivity of 𝑓 . Let I, I′ ∈ M, I ≠ I

′. Then,
there exists a 𝑣ℎ𝑎 such that I(𝑣ℎ𝑎 ) ≠ I

′ (𝑣ℎ𝑎 ). Without loss of generality,
we assume I(𝑣ℎ𝑎 ) = ⊤. For 𝜎 := 𝑓 (I), 𝜎′ := 𝑓 (I′), it follows 𝜎 (ℎ) =
𝑎 ≠ 𝜎′ (ℎ). Thus, 𝜎 ≠ 𝜎′ and hence, 𝑓 is injective.

Lastly, we show the surjectivity of 𝑓 . We pick an arbitrary 𝜎 ∈ S
and consider I with I(𝑣ℎ𝑎 ) = ⊤ iff 𝜎 (ℎ) = 𝑎. This I is a function
(𝑣ℎ𝑎 )

ℎ∈H \T
𝑎∈𝐴(ℎ) → {⊤,⊥}. Since 𝜎 is a function with 𝜎 (ℎ) ∈ 𝐴(ℎ), we

know that for all ℎ ∈ H \ T , there exists exactly one 𝑎 ∈ 𝐴(ℎ)
such that I(𝑣ℎ𝑎 ) = ⊤. Therefore, I is a model of 𝜙strat and I ∈ M. We
conclude 𝑓 is surjective and thus a well-defined bijection. □

Lemma 4.1 is the crux of our work, reducing game-theoretic secu-
rity analysis to satisfiability modulo first-order linear real arithmetic:

game-theoretic security holds iff first-order formulas describing
security properties are satisfiable. In what follows, we introduce the
first-order formulas capturing game-theoretic security, which then
together with Lemma 4.1 enable the automation of (dis)proving
game-theoretic security (Section 5). To this end, we extend honest
histories and hence further constrain EFG joint strategies. We do
so by ensuring that all action variables in the honest history are set.
That is, for an honest history ℎ∗ = (𝑎1, . . . , 𝑎𝑛), we obtain

𝑣 ∅𝑎1 ∧ · · · ∧ 𝑣
(𝑎1,...,𝑎𝑛−1 )
𝑎𝑛 . (𝜙hist)

Example 4.2. Consider the Simplified Closing Game with hon-
est history (𝐶ℎ, 𝑆). From 𝜙strat and 𝜙hist, we obtain the following
constraints on action variables:(

𝑣 ∅
𝐻
∨ 𝑣 ∅

𝐶ℎ
∨ 𝑣 ∅

𝐷

)
∧

(
¬𝑣 ∅

𝐻
∨ ¬𝑣 ∅

𝐶ℎ

)
︸                                       ︷︷                                       ︸

Constraints from 𝜙strat for 𝐴.

∧
(
¬𝑣 ∅

𝐻
∨ ¬𝑣 ∅

𝐷

)
∧

(
¬𝑣 ∅

𝐶ℎ
∧ 𝑣 ∅

𝐷

)
︸                                 ︷︷                                 ︸

Constraints from 𝜙strat for 𝐴.

∧
(
𝑣
(𝐶ℎ )
𝐼
∨ 𝑣 (𝐶ℎ )

𝑆

)
∧

(
¬𝑣 (𝐶ℎ )

𝐼
∨ ¬𝑣 (𝐶ℎ )

𝑆

)
︸                                             ︷︷                                             ︸

Constraints from 𝜙strat for 𝐵.

∧
(
𝑣
(𝐷 )
𝐼
∨ 𝑣 (𝐷 )

𝑃

)
∧

(
¬𝑣 (𝐷 )

𝐼
∨ ¬𝑣 (𝐷 )

𝑃

)
︸                                        ︷︷                                        ︸

Constraints from 𝜙strat for 𝐵.

∧ 𝑣 ∅
𝐶ℎ
∧ 𝑣 (𝐶ℎ )

𝑆︸        ︷︷        ︸
Constraints from 𝜙hist .

4.2 Weak and Weaker Immunity

A joint strategy is weak immune (𝛾wi) if the utility of each player
following the strategy is non-negative, no matter how other players
behave. For each possible terminal history, we thus need to ensure
that if a player takes the corresponding actions, the resulting utility
for the player is greater than or equal to 0. The set of non-terminal
histories leading to a terminal history 𝑡 where it is the turn of
player 𝑝 is H

𝑝
𝑡 , as defined in Definition 3.3. We then formalize

weak immunity as

∧
𝑝∈𝑁

∧
𝑡 ∈T


∧

(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎

 → 𝑢𝑝 (𝑡) ≥ 0. (𝜙wi)

Moreover, we express weaker immunity (𝛾weri) as

∧
𝑝∈𝑁

∧
𝑡 ∈T


∧

(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎

 → real(𝑢𝑝 (𝑡)) ≥ 0. (𝜙weri)

To ensure that models of 𝜙wi and 𝜙weri yield weak(er) immune
joint strategies of our EFG Γ, we respectively combine the con-
straints 𝜙strat and 𝜙hist with 𝜙wi and 𝜙weri.

Example 4.3. In order to find a weak immune joint strategy for
the Simplified Closing Game, we add the following formula to the
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constraints from Example 4.2:

(𝑣 ∅
𝐻
→ 𝛼 − 𝜀 ≥ 0) ∧ (𝑣 ∅

𝐶ℎ
→ −𝑎 ≥ 0)

∧ (𝑣 ∅
𝐷
→ 𝑑𝐴 + 𝛼 − 𝜀 ≥ 0)

∧ (𝑣 ∅
𝐷
→ −𝑎 ≥ 0) ∧ (𝑣 ∅

𝐶ℎ
→ 𝛼 ≥ 0)

 Constraints for 𝐴.

∧ 𝛼 ≥ 0 ∧ (𝑣 (𝐶ℎ )
𝐼

→ −𝑏 ≥ 0)
∧ (𝑣 (𝐶ℎ )

𝑆
→ 𝛼 ≥ 0)

∧ (𝑣 (𝐷 )
𝐼
→ −𝑑𝐴 + 𝛼 ≥ 0)

∧ (𝑣 (𝐷 )
𝑃
→ 𝑎 − 𝑓 + 𝛼 ≥ 0)


Constraints for 𝐵.

Note that the first constraint for player 𝐵 does not contain an impli-
cation. This is because player 𝐵 does not make a choice at terminal
history (𝐻 ) and consequently, the empty antecedent is omitted. If
we consider the honest history (𝐶ℎ, 𝑆), we can simplify the formula
by 𝜙hist and propositional reasoning, but weak immunity does not
hold as the constraint 𝑣 ∅

𝐶ℎ
→ −𝑎 ≥ 0 is not satisfied for 𝑎 > 0.

When in turn checking for weaker immunity, we can disregard
infinitesimal terms, so the constraints from 𝜙weri simplify to:

(𝑣 ∅
𝐶ℎ
→ −𝑎 ≥ 0) ∧ (𝑣 ∅

𝐷
→ 𝑑𝐴 ≥ 0) ∧ (𝑣 ∅

𝐷
→ −𝑎 ≥ 0)︸                                                                  ︷︷                                                                  ︸

Constraints for 𝐴.

∧

(𝑣 (𝐶ℎ )
𝐼

→ −𝑏 ≥ 0) ∧ (𝑣 (𝐷 )
𝐼
→ −𝑑𝐴 ≥ 0) ∧ (𝑣 (𝐷 )

𝑃
→ 𝑎 − 𝑓 ≥ 0)︸                                                                                ︷︷                                                                                ︸

Constraints for 𝐵.

4.3 Collusion Resilience

Within a collusion resilient joint strategy, no subgroup of players
benefits when deviating from the honest behavior (𝛾cr). We thus
need to ensure that all possible deviations of a group of players re-
ceive total utility less than that obtained by honest behavior. Hence,
our formalization in this respect needs to include only the action
variables of the players that do not belong to the deviating sub-
group, as these are the players whose choices are in accordance with
the desired joint strategy. For an honest history ℎ∗, we formalize
collusion resilience as:∧

𝑆⊂𝑁

∧
𝑡 ∈T


©­­«

∧
(ℎ,𝑎) ∈H 𝑁 \𝑆

𝑡

𝑣ℎ𝑎

ª®®¬→
∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡)
 . (𝜙cr)

Example 4.4. Collusion resilience of the Simplified Closing Game
is captured by:

(𝑣 (𝐶ℎ )
𝐼

→ 𝛼 ≥ −𝑎) ∧ (𝑣 (𝐶ℎ )
𝑆

→ 𝛼 ≥ 𝛼)

∧ (𝑣 (𝐷 )
𝐼
→ 𝛼 ≥ 𝑑𝐴 + 𝛼 − 𝜀)

∧ (𝑣 (𝐷 )
𝑃
→ 𝛼 ≥ −𝑎)


Subgroup {𝐴}.

∧ (𝑣 ∅
𝐻
→ 𝛼 ≥ 𝛼) ∧ (𝑣 ∅

𝐶ℎ
→ 𝛼 ≥ −𝑏)

∧ (𝑣 ∅
𝐶ℎ
→ 𝛼 ≥ 𝛼)

∧ (𝑣 ∅
𝐷
→ 𝛼 ≥ −𝑑𝐴 + 𝛼)

∧ (𝑣 ∅
𝐷
→ 𝛼 ≥ 𝑎 − 𝑓 + 𝛼)


Subgroup {𝐵}.

Since the game has only two players, the two singleton sets of
players are the only strict subgroups of players. If we consider the
honest history (𝐶ℎ, 𝑆), we set the action variables 𝑣 ∅

𝐶ℎ
, 𝑣
(𝐶ℎ )
𝑆

,¬𝑣 ∅
𝐻

and ¬𝑣 (𝐶ℎ )
𝐼

. The resulting formula is satisfied for all possible val-
ues of 𝑎, 𝑏, 𝛼 and 𝜀 that satisfy the initial conditions. Hence, the
Simplified Closing Game is collusion resilient.

Example 4.5. We also illustrate how our work disproves collu-
sion resilience using the Simplified Routing Game with the honest
history (𝑆𝐻 , 𝐿, 𝐿, 𝐿, 𝐿,𝑈 ,𝑈 ,𝑈 ,𝑈 ). For the subgroup {𝑃1, 𝑃3} and the
terminal history (𝑆𝐻 , 𝐿, 𝐿, 𝐿, 𝐿,𝑈 , 𝑆𝑆𝑃1 ,𝑈 ), we get the following im-
plication as an instance of 𝜙cr:

𝑣 ∅
𝑆𝐻
∧ 𝑣 (𝑆𝐻 )

𝐿
∧ 𝑣 (𝑆𝐻 ,𝐿,𝐿)

𝐿
∧ 𝑣 (𝑆𝐻 ,𝐿,𝐿,𝐿,𝐿)

𝑈
→ 2𝑓 ≥ 3𝑓 − 𝜀

All action variables are set to⊤ as they are part of the honest history.
As 𝑓 > 𝜀 > 0, the formula is not satisfiable. The Simplified Routing
Game is thus not collusion resilient as players 𝑃1 and 𝑃3 can collude
profitably.

4.4 Practicality

In practical joint strategies, no player has an incentive to deviate
in any subgame (𝛾pr). Thus, we need to inspect deviations from a
joint strategy in a subgame starting from some history ℎ, so we
write H 𝑆

|ℎ,𝑡 to denote H 𝑆
𝑡 in the subgame ℎ.

As already presented in [30], a practical strategy can be con-
structed iteratively bottom-up: at every internal node, assuming we
have a practical strategy (and thus utility) for its subgames, we can
choose the action that yields the best utility for the current player.
Using this idea, we formalize practicality as follows:

∧
ℎ∈H \T

∧
𝑡,𝑟 ∈T|ℎ


∧

(ℎ′,𝑎) ∈H 𝑁
|ℎ,𝑡 , ℎ

′≠∅
𝑣
(ℎ,ℎ′ )
𝑎 ∧

∧
(ℎ̃,𝑐 ) ∈H 𝑁

|ℎ,𝑟

𝑣
(ℎ,ℎ̃)
𝑐


→ 𝑢𝑃 (ℎ) (ℎ, 𝑟 ) ≥ 𝑢𝑃 (ℎ) (ℎ, 𝑡).

(𝜙𝑝𝑟 )
The formula first quantifies (as a conjunction) over all subgames,
represented by non-terminal histories ℎ, and then over terminal
histories in the subgames starting at ℎ. We read the implication as
follows: the terminal history 𝑟 is the one that the practical strategy
yields, as on the left-hand side of the implication all of 𝑟 ’s actions
are asserted. On the right-hand side of the implication it is required
that the utility at 𝑟 of the current player (at history ℎ) is better than
the utilities from the practical strategies of other children (note
that for terminal history 𝑡 we do not require the first action to be
asserted, but only the actions in the child subgame).

Example 4.6. We analyze practicality of the Simplified Closing
Game. For the subgame starting at history (𝐶ℎ), we obtain:

(𝑣 (𝐶ℎ )
𝐼

→ −𝑏 ≥ 𝛼)︸                  ︷︷                  ︸
With 𝑡 = (𝑆 ) and 𝑟 = (𝐼 ) .

∧ (𝑣 (𝐶ℎ )
𝑆

→ 𝛼 ≥ −𝑏)︸                  ︷︷                  ︸
With 𝑡 = (𝐼 ) and 𝑟 = (𝑆 ) .

(2)

For the honest history (𝐶ℎ, 𝑆), this is satisfiable with 𝑣
(𝐶ℎ )
𝑆

and
¬𝑣 (𝐶ℎ )

𝐼
. If (𝐶ℎ, 𝐼 ) were the honest history, there would be no strat-

egy, as in the subgame starting at (𝐶ℎ) we should have −𝑏 ≥ 𝛼 ,
which contradicts initial conditions.
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5 AUTOMATED REASONING OF

GAME-THEORETIC SECURITY

The first-order formulas of Section 4, combined with Lemma 4.1,
provide us with the theoretical foundations for automating secu-
rity analysis of blockchain protocols presented as EFG trees. We
now present our algorithmic advancement on top of satisfiabil-
ity checking modulo linear real arithmetic (Algorithm 1), allow-
ing us to (dis)prove formulas from Section 4 and hence provide
game-theoretic security guarantees. Further, our work yields natu-
ral extensions for generating concrete counterexamples whenever
security properties are violated (Section 5.2) and infer preconditions
to enforce security (Algorithm 3).

For proving the security formulas of Section 4, we focus on
automating reasoning about a tuple

Π = (Γ,O, inf ,𝐶,𝐶wi,𝐶weri,𝐶cr,𝐶pr), where

• Γ is an EFG modeling the protocol of interest;
• O ⊆ T is a set of honest histories representing expected

behavior;
• inf is a set of infinitesimals occurring in the players’ utili-

ties;
• 𝐶 is the set of initial constraints on variables occurring in

player utilities;
• 𝐶wi, 𝐶weri, 𝐶cr, and 𝐶pr are sets of constraints on variables

to hold when checking formulas of Section 4, namely weak
immunity (𝐶wi), weaker immunity (𝐶weri), collusion re-
silience (𝐶cr) and practicality (𝐶pr), respectively.

Note that the sets𝐶 ,𝐶wi,𝐶weri,𝐶cr and𝐶pr may possibly be empty.
For every honest history in O , our work constructs the respec-
tive first-order security formula of Section 4 and uses SMT solving
for establishing satisfiability of the respective formula: if a model
is found, we construct a joint strategy as described in Lemma 4.1.
Since security properties must hold for all possible values of the util-
ity variables that adhere to the initial conditions 𝐶 , we universally
quantify over all variables and add an implication to account for
preconditions.We hence translate game-theoretic analysis from Sec-
tion 4 into the satisfiability solving of

∀®𝑥 .


∧
𝑐∈𝐶∪𝐶sp

𝑐 [®𝑥] →
(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]

) , (3)

where ®𝑥 = (𝑥1, 𝑥2, . . . , 𝑥ℓ ) are all variables appearing in utilities
of players and 𝐶sp ∈ {𝐶wi,𝐶weri,𝐶cr,𝐶pr}. By Lemma 4.1, a model
I ∈ I of (3) is a joint strategy satisfying the respective security
property of Section 4.

We next detail our solution towards solving (3), yielding our
automated reasoning approach to prove game-theoretic security in
Algorithm 1.

5.1 Security Reasoning with Case Splitting

We note that formula (3) is too restrictive, as next illustrated.

Example 5.1 (Splitswi). Consider the EFG of Figure 3 with 𝑁 =

{𝐴, 𝐵} and honest history (𝑞), where 𝑎 > 0. We aim to find a weak
immune strategy for this game. Clearly, 𝐴 must take action 𝑞, but
if 𝐴 deviates, 𝐵 must have non-negative utility. The action of 𝐵

𝐴

(𝑎, 𝑎)

𝑞

𝐵

(𝑎, 𝑏)
𝑟

(𝑎,−𝑏)

𝑦

𝑙

Figure 3: EFG Splitswi necessitating case splits during reason-

ing. We assume 𝑎 > 0.

depends on 𝑏: if 𝑏 > 0, 𝐵 should choose 𝑟 ; if 𝑏 < 0, 𝑦 should be cho-
sen; and otherwise, either choice is possible. The game is therefore
weak immune for history (𝑞), but requires different strategies for
different cases.

Example 5.1 shows that during security analysis, we may need
to consider several different orderings of linear terms within util-
ities. Such case splits turn out to be also necessary for real-world
protocols, such as the Closing Game [30]. In order to account for
possible case splits, we modify (3) and introduce preconditions to
order terms. To this end, we compute the set 𝑇𝑢 of linear terms
appearing in the constructed formulas; for example, for collusion
resilience we have:

𝑇𝑢 =


∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡) | 𝑆 ⊂ 𝑁, 𝑡 ∈ T

 . (4)

We then consider all consistent total orders ⪯ over 𝑇𝑢 . As we must
find models for all such orders ⪯, we reduce solving (3) to solving

∀ (⪯,𝑇𝑢 ) total order. ∃ I ∈ I .

I

(
∀®𝑥 .

∧
𝑐∈⪯∪𝐶∪𝐶sp

𝑐 [®𝑥] →
(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]

) )
= ⊤, (5)

where quantification over total orders ⪯ happens outside SMT
solving (see Remark 1) and ⪯ is interpreted as the set of ordering
constraints over elements of𝑇𝑢 , representing the total order it yields.
We conclude the following result.

Theorem 5.2 (Game-Theoretic Security). Let Γ = (𝑁,𝐺) be an
EFG with honest history ℎ∗, the formula (5) for sp ∈ {wi,weri, cr, pr}
is equivalent to its game-theoretic analog:

∀®𝑥 . ∀𝑐 ∈ 𝐶 ∪𝐶sp . 𝑐 [®𝑥] → ∃𝜎 ∈ S . 𝐻 (𝜎) = ℎ∗ ∧ 𝛾sp (𝜎) [®𝑥], (6)

where ®𝑥 = (𝑥1, . . . , 𝑥ℓ ) are the variables occurring in the utility terms
(interpreted over reals), and 𝐶 and 𝐶sp are finite sets of linear precon-
ditions on ®𝑥 .

Note that every model I of (5) translates to a strategy 𝜎 in (6) and
vice versa, by letting 𝜎 (ℎ) = 𝑎 iff I(𝑣ℎ𝑎 ) = ⊤. The above theorem
yields the following result.

Corollary 5.3 (Soundness and Completeness of Encoding).
The encoding of the game-theoretic properties weak immunity, weaker
immunity, collusion resilience and practicality using the formulas
𝜙strat, 𝜙hist together with 𝜙wi, 𝜙weri, 𝜙cr and 𝜙𝑝𝑟 , respectively, includ-
ing case splits (6), is sound and complete.

Note that our first-order formulas encoding game-theoretic secu-
rity properties are expressed in the decidable theory of first-order
linear real arithmetic [5], [15]. Since the number of total orders in
(5) is finite, our formalization is decidable.
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Remark 1. For efficient handling of (5), we compute unsatisfiable
(unsat) cores to detect which linear terms require case splitting. We
introduce labels for inequalities appearing in the formula 𝜙sp — one of
𝜙wi, 𝜙weri, 𝜙cr or 𝜙𝑝𝑟 . For example, if 𝜙sp contains 𝑥 < 𝑦, we introduce
a label ℓ(𝑥,𝑦) as a new Boolean variable2, replace the inequality with
the implication ℓ(𝑥,𝑦) → 𝑥 < 𝑦, and add ℓ(𝑥,𝑦) to our encoding. The
weak immunity formula 𝜙wi then becomes∧
𝑝∈𝑁

∧
𝑡 ∈T

©­­«


∧
(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎

 → ℓ(𝑢𝑝 (𝑡 ),0) → 𝑢𝑝 (𝑡) ≥ 0
ª®®¬ ∧ ℓ(𝑢𝑝 (𝑡 ),0)

and similarly for 𝜙weri, 𝜙cr and 𝜙𝑝𝑟 (see Appendix B). If unsatisfiabil-
ity of the formula is established, we extract an unsat core composed
of our labels and retrieve candidate linear terms for case splits. Ex-
ample 5.1 yields an unsat core composed of labels ℓ0,−𝑏 and ℓ𝑏,0, from
which we conclude that the following three cases need to be analyzed:
𝑏 > 0, 𝑏 = 0 and 𝑏 < 0. Yet, even for a small number of linear terms,
there might be a very large number of possible orderings ⪯ between
terms to be considered. The number of ⪯ can however be significantly
reduced by making two observations: (i) orderings ⪯ must be com-
patible with 𝐶 and 𝐶sp; and (ii) orderings must be consistent with
real arithmetic. For example, with the set of linear terms 𝑎,−𝑎, 0, we
should consider 𝑎 > 0 > −𝑎, −𝑎 > 0 > 𝑎, and 𝑎 = −𝑎 = 0, but not e.g.
𝑎 > −𝑎 > 0 or 𝑎 = 0 > −𝑎.

Based on the above, Algorithm 1 summarizes our reasoning ap-
proach for proving game-theoretic security properties based on our
first-order formalization with case splits. Given an input Π, Algo-
rithm 1 establishes satisfiability of a game-theoretic property (cf.
Lemma 4.1), by using an auxiliary SMT solver A to track (remaining)
possible terms orderings. If at any point A reports unsatisfiability,
there are no more possible orderings ⪯. Constraints 𝐶 and 𝐶sp are
added immediately to A. To get an ordering, we ask A for a model —
which maps real variables to numeric values — from which we infer
an ordering ⪯ on linear terms over variables (EvaluateModel). For
example, if the model is 𝑎 = 1, 𝑏 = 2, 𝑐 = 3, we obtain the ordering
on linear terms 2𝑐 − 𝑏 > 𝑎 + 𝑏 = 𝑐 > 0 > 𝑎 − 𝑐 . If we find a strategy
for a case split, we add a conflict clause to ensure we do not consider
the same ordering twice.

We note that in Algorithm 1 the only properties considered are
weak(er) immunity, collusion resilience and practicality; these prop-
erties are enough to enforce game-theoretic security (Definition 3.9).
However, Algorithm 1 can be applied to any game-theoretic for-
mula about an EFG as long as this formula can be expressed as
a first-order linear inequality over two computable functions 𝑓 , 𝑔,
with utility function 𝑢, set of players 𝑁 and set of strategies S ,
that is 𝑓 (𝑢, 𝑁,S ) ≤ 𝑔(𝑢, 𝑁,S ). Our work yields a generic way
to translate such game-theoretic formulas to SMT formulas, as
showcased in our proofs in Appendix A.

5.2 Generating Counterexamples to Security

In case there is no joint strategy fulfilling the security property 𝜙sp
within Algorithm 1, our work provides automated formal analy-
sis explaning why the conditions of 𝜙sp are violated and derives
concrete counterexamples to security.
2We actually use two labelling Boolean variables in our implementation, one each for
the infinitesimal and real components of the inequality.

Algorithm 1: Game-Theoretic Security Reasoning
input :an input instance

Π = (Γ,O, inf ,𝐶,𝐶wi,𝐶weri,𝐶cr,𝐶pr), an honest
history ℎ𝑜 ∈ O and the name of a security
property sp ∈ {wi,weri, cr, pr}

output :⊤ if 𝜙sp is satisifiable in Π, ⊥ otherwise

1 S← Solver()
2 A← Solver()
3 AddConstraints (S, ComputeStrategyConstraints (Γ,

ℎ𝑜 ))
4 AddConstraints (A, 𝐶 ∪𝐶𝑠𝑝 )
5 𝑇 ← ∅
6 while Solve (A) = sat do

7 𝑀 ← GetModel (A)
8 𝑂 ← {EvaluateModel (𝑀 , 𝑥 , 𝑦) : (𝑥,𝑦) ∈

Combinations (𝑇 )}

9 if Check (S, 𝑠𝑝 , 𝐶 ∪ 𝐶sp ∪ 𝑂) = sat then

10 // found strategy for current ordering, add conflict
clause AddConstraints (A, {

∨
𝑐∈𝑂 ¬𝑐})

11 end

12 else

13 𝑇 ′ ← ∅
14 foreach ℓ𝑥,𝑦 ∈ GetUnsatCore(S) do
15 𝑇 ′ ← 𝑇 ′ ∪ {𝑡 : 𝑡 ∈ {𝑥,𝑦}, 𝑡 ∉ 𝑇 }

16 if 𝑇 ′ = ∅ then // no new expressions, considered
every case

17 return ⊥
18 end

19 𝑇 ← 𝑇 ∪ 𝑇 ′
20 end

21 end

22 return ⊤

Weak(er) Immunity. For the weak(er) immunity property 𝜙wi, a
counterexample is a harmed player 𝑝 together with a partial strategy
of the other players 𝑁 − 𝑝 such that — while following the honest
history — no matter how 𝑝 acts, they cannot avoid receiving a real-
valued negative utility. We say that a strategy for a player 𝑝 follows
the honest history ℎ∗ if at every node appearing in ℎ∗, where 𝑝 is
making a choice, the strategy will choose the action in ℎ∗.

Definition 5.4 (Counterexamples of Weak(er) Immunity). Let Γ be
an EFG and ℎ∗ the considered honest history. A counterexample
to ℎ∗ being weak(er) immune is a player 𝑝 together with a partial
strategy 𝑠𝑁−𝑝 ⊆ 𝜏𝑁−𝑝 ∈ S𝑁−𝑝 of the other players such that
𝑠𝑁−𝑝 extended by any strategy 𝜎𝑝 of player 𝑝 , which follows the
honest history ℎ∗, yields a terminal history 𝑡 and it is minimal with
that property. Further, we have

∀𝜎𝑝 ∈ S𝑝 (∀(ℎ, 𝑎) ∈ H
𝑝

ℎ∗
. 𝜎𝑝 (ℎ) = 𝑎) → 𝑢𝑝 (𝑡) < 0 (7)
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for weak immunity (wi), and respectively

∀𝜎𝑝 ∈ S𝑝 (∀(ℎ, 𝑎) ∈ H
𝑝

ℎ∗
. 𝜎𝑝 (ℎ) = 𝑎) → real(𝑢𝑝 (𝑡)) < 0 (8)

for weaker immunity (weri).

Minimality of the partial strategy 𝑠𝑁−𝑝 states that, if any infor-
mation point 𝑠𝑁−𝑝 (ℎ) = 𝑎 is removed, there exists a strategy 𝜎𝑝 of
player 𝑝 such that the tuple (𝜎𝑝 , 𝑠′𝑁−𝑝 ) does not yield a terminal his-
tory, where the 𝑠′

𝑁−𝑝 is 𝑠𝑁−𝑝 without action 𝑎. That means, when
following only actions of (𝜎𝑝 , 𝑠′𝑁−𝑝 ), we get stuck at an internal
node of the tree.

Example 5.5. The Simplified Closing Game of Figure 1 with hon-
est history (𝐶ℎ, 𝑆) is not weak immune. The counterexample is the
player 𝐴 and the partial strategy for player 𝐵 taking action 𝐼 after
𝐶ℎ (and therefore making the utility of 𝐴 negative). The partial
strategy is minimal, because if we remove the choice of action 𝐼

for player 𝐵, after 𝐴 chooses action𝐶ℎ , we get stuck at the internal
node of the game (where 𝐵 is making a choice), rather than ending
in a leaf node, where the utilities of players are known. Note that
the partial strategy says nothing about the tree in the subgame after
𝐷 , as we only consider strategies where player 𝐴 chooses𝐶ℎ at the
root node, to follow the honest history.

Collusion Resilience. A counterexample to collusion resilience 𝜙cr
consists of a group of deviating players 𝑆 and their partial strategy
𝑠𝑆 ∈ S leading to better-than-honest joint utility for 𝑆 , no matter
how the other players 𝑁 − 𝑆 react – while following the honest
history.

Definition 5.6 (Counterexamples Collusion Resilience). Let Γ be an
EFG and ℎ∗ the considered honest history. A counterexample to ℎ∗

being collusion resilient (cr) is a set of deviating players 𝑆 together
with their partial strategy 𝑠𝑆 ⊆ 𝜏𝑆 ∈ S𝑆 such that 𝑠𝑆 extended
by any strategy 𝜎𝑁−𝑆 of players 𝑁 − 𝑆 , which follows the honest
history ℎ∗, yields a terminal history 𝑡 and it is minimal with that
property. Further,

∀𝜎𝑁−𝑆 ∈ S𝑁−𝑆 . (9)

(∀(ℎ, 𝑎) ∈ H 𝑁−𝑆
ℎ∗ . 𝜎𝑁−𝑆 (ℎ) = 𝑎) →

∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡) >
∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) .

The minimality of 𝑠𝑆 is similar to the minimality of the partial
strategy for weak(er) immunity.

Example 5.7. In the Simplified Routing Game of Figure 2, the
terminal history (𝑆𝐻 , 𝐿, 𝐿, 𝐿, 𝐿,𝑈 , 𝑆𝑆𝑃1 ,𝑈 ) results in a strictly bet-
ter outcome for the subgroup {𝑃1, 𝑃3, 𝐵} than the honest history,
modeling the Wormhole attack (see Section 2). While choosing the
honest actions 𝐿 and 𝐿, the other players 𝐴 and 𝑃2 are powerless in
this scenario.

Practicality. Intuitively, a counterexample to practicality of ℎ∗ has
to provide a reason why a rational player would not follow ℎ∗. That
is, somewhere along ℎ∗, assume after a prefix ℎ, there exists an
action 𝑎 which promises the current player 𝑃 (ℎ) a strictly better
utility than ℎ∗. However, a “promised" utility has to be one that
results from a practical history 𝑡 in the subgame after (ℎ, 𝑎), other-
wise it would not be an actual counterexample to the practicality of
ℎ∗. Therefore, we define a counterexample to practicality as follows.

Definition 5.8 (Counterexamples Practicality). For an EFG Γ and
an honest history ℎ∗, a counterexample 𝑐 to the practicality (pr) of ℎ∗

is a terminal history 𝑐 = (ℎ, 𝑎, 𝑡), where ℎ is the maximal common
prefix withℎ∗, 𝑎 ∈ 𝐴(ℎ) is a possible action after historyℎ, and 𝑡 is a
practical terminal history in Γ| (ℎ,𝑎) such that𝑢𝑃 (ℎ) (ℎ∗) < 𝑢𝑃 (ℎ) (𝑐).

Example 5.9. The Simplified Closing Game of Figure 1 with hon-
est history (𝐻 ) is not practical. The counterexample is the terminal
history (𝐶ℎ, 𝑆), that deviates from the honest history already at the
root of the game tree. Choosing the action 𝑆 in the subgame after
history (𝐶ℎ) is practical, as it yields a better utility (𝛼) for player
𝐵 than action 𝐼 (which gives −𝑏). At the root it is therefore better
for player 𝐴 to choose action 𝐶ℎ over the honest action 𝐻 , as 𝐶ℎ
gives utility 𝛼 , which is strictly better than 𝛼 − 𝜀 given by 𝐻 . The
history (𝐶ℎ, 𝑆) is therefore a valid counterexample to practicality
of honest history (𝐻 ).

Correctness of Counterexamples. The various counterexamples to
security properties, as introduced above, are evidence for a violated
security property, as stated below.

Theorem 5.10 (Counterexamples to Security). For an EFG Γ
and an honest history ℎ∗, there exists a counterexample to wi, weri,
cr or pr of ℎ∗ according to Definition 5.4–Definition 5.8 iff ℎ∗ is not
weak(er) immune, collusion resilient or practical, respectively.

Computing Counterexamples to 𝜙wi, 𝜙weri and 𝜙cr. Within our
work, we find counterexamples to (violated)𝜙wi,𝜙weri and𝜙cr using
an approach similar to case splitting over term orderings. We first
amend formulas 𝜙wi, 𝜙weri and 𝜙cr with suitable labels. This allows
us to detect at which histories the checked property is violated
and for which player(s), by inspecting labels in the reasoning core.
Each history reflects one choice in the counterexample strategy. For
the purpose of counterexample generation, the formula for weak
immunity 𝜙wi is then rewritten as follows:∧

𝑝∈𝑁

∧
𝑡 ∈T

©­­«ℓ𝑝,𝑡 →


∧
(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎

 → 𝑢𝑝 (𝑡) ≥ 0
ª®®¬ ∧ ℓ𝑝,𝑡 .

Formulas 𝜙weri and 𝜙cr are adjusted analogously and can be found
in Appendix C.

We generate counterexamples to 𝜙wi, 𝜙weri and 𝜙cr by enumer-
ating minimal unsat cores [19]. From these unsat cores, (groups of)
players and partial strategies are identified, yielding counterexam-
ples to the respective security property. Each unsat core represents
a counterexample; thus, by listing and interpreting all unsat cores,
we generate all counterexamples to 𝜙wi, 𝜙weri and 𝜙cr.
Computing Counterexamples to 𝜙𝑝𝑟 Generating counterexam-
ples to 𝜙𝑝𝑟 is summarized in Algorithm 2, requiring a different
approach than for 𝜙wi, 𝜙weri and 𝜙cr.

Algorithm 2 takes as input a game Γ, an honest history ℎ𝑜 and
the case of term orderings for which practicality analysis failed.
Algorithm 2 returns a set of counterexamples (CE) to 𝜙𝑝𝑟 , that is,
a set of terminal histories, and a subcase of the initial case. Note
that the set CE contains all the counterexamples to 𝜙𝑝𝑟 in the given
refined problematic case. In each iteration of the while-loop of Algo-
rithm 2 (lines 6–25), all practical histories that yield a strictly better
utility for the deviator are listed, then the game tree is cut such
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Algorithm 2: Counterexamples to Practicality
input :an input instance

Π = (Γ,O, inf ,𝐶,𝐶wi,𝐶weri,𝐶cr,𝐶pr), an honest
history ℎ𝑜 ∈ O and the case case for which
practicality failed

output : the set of all counterexamples 𝐶𝐸 to the
practicality of ℎ𝑜 in a subcase of case, together
with that subcase subcase

1 CE← ∅
2 GT← Γ

3 ho← ℎ𝑜

4 subgame← ()
5 subcase← case

6 while ho ¬pr ∧ GT ≠ leaf do

7 prStrat← {ℎ′ |ℎ′pr in GT ∧ 𝑢𝑃 (ℎ) (ho) < 𝑢𝑃 (ℎ) (ℎ′)}
8 // ℎ is the maximal common prefix of ℎ′ with ho

9 if prStrat = ∅ then
10 // in subgame no more counterexamples
11 ℎ ← first action of ho
12 end

13 else

14 ℎ ← shortest prefix ℎ in prStrat

15 end

16 subcase.RefineSubcase ()
17 // if further case split was done in line 7

18 foreach 𝑐 ∈ prStrat do
19 CE.Add ( (subgame, 𝑐) )
20 end

21 ho← ho − ℎ
22 subgame← subgame + ℎ
23 GT.Remove (direct subtrees of ℎ that occur in prStrat)
24 GT← GT |ℎ
25 end

26 return CE, subcase

that new counterexamples can be revealed (line 7). The variables
GT (current game tree), ℎ (guidance on what to cut) and 𝑠𝑢𝑏𝑔𝑎𝑚𝑒

(subgame to be considered) keep track of the cutting and ensure
that the correct terminal histories are added to CE. Additionally,
it might be necessary to further specify the ordering of the utility
terms, which is considered in line 16 of Algorithm 2.

Based on the above considerations, all counterexamples to prac-
ticality for a specific term ordering are thus generated via Algo-
rithm 2, as proven next.

Theorem 5.11 (Correctness of Algorithm 2). Consider the
output (CE, subcase) of Algorithm 2. Then, the set CE computed by
Algorithm 2 contains exactly all counterexamples toℎ∗ being practical
in subcase.

Proof. (i) We first prove that 𝑐 ∈ CE implies 𝑐 is a counterexam-
ple in subcase. Let the honest history be ℎ∗ and 𝑐 ∈ CE. Assuming

subcase, we show that 𝑐 is of the form (prefix, 𝑎, ℎ′′), where prefix
is the maximal common prefix of 𝑐 with ℎ∗, 𝑎 an action such that
𝑢𝑃 (prefix) (ℎ∗) < 𝑢𝑃 (prefix) (𝑐) and ℎ′′ practical in Γ| (prefix,𝑎) .

By Algorithm 2 (line 7), when 𝑐 = (subgame, ℎ′), we have that ℎ′
is practical for some ho, subcase and GT. Additionally, 𝑢GT

𝑃 (ℎ) (ho) <
𝑢GT
𝑃 (ℎ) (ℎ

′), where ℎ is the maximal common prefix of ℎ′ with ho.
Note that in every iteration of the loop ho is a suffix of ℎ∗, as only
prefixes ℎ of ℎ∗ are cut off (line 11, 14, and 21). Further, subcase is
a subcase of subcase, since subcase is only refined in the algorithm
(line 16). The game GT is the subgame of Γ after subgame, possibly
without some already removed direct subtrees. This holds as we
always consider subgames after ℎ (line 24), which are pieces of
ℎ∗ and are collected in 𝑠𝑢𝑏𝑔𝑎𝑚𝑒 (line 22). The direct subtree re-
moval happens in line 23 of Algorithm 2. We hence conclude that
𝑢𝑃 (subgame,ℎ) (ℎ∗) = 𝑢GT

𝑃 (ℎ) (ho) < 𝑢GT
𝑃 (ℎ) (ℎ

′) = 𝑢𝑃 (subgame,ℎ) (𝑐) in
subcase. Additionally, 𝑐 is a terminal history of the input game Γ.
The property left to show is that ℎ′ = (𝑎, ℎ′′), such that ℎ′′ is prac-
tical in Γ| (subgame,𝑎) . Note that only direct subtrees of Γ|subgame

have been removed in GT, hence GT | (𝑎) = Γ| (subgame,𝑎) . Since
ℎ′ = (𝑎, ℎ′′) is practical in GT, ℎ′′ has to be practical in GT |𝑎 =

Γ| (subgame,𝑎) in subcase. Therefore, 𝑐 is a counterexample in subcase
and thus also in subcase, concluding direction (i) of the proof.

(ii) We next show the reverse direction of (i); that is, 𝑐 is a coun-
terexample in subcase implies 𝑐 ∈ CE. Let 𝐶 be the set of all coun-
terexamples in the case subcase. As subcase does not necessarily
yield a total order on the utility terms, we fix an arbitrary total
order ≤𝑠 on the utility terms which is compatible with subcase. We
now order elements 𝑐 ∈ 𝐶 according to

(1) length of the common prefix ℎ of 𝑐 with the honest history
ℎ∗ (shortest first) and within this group into

(2) subgroups according to the value 𝑢𝑃 (ℎ) (𝑐) (decreasingly).
Within these subgroups, the order does not matter.

Towards a contradiction, we assume 𝑐 ∈ 𝐶 is the first (accord-
ing to the ordering above) that is not in CE. Let 𝑐 = (ℎ, 𝑎, 𝑡) and
𝑢𝑃 (ℎ) (𝑐) =: 𝑢, such that 𝑡 is practical in Γ| (ℎ,𝑎) , 𝑢 > 𝑢𝑃 (ℎ) (ℎ∗) and
ℎ the maximal common prefix with ℎ∗. We distinguish between the
following possible cases.
Case 1: (𝑎, 𝑡) is not practical in Γ|ℎ in total order ≤𝑠 . Thus, there is a
(𝑎′, 𝑡 ′) ∈ H |ℎ such that 𝑢′ := 𝑢𝑃 (ℎ) (ℎ, 𝑎′, 𝑡 ′) >𝑠 𝑢, and 𝑡 ′ practical
in Γ| (ℎ,𝑎′ ) which is a counterexample to (𝑎, 𝑡) being practical in ≤𝑠 .
This also yields a counterexample 𝑐′ = (ℎ, 𝑎′, 𝑡 ′) to 𝑐 being practical
in ≤𝑠 . It also is another counterexample to ℎ∗ being practical (𝑢′ >𝑠
𝑢 > 𝑢 (𝑃 (ℎ) ) (ℎ∗)) in ≤𝑠 and thus subcase. Therefore 𝑐′ ∈ 𝐶 and it
occurs in the same group but in a strictly earlier subgroup than 𝑐 .
Thus, by our assumption that 𝑐 is the first to not appear in CE, we
get 𝑐′ ∈ CE.

In Algorithm 2, every 𝑐 ∈ CE occurs once in prStrat
3 as the

element with the shortest common prefix with ℎ∗. This holds as we
always remove at least one direct subtree or move further along
ℎ∗. Let us now consider the last occurrence of 𝑐′ in prStrat. In this
iteration, the treeGTwill be cut to at most Γ|ℎ−{𝑎′ : 𝑐′ = (ℎ, 𝑎′, 𝑡 ′)}.
Since all counterexamples 𝑐′′ with the same prefix ℎ as 𝑐 and with
greater utilities 𝑢𝑃 (ℎ) (𝑐′′) >𝑠 𝑢𝑃 (ℎ) (𝑐) have been found in CE, the

3only the respective suffix of 𝑐 occurs since we add the subgame prefix only later to
CE.



CheckMate: Automated Game-Theoretic Security Reasoning

corresponding branches are removed from GT in the following
iterations of Algorithm 2 as well.

We consider now under which condition (𝑎, 𝑡) from 𝑐 = (ℎ, 𝑎, 𝑡)
becomes practical in a partial tree of Γ|ℎ in subcase: since t is
practical in Γ| (ℎ,𝑎) it suffices if 𝑢𝑃 (ℎ) (ℎ, 𝑎, 𝑡) ≥ 𝑢𝑃 (ℎ) (ℎ, 𝑎′′, 𝑡 ′′)
in subcase, for all 𝑎′′ ∈ 𝐴(ℎ), 𝑡 ′′ practical in Γ| (ℎ,𝑎) . Note that each
such (𝑎′′, 𝑡 ′′) that violates this property yields a counterexample
𝑐′′ = (ℎ, 𝑎′′, 𝑡 ′′) to ℎ∗’s practicality in subcase with a utility strictly
better or incomparable to 𝑐 . We observe that incomparability at this
step in the algorithm could not have happened, as it would have
caused a further case split (line 16) which contradicts the fact that
subcase is the output value of the case split. Let us thus consider the
case of strictly better utility: Since ≤𝑠 is compatible with subcase,
we know 𝑢𝑃 (ℎ) (𝑐′′) >𝑠 𝑢𝑃 (ℎ) (𝑐) implies 𝑢𝑃 (ℎ) (𝑐′′) > 𝑢𝑃 (ℎ) (𝑐) in
subcase. Thus, all such (𝑎′′, 𝑡 ′′) have at this point already been
removed from GT.

Therefore, (𝑎, 𝑡) of 𝑐 = (ℎ, 𝑎, 𝑡) is practical in this tree, implying
that (𝑎, 𝑡) has to appear in prStrat in the next iteration and hence
also 𝑐 ∈ 𝐶𝐸. This contradicts the assumption of Case 1.
Case 2: (𝑎, 𝑡) is practical in Γ|ℎ in ≤𝑠 , yielding two further cases.
Case 2.1: 𝑐 = (ℎ, 𝑎, 𝑡) is in the first group 𝐶 , that is, there is no
counterexample with a shorter prefix. In this case, 𝑐 = (ℎ, 𝑎, 𝑡) has
to be practical in Γ in ≤𝑠 . By assuming the contrary, there exists
a counterexample 𝑐′ = (ℎ′, 𝑎′, 𝑡 ′), where ℎ′ is a prefix of 𝑐 , 𝑡 ′ is
practical in Γ| (ℎ′,𝑎′ ) in ≤𝑠 , and 𝑢𝑃 (ℎ′ ) (𝑐) <𝑠 𝑢𝑃 (ℎ′ ) (𝑐′). Then, ℎ′
cannot be a prefix of ℎ, as this contradicts 𝑐 being in the first group
of 𝐶 . Further, ℎ can not be a prefix of ℎ′, since this contradicts the
fact that (𝑎, 𝑡) is practical in Γ|ℎ in ≤𝑠 . Therefore, 𝑐 is practical in
Γ in ≤𝑠 , implying however that 𝑐 has to occur in the first iteration
of the loop in prStrat (being practical in subcase). Another case is
not possible (similar to Case 1) as a further case split of subcase did
not happen.
Case 2.2: 𝑐 = (ℎ, 𝑎, 𝑡) is not in the first group in𝐶 . Let then ℎ′ be the
maximal common prefix with ℎ∗ in the group directly before 𝑐 . All
the counterexamples 𝑐′ of this group have 𝑢𝑃 (ℎ′ ) (𝑐′) > 𝑢𝑃 (ℎ′ ) (ℎ∗).
Similar to Case 1, as they all appear in CE, we reach the follow-
ing tree to be considered: Γ|ℎ′ minus all the immediate dishonest
branches that contain counterexamples. In the subsequent iteration
of the algorithm, prStrat has to be empty as there are no more
branches that make the condition 𝑢𝑃 (ℎ′ ) (𝑐′) > 𝑢𝑃 (ℎ′ ) (ℎ∗) true.
Therefore, we go to the if-branch in line 9 and consider Γ| (ℎ′,𝑎∗ ) in
the following iteration. The action 𝑎∗ is the next action in ℎ∗ after
ℎ′. Note that for the tree Γ| (ℎ′,𝑎∗ ) , 𝑐 is in the first group of coun-
terexamples by construction. Therefore, Case 2.1 applies for the
game Γ|ℎ′,𝑎∗ , thus counterexample 𝑐 has to be practical in Γ| (ℎ′,𝑎∗ )
and hence has to occur in prStrat in this iteration. This contradicts
the assumption that 𝑐 ∉ CE and overall concludes direction (ii) of
the proof. □

5.3 Inferring Preconditions for Security

In addition to identifying concrete counterexamples (Section 5.2) in
case a security property𝜙sp is not satisfied in Algorithm 1, our work
can also determine additional assumptions necessary to ensure that
property 𝜙sp holds. We support such an extended security analysis
by iteratively computing preconditions for the input EFG.

Definition 5.12 (Preconditions to Security). Given a game Γ, an
honest history ℎ∗, a security property sp and initial conditions 𝐶
and 𝐶sp such that ℎ∗ violates sp, we say 𝜋 is a precondition if
∀ (⪯,𝑇𝑢 ) total order. ∃ I ∈ I .

I

(
∀®𝑥 .

∧
𝑐∈⪯∪𝐶∪𝐶sp∪{𝜋 }

𝑐 [®𝑥] →
(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]

) )
= ⊤.

We note that in Definition 5.12, the precondition 𝜋 strengthens
the initial constraints by making the left-hand side of the above
implication satisfiable for less total orders, thus ensuring validity
of the above implication for more of them.

Algorithm 3: Generating Weakest Preconditions
input :an input instance

Π = (Γ,O, inf ,𝐶,𝐶wi,𝐶weri,𝐶cr,𝐶pr), an honest
history ℎ𝑜 ∈ O and the name of a security
property sp ∈ {wi,weri, cr, pr}

output :weakest precondition under which 𝜙sp is
satisifiable in Π

1 S← Solver()
2 A← Solver()
3 pre←⊤ // the precondition to be constructed
4 𝜑 ←⊤ // the conflict clauses to reach the next case
5 AddConstraints (S, ComputeStrategyConstraints (Γ,

ℎ𝑜 ))
6 AddConstraints (A, 𝐶 ∪𝐶𝑠𝑝 )
7 𝑇 ← ∅
8 while Check (A, 𝜑) = sat do

9 𝑀 ← GetModel (A, 𝜑)
10 𝑂 ← {EvaluateModel (𝑀 , 𝑥 , 𝑦) : (𝑥,𝑦) ∈

Combinations (𝑇 )}

11 if Check (S, 𝑠𝑝 , 𝐶 ∪ 𝐶sp ∪ {pre} ∪ 𝑂) = sat then

12 // found strategy for current ordering, add conflict
clause

13 𝜑 ← 𝜑 ∧ (∨𝑐∈𝑂 ¬𝑐)
14 end

15 else

16 𝑇 ′ ← ∅
17 foreach ℓ𝑥,𝑦 ∈ GetUnsatCore(S) do
18 𝑇 ′ ← 𝑇 ′ ∪ {𝑡 : 𝑡 ∈ {𝑥,𝑦}, 𝑡 ∉ 𝑇 }

19 if 𝑇 ′ = ∅ then // no new expressions, case is unsat
20 pre← pre ∧ (∨𝑐∈𝑂 ¬𝑐)
21 𝜑 ← 𝜑 ∧ (∨𝑐∈𝑂 ¬𝑐)
22 end

23 𝑇 ← 𝑇 ∪ 𝑇 ′
24 end

25 end

26 return pre

In Algorithm 3, we show our adjustment of Algorithm 1, allow-
ing us to generate the weakest precondition under which a security
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property sp is satisfied. If precondition generation is enabled in our
work, the solving routine at line 16 in Algorithm 1 does not termi-
nate; instead, it adds the negation of the ordering in the unsolved
case 𝑂 to preconditions in 𝐶 (the variable pre in line 20 of Algo-
rithm 3) and restarts the solving routine with the new set of initial
constraints. With such an adjustment of Algorithm 1, Algorithm 3
allows us to generate weakest preconditions to sp, in the following
sense: if 𝜋 and𝜓 are preconditions, then 𝜋 is weaker than𝜓 if∧

𝑐∈⪯∪𝐶∪𝐶sp∪{𝜋 }
𝑐 [®𝑥]

is satisfiable for more total orders ⪯ than∧
𝑐∈⪯∪𝐶∪𝐶sp∪{𝜓 }

𝑐 [®𝑥] .

For proving correctness of Algorithm 3, we first prove the fol-
lowing helping lemma.

Lemma 5.13. [Unique Weakest Precondition] Given a game Γ, an
honest history ℎ∗, a security property sp and finite sets of initial
constraints 𝐶 and 𝐶sp, there exists a unique (modulo equivalence)
weakest precondition 𝜋 to make history ℎ∗ satisfy sp.

Proof. Let 𝜋 be a precondition, by Definition 5.12, it holds that

∀ (⪯,𝑇𝑢 ) total order. ∃ I ∈ I .

I

(
∀®𝑥 .

∧
𝑐∈⪯∪𝐶∪𝐶sp∪{𝜋 }

𝑐 [®𝑥] →
(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]

) )
= ⊤.

As noted after Corollary 5.3, the satisfiability of the formula
depends only on the finitely many total orders of terms in𝑇𝑢 . Thus,
any precondition can be weakened to a list of term orderings to be
avoided, which are finitely many. The weakest of these is the one
that allows precisely all total orderings of terms in𝑇𝑢 that are satis-
fiable and forbids all others, and is thus unique up to equivalence
(as a quantifier-free first-order formula can be expressed in many
equivalent ways). □

We next proceed with proving correctness of Algorithm 3.

Theorem 5.14 (Weakest Preconditions – Correctness of
Algorithm 3). Given a game Γ, an honest history ℎ∗ and a secu-
rity property sp that ℎ∗ violates, Algorithm 3 generates the weakest
precondition 𝜋 which makes ℎ∗ satisfy sp.

Proof. As Algorithm 3 adjusts Algorithm 1, we only prove that
whenever Algorithm 3 terminates (which it does, because we only
need to consider finitely many total orders of 𝑇𝑢 ), the generated
precondition 𝜋 (i) is indeed a precondition and (ii) is the weakest.

(i) By construction, 𝜋 is a conjunction of negated term orderings:

𝜋 =
©­«
∨
𝑐∈O1

¬𝑐ª®¬ ∧ · · · ∧ ©­«
∨
𝑐∈O𝑛

¬𝑐ª®¬ .
Let us write ¬𝑂𝑖 for

(∨
𝑐∈O𝑖

¬𝑐
)
. By construction, we leave out

only the term orderings for which the security property holds (line
11 in the Algorithm 3), and hence 𝜋 is a precondition.

(ii) Let 𝜓 be the weakest precondition given by Lemma 5.13.
Towards a contradiction, assume that𝜓 is strictly weaker than 𝜋 ;
that is, there exists a total order ⪯ such that∧

𝑐∈⪯∪𝐶∪𝐶sp∪{𝜓 }
𝑐 [®𝑥] (10)

is satisfiable and ∧
𝑐∈⪯∪𝐶∪𝐶sp∪{𝜋 }

𝑐 [®𝑥] (11)

is unsatisfiable. Let𝑀 be a model for ®𝑥 that satisfies (10). Since𝑀
does not satisfy (11), we know that 𝑀 (𝜋) = ⊥. Let 𝑂𝑖 be the first
ordering in the conjunction 𝜋 such that 𝑀 (¬𝑂𝑖 ) = ⊥. Consider
line 20 of Algorithm 3 at the point when ¬𝑂𝑖 was added to the
precondition 𝜋 : the else case of the condition of line 11 implies that
the security property is not satisfied in the case 𝑂𝑖 ; further, line 19
implies that there are no more comparisons to be added. As such,
for every total order ⪯𝑖 that implies the case 𝑂𝑖 , we have

∀ I ∈ I . I
(
∀®𝑥 .

∧
𝑐∈⪯𝑖∪𝐶∪𝐶sp

𝑐 [®𝑥] →
(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]

) )
= ⊥,

which is equivalent to

∀ I ∈ I . ∃®𝑥 .
∧

𝑐∈⪯𝑖∪𝐶∪𝐶sp

𝑐 [®𝑥] ∧ ¬ I
(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]

)
. (12)

The inequalities in 𝜙sp [®𝑥] only depend on the total order ⪯𝑖 and
not on the actual values of ®𝑥 . Thus,

∃®𝑥 .
∧

𝑐∈⪯𝑖∪𝐶∪𝐶sp

𝑐 [®𝑥] ∧ ¬ I
(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]

)
implies

∀®𝑥 .
∧

𝑐∈⪯𝑖∪𝐶∪𝐶sp

𝑐 [®𝑥] → ¬ I
(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]

)
.

Using (12), we get

∀ I ∈ I . ∀®𝑥 .
∧

𝑐∈⪯𝑖∪𝐶∪𝐶sp

𝑐 [®𝑥] → ¬ I
(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]

)
.

(13)
Consider now ⪯𝑀 the total order on 𝑇𝑢 induced by the model𝑀 .
Since 𝑀 (¬𝑂𝑖 ) = ⊥, we know that 𝑀 satisfies 𝑂𝑖 , so ⪯𝑀 implies
𝑂𝑖 as well and (13) holds for ⪯𝑀 too. As 𝜓 is a precondition, by
using Definition 5.12 with ⪯𝑀 , we obtain I

′ ∈ I such that

∀®𝑥 .
∧

𝑐∈⪯𝑀∪𝐶∪𝐶sp∪{𝜓 }
𝑐 [®𝑥] → I

′ (𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]) (14)

holds. Using (13) with total order ⪯𝑀 and I
′ ∈ I, we obtain

∀®𝑥 .
∧

𝑐∈⪯𝑀∪𝐶∪𝐶sp

𝑐 [®𝑥] → ¬ I′
(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]

)
. (15)

With the model𝑀 for ®𝑥 , the antecedent of the implication in (14)
holds as 𝑀 satisfies (10) (and thus satisfies the constraints in 𝐶 ,
𝐶sp and 𝜓 ). Thus, I′

(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [𝑀 ( ®𝑥)]

)
holds. With the

model 𝑀 for ®𝑥 , the antecedent of the implication in (15) is also
valid, yielding ¬ I′

(
𝜙strat ∧ 𝜙hist ∧ 𝜙sp [𝑀 ( ®𝑥)]

)
. We thus obtained

a contradiction, concluding the proof. □
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Example 5.15. The weak immunity property 𝜙wi of the game
from Example 5.1 for honest history (𝑙, 𝑟 ) is not satisfied if 𝑏 < 0.
Our work identifies this case and reports that there is no weak
immune joint strategy given that 𝑏 < 0. The solving routine of
Algorithm 1 is restarted with 𝑏 ≥ 0 added to 𝐶 in Algorithm 3, trig-
gering the satisfiability of the such revised weak immunity property
𝜙wi. In this case, Algorithm 3 returns one additional precondition,
namely 𝑏 ≥ 0.

We conclude this section by noting that finding sufficient (non-
trivial) preconditions to satisfy a security property𝜙sp is not always
possible with Algorithm 3: if the existing preconditions 𝐶 imply
the ordering 𝑂 for which there is no adequate joint strategy, the
security property 𝜙sp cannot be satisfied by adding more assump-
tions about the EFG utilities. In this case, the weakest precondition
returned by Algorithm 3 is ⊥.

6 IMPLEMENTATION AND EXPERIMENTAL

EVALUATION

Implementation. We implemented our game-theoretic security
analysis in the new CheckMate tool4, written in Python and using
Z3 [6] as the underlying SMT solver of Algorithm 1. The input
for CheckMate is a JSON [13] encoding of an input instance Π of
Algorithm 1, which is also the current representation language for
the EFG. The instance Π is parsed into an internal representation,
which is used to construct SMT constraints for (any subset of)
the security properties presented in Section 4. CheckMate then
executes Algorithm 1 for each property, logging intermediate results
such as case splits.CheckMate outputs a joint strategy if a property
is satisfied, or a list of counterexamples otherwise; in the latter case,
CheckMate also produces preconditions (Section 5.3). In addition,
CheckMate supports a verification mode to check whether a joint
strategy satisfies a security property.

CheckMate only supports EFGswith finite game trees. However,
EFGs are known to have the capacity to model many protocols.
Further, every step in the game can model an arbitrary long time
in the protocol (e.g. the "ignore" actions model unlimited time).
An advantage of the trees being finite is that the game-theoretic
properties will only quantify over finite sets, implying that the
respective security properties can be translated to first-order linear
real arithmetic (as shown in Section 4).
Benchmarks. Among other benchmarks, we evaluated Check-
Mate using the examples of Section 2 as well as real-world block-
chain protocols from Bitcoin’s Lightning Network [29]. These ex-
amples are listed as the last four entries of Table 1. Namely, we used
the complete model of the Closing Game of [30] and the full model
of the routing phase corresponding to the Routing Game of [30]
with three players. The honest behavior of the full routing game
is similar to the Simplified Routing Game, but players have many
more actions available, such as sharing the secrets or varying the
way they lock funds. The full Routing Game for five (and more)
players is a task for future work.

As the modeling process of real-world protocols as EFGs is an
intricate and time-consuming process, representing a challenge on
its own, we so far have a restricted but representative benchmark

4Our tool is available at https://github.com/apre-group/checkmate.

set, showcasing the logical expressivity provided by CheckMate
to efficiently (dis)prove blockchain security. We are not aware of
other efforts providing practical challenges for evaluating formal
methods in support of blockchain security. We believe our EFG
examples provide an initial set examples to be further used in
verifying blockchain security.

Experimental Results. Table 1 summarizes our experimental re-
sults, using an Apple M1 Pro CPU with 10 cores and 32 GB of RAM.
The sizes of our EFG examples in terms of nodes and players are
listed in columns 2–3. For each honest history (column 4), Table 1
displays CheckMate’s results for game-theoretic security. We also
report execution times for complete analysis of all properties, with-
out counterexample generation. In column 6 (Calls), the number of
SMT calls within CheckMate is listed. Both protocol benchmarks
(the Closing Game and the 3-Player Routing Game) hint that even
for bigger game trees, the number of case splits is relatively low.

Table 2 displays the number of counterexamples found for each
violated property, as well as a precondition strong enough to make
the respective property true. We write ⊥ to indicate that no precon-
dition (except ⊥) is strong enough to satisfy the property. Thus, the
problem is inherent to the game and is not a matter of the variable
values. Due to its size, we do not state the nontrivial precondition
𝜋 of the Pirate Game, generated by CheckMate in 37 seconds.

Experimental Analysis. CheckMate successfully analyzes the
games of Section 2 and correctly identifies the Wormhole attack as
one of the 16 counterexamples to collusion resilience in the Sim-
plified Routing Game. Applied to the Closing Game, CheckMate
terminates after about 17 seconds for each honest history and cor-
rectly identifies required case splits for history (𝐶ℎ, 𝑆). The Routing
Game is not weak immune, but weaker immune: honest players
will not lose “real” resources, but may suffer opportunity cost. The
3-player Routing Game has 21,688 nodes, compared to 221 nodes
for the Closing Game.

Our experiments demonstrate the usability and scalability of
CheckMate. For example, for analyzing real-world applications
(closing and routing phases in the last two lines of Table 1), Check-
Mate enabled the automation of reasoning about trillions of game
strategies and thousands of game nodes. We are not aware of other
automated reasoning approaches handling such and similar EFGs.

The mostly trivial preconditions in Table 2 are not surprising,
since we asserted constraints we were aware of as initial conditions.
For the Closing Game and history (𝐶ℎ, 𝑆), for example, we inherited
initial constraints 𝑎, 𝑏 ≥ 𝑓 for weak immunity and 𝑐 ≠ 𝑝𝐴 for prac-
ticality from [30]. When removing those constraints, CheckMate
finds a precondition equivalent to 𝑎, 𝑏 ≥ 𝑓 for weak immunity
and one equivalent to 𝑐 ≠ 𝑝𝐴 ∨ 𝑏 − 𝑝𝐴 + 𝑑𝐵 = 𝑓 for practicality.
Thus, CheckMate provides a less restrictive but still sufficient
precondition than [30].

7 RELATEDWORK

Game theory opens up new venues in security and privacy anal-
ysis [7], particularly within blockchain technologies [20]. Game-
theoretic modeling approaches in support of blockchain security
have recently emerged [30, 36], complemented by specific analy-
sis of several attack vectors, such as the griefing attack [23]. Our

https://github.com/apre-group/checkmate
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Game Nodes Players History Security Calls Time
Splitswi 5 2 (𝑞) ✓ 8 0.38
Splitscr 5 2 (𝑛) ✓ 10 0.76
Market Entry 5 2 (𝑒, 𝑖) ✗(wi,weri) 6 0.32
Pirate 52 4 (𝑦, 𝑛, 𝑛, 𝑛,𝑦,𝑦) ✗(wi,weri,cr,pr) 11 1.88
Simplified Closing 8 2 (𝐻 ) ✗(pr) 5 0.36

(𝐶ℎ, 𝑆) ✗(wi, weri) 6 0.36
Simplified Routing 17 5 (𝑆𝐻 , 𝐿, 𝐿, 𝐿, 𝐿,𝑈 ,𝑈 ,𝑈 ,𝑈 ) ✗(wi,cr) 6 0.57
Closing 221 2 (𝐻 ) ✗(pr) 5 16.4

(𝐶ℎ, 𝑆) ✓ 6 17.8
3-player Routing 21,688 3 (𝑆𝐻 , 𝐿, 𝐿,𝑈 ,𝑈 ) ✗(wi,cr,pr) 149 1222

Table 1: CheckMate results, time in seconds. ✓means that all security properties are satisfied. ✗(sp) indicates that the history

is not secure as property "sp" failed.

Game Property CE PC
Market Entry wi 1 ⊥
(𝑒, 𝑖) weri 1 ⊥
Pirate wi 141 ⊥
(𝑦, 𝑛, 𝑛, 𝑛,𝑦,𝑦) weri 141 ⊥

cr >80 ⊥
pr 1 𝜋

Simplified Closing (𝐻 ) pr 1 ⊥
Simplified Closing (𝐶ℎ, 𝑆) wi 1 ⊥

weri 1 ⊥
Simplified Routing wi 9 ⊥
(𝑆𝐻 , 𝐿, 𝐿, 𝐿, 𝐿,𝑈 ,𝑈 ,𝑈 ,𝑈 ) cr 16 ⊥
Closing (𝐻 ) pr 5 ⊥
3-player Routing wi 41 ⊥
(𝑆𝐻 , 𝐿, 𝐿,𝑈 ,𝑈 ) cr 2 ⊥

pr >0* TO
Table 2: Counterexample (CE) and Precondition (PC) analy-

sis provided by CheckMate. >𝑁 indicates that we found 𝑁

counterexamples in 10 minutes, but generation has not ter-

minated yet. The practicality result (*) for 3-player Routing

is computationally demanding, but begins to produce results

after the time limit. At around 60 minutes, we have over 100

counterexamples. TO indicates a timeout after 2 hours.

work complements these efforts as we express game-theoretic secu-
rity in first-order linear real arithmetic and turn protocol security
into an SMT-solving problem. Extended with game-theoretic case
splitting and counterexample generation, we scale game-theoretic
security to large protocols and fully automate it. Our work is thus
orthogonal to [30].

Thework of [4] focuses on game-theoretic security specific to the
Ethereum blockchain [35], but does not reason about punishment
mechanisms. While these works provide rigorous game-theoretic
models, they lack support for automated reasoning, hindering their
scalability and computer-aided certification.

Focusing on formal verification for security, the Tamarin [25],
Verifpal [16], and Proverif [3] frameworks study general protocols,
while the Verisol approach targets the Ethereum blockchain [34].

These methods operate on cryptographic security properties, prov-
ing whether certain actions are cryptographically possible. Our
work complements these techniques by analyzing and establishing
whether punishment mechanisms work as intended.

A similar line of research is analysis of cryptographic security
properties in rational cryptography [1, 11, 12, 14, 21]. Rational cryp-
tography does not assume players to be inherently honest or mali-
cious, but instead rational. However, rational cryptography verifies
cryptographic alignment of rationality and honesty, whereas our
work in CheckMate focuses on incentive/punishment mechanisms
modeled via games.

Another game-theoretic security reasoning framework is intro-
duced by [17, 18]. Here, concurrent stochastic game structures
(CGSs) are modeled within probabilistic asynchronous-time tem-
poral logic with rewards (rPATL). The respective CGS are verified
via model-checking of PATL formulas. Unlike this framework, our
work does not reason with uncertainty. Instead, we provide a decid-
able first-order logic fragment for proving game-theoretic security.
Thanks to our logical precision, we can avoid the computational
burden of handling probability (reward) operators. Our EFGs also
avoid concurrent game strategies and provide a deterministic game
structure.

When it comes to automated game-theoretic analysis, it is worth
noting themodeling and verification support offered byGambit [24],
PRISM-games [17] and Open Games [10]. These frameworks, how-
ever, are restricted to constant numeric utilities and cannot process
symbolic utilities, limiting their applicability to reason about all
game actions/strategies. We are not aware of other game-theoretic
frameworks that natively support symbolic utilities, which is a
key feature of CheckMate. Compositional reasoning in Open
Games [10] does enable modular analysis, which we aim to further
investigate in order to split large EFGs (such as routing games)
into subgames.

8 CONCLUSION AND DISCUSSION

Game-theoretic security analysis provides new ways to derive se-
curity guarantees and identify attack vectors. Yet, automation in
this area was so far limited, if at all, hindering the applicability and
scalability of game-theoretic security analysis. Our work addresses
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these obstacles and implements novel methods for deciding secu-
rity properties in games with symbolic utilities. We reduce security
analysis to satisfiability solving over game strategies expressed in
first-order theory of linear arithmetic. We provide full automation
of within the newCheckMate framework, scaling security analysis
to very large game trees, by automatically identifying necessary
case splits for efficient reasoning. In addition, CheckMate supports
the generation of counterexamples and necessary preconditions to
security, enabling model repair and synthesis of game properties.

Limitations and Challenges for Future Work. Modeling pro-
tocols requires considerable expertise, and the precision of our
analysis depends on the accuracy of the underlying model. To max-
imize application of the CheckMate framework, we must provide
ways to accurately and efficiently model protocols as EFGs. Partial
automation of the EFG modeling process is therefore a valuable
task to be addressed further.

Currently, CheckMate only supports linear utilities. However,
protocols exist that naturally involve nonlinear terms over utilities.
For example, ratios in market settings produce terms containing
multiplication of two variables. While CheckMate internally al-
ready supports nonlinear arithmetic formulas over utilities, it comes
with the caveat that the resulting SMT queries are also nonlinear
and therefore significantly harder. Improving the performance of
SMT solving over nonlinear arithmetic in the setting of Check-
Mate is its own challenge, which we aim to address in the future.

Finally, extending CheckMate with compositional game anal-
ysis is another direction we are already investigating. We believe
compositionality may enable us to support randomized game as-
pects, for example model behavior that is not controllable by any
player. In addition, compositional game analysis might ease model-
ing further real-world protocols as EFGs.
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A SOUNDNESS AND COMPLETENESS OF

ENCODING

This section contains the complete proof of the soundness and
completeness result in Theorem A.5 and Corollary 5.3. We first
need to prove the following results.

Lemma A.1. Let I be a model of 𝜙strat and ℎ ∈ H \T . Then, there
exists exactly one 𝑟 ∈ T |ℎ such that

I

©­­«
∧

(ℎ̃,𝑐 ) ∈H 𝑁
|ℎ,𝑟

𝑣
(ℎ,ℎ̃)
𝑐

ª®®¬ = ⊤.

Proof. Let I be such that I(𝜙strat) = ⊤ and 𝜎 := 𝑓 (I) ∈ S
as in Lemma 4.1. Let us now fix an arbitrary ℎ ∈ H \ T and
consider the restricted strategy 𝜎 |ℎ after history ℎ and its generated
history 𝐻 (𝜎 |ℎ) ∈ T |ℎ . We show that 𝑟 = 𝐻 (𝜎 |ℎ). Let (ℎ̃, 𝑐) ∈
H 𝑁
|ℎ,𝐻 (𝜎 |ℎ )

. This is equivalent to 𝜎 (ℎ, ℎ̃) = 𝑐 . By definition of 𝜎 , this

implies I(𝑣 (ℎ,ℎ̃)𝑐 ) = ⊤. Therefore, 𝑟 = 𝐻 (𝜎 |ℎ). Assume there exists
a different 𝑟 ′ that makes the conjunction true. At some history 𝑡 ,
the next actions 𝑐 and 𝑐′ of 𝑟 and 𝑟 ′ have to differ for the first time.
Then, I(𝑣𝑡

𝑐′ ) = I(𝑣𝑡𝑐 ) = ⊤. By definition of 𝜎 , this implies 𝜎 (ℎ, 𝑡) = 𝑐′

and 𝜎 (ℎ, 𝑡) = 𝑐 , which contradicts 𝜎 ∈ S . □

Lemma A.2. Under the assumption (𝜙strat), the formula (𝜙𝑝𝑟 ) is
equivalent to

∧
ℎ∈H \T

∧
𝑝∈𝑁

∧
𝑡,𝑟 ∈T|ℎ


∧

(ℎ′,𝑎) ∈H 𝑁 \{𝑝}
|ℎ,𝑡

𝑣
(ℎ,ℎ′ )
𝑎 ∧

∧
(ℎ̃,𝑐 ) ∈H 𝑁

|ℎ,𝑟

𝑣
(ℎ,ℎ̃)
𝑐


→ 𝑢𝑝 (ℎ, 𝑟 ) ≥ 𝑢𝑝 (ℎ, 𝑡).

(16)

Proof. We first prove (16) =⇒ (𝜙𝑝𝑟 ). Let us fix ℎ ∈ H \ T ,
𝑟, 𝑡 ∈ T |ℎ and assume (16) and LHS of (𝜙𝑝𝑟 ). Consider the LHS
of (16) for 𝑝 = 𝑃 (ℎ): since (∅, 𝑎) ∉ H 𝑁 \𝑃 (ℎ)

|ℎ, 𝑡 , the LHS of (16) for
𝑝 = 𝑃 (ℎ) holds and therefore its RHS does too (for 𝑝 = 𝑃 (ℎ)), which
is the same as (𝜙𝑝𝑟 )’s RHS. Hence, the implication is satisfied. To
show (𝜙𝑝𝑟 ) =⇒ (16), we prove (𝜙𝑝𝑟 ) =⇒ (𝑁 ′𝑝𝑟 ) and (𝑁 ′𝑝𝑟 ) =⇒ (16)
instead by the following two lemmas, where (𝑁 ′𝑝𝑟 ) is as follows:

∧
ℎ∈H \T

∧
𝑡,𝑟 ∈T|ℎ


∧

(ℎ′,𝑎) ∈H 𝑁 \𝑃 (ℎ)
|ℎ,𝑡

𝑣
(ℎ,ℎ′ )
𝑎 ∧

∧
(ℎ̃,𝑐 ) ∈H 𝑁

|ℎ,𝑟

𝑣
(ℎ,ℎ̃)
𝑐


→ 𝑢𝑃 (ℎ) (ℎ, 𝑟 ) ≥ 𝑢𝑃 (ℎ) (ℎ, 𝑡).

(𝑁 ′𝑝𝑟 )
□

Lemma A.3. (𝜙𝑝𝑟 ) =⇒ (𝑁 ′𝑝𝑟 )

Proof. We transcribe (𝑁 ′𝑝𝑟 ) to an equivalent form as follows:

∧
𝑡 ∈T

∧
ℎ∈H 𝑁

𝑡 \{𝑡 }

∧
𝑟 ∈T|ℎ


∧

(ℎ′,𝑎) ∈H 𝑁 \𝑃 (ℎ)
|ℎ,𝑡 ′

𝑣
(ℎ,ℎ′ )
𝑎 ∧

∧
(ℎ̃,𝑐 ) ∈H 𝑁

|ℎ,𝑟

𝑣
(ℎ,ℎ̃)
𝑐


→ 𝑢𝑃 (ℎ) (ℎ, 𝑟 ) ≥ 𝑢𝑃 (ℎ) (ℎ, 𝑡 ′),

(𝑁 ′′𝑝𝑟 )
where 𝑡 = (ℎ, 𝑡 ′) and we prove (𝜙𝑝𝑟 ) implies (𝑁 ′′𝑝𝑟 ). Let 𝐼 be a
model of (𝜙𝑝𝑟 ) and (𝜙strat), we show 𝐼 also models (𝑁 ′′𝑝𝑟 ). Let 𝑡 =
(𝑎1, . . . , 𝑎𝑛) ∈ T . We prove the formula (𝑁 ′′𝑝𝑟 ) for all ℎ ∈ H 𝑁

𝑡 \ {𝑡}
by induction on the number of choices 𝑃 (ℎ) makes in 𝑡 , so by
induction on the structure of 𝑡 .
Base cases: Let ℎ ∈ H 𝑁

𝑡 \ {𝑡} be such that 𝑡 = (ℎ, 𝑡 ′) and player
𝑃 (ℎ) makes no choices in 𝑡 ′. For example, ℎ = (𝑎1, . . . , 𝑎𝑛−1) and
𝑡 ′ = (𝑎𝑛) is such a case, as 𝑡 ′ is a terminal history after ℎ and
there are no choices available after 𝑎𝑛 . In fact, there is precisely one
base case for every player 𝑝 making a choice in 𝑡 . Assume the last
choice 𝑝 makes is 𝑎 𝑗 , then our base case is ℎ = (𝑎1, ..., 𝑎 𝑗−1), 𝑡 ′ =
(𝑎 𝑗 , ..., 𝑎𝑛). For such ℎ, it holds that H 𝑁 \𝑃 (ℎ)

|ℎ,𝑡 = H 𝑁
|ℎ,𝑡 \ {(∅, 𝑎)},

since obviously 𝑃 (ℎ)’s only turn is afterℎ and therefore the formulas
are identical.
Inductive cases: Assume for ℎ𝑛 ∈ H 𝑁

𝑡 \ {𝑡} such that 𝑡 = (ℎ𝑛, 𝑡𝑛)
and 𝑃 (ℎ𝑛) makes 𝑛 choices in 𝑡𝑛 , that the implication in (𝑁 ′′𝑝𝑟 ) holds.
Consider ℎ ∈ H 𝑁

𝑡 \ {𝑡} and 𝑟 ∈ T |ℎ such that 𝑡 = (ℎ, 𝑡 ′), the player
𝑃 (ℎ)makes𝑛+1 choices in 𝑡 ′ and the LHS of the implication in (𝑁 ′′𝑝𝑟 )
holds. According to Lemma A.1, this means that 𝐻 (𝜎 |ℎ) = 𝑟 , where
𝜎 = 𝑓 (𝐼 ) is the strategy generated by 𝐼 . Let now ℎ𝑝 be the shortest
non-empty subhistory of 𝑡 ′ with 𝑃 (ℎ) = 𝑃 (ℎ,ℎ𝑝 ), i.e. 𝑡 = (ℎ,ℎ𝑝 , 𝑡𝑛).

Then, for (ℎ,ℎ𝑝 ) ∈ H 𝑁
𝑡 \ {𝑡} and 𝑟𝑛 := 𝐻 (𝜎 | (ℎ,ℎ𝑝 ) ) ∈ T | (ℎ,ℎ𝑝 ) ,

player 𝑃 (ℎ) makes 𝑛 choices in 𝑡𝑛 . By construction of 𝑡𝑛 as subse-
quence of 𝑡 ′, and 𝑟𝑛 , the LHS in (𝑁 ′′𝑝𝑟 ) is true. Applying our hypoth-
esis, we get that

𝑢𝑃 (ℎ,ℎ𝑝 ) (ℎ,ℎ𝑝 , 𝑟𝑛) ≥ 𝑢𝑃 (ℎ,ℎ𝑝 ) (ℎ,ℎ𝑝 , 𝑡𝑛) .

Together with 𝑃 (ℎ,ℎ𝑝 ) = 𝑃 (ℎ) and 𝑡 = (ℎ𝑝 , 𝑡𝑛) this yields

𝑢𝑃 (ℎ) (ℎ,ℎ𝑝 , 𝑟𝑛) ≥ 𝑢𝑃 (ℎ) (𝑡) .

Finally, we show 𝑢𝑃 (ℎ) (ℎ, 𝑟 ) ≥ 𝑢𝑃 (ℎ) (ℎ,ℎ𝑝 , 𝑟𝑛), by considering
(𝜙𝑝𝑟 ) with ℎ, 𝑟, (ℎ𝑝 , 𝑟𝑛). As 𝑟 = 𝐻 (𝜎 |ℎ), we know∧

(ℎ̃,𝑐 ) ∈H 𝑁
|ℎ,𝑟

𝑣
(ℎ,ℎ̃)
𝑐 .

We also know ∧
(ℎ′,𝑎) ∈H 𝑁

|ℎ,(ℎ𝑝 ,𝑟𝑛 ) ,ℎ
′≠∅

𝑣
(ℎ,ℎ′ )
𝑎

because the actions of ℎ𝑝 also occur in the conjunction∧
(ℎ′,𝑎) ∈H 𝑁 \𝑃 (ℎ)

|ℎ,(ℎ𝑝 ,𝑟𝑛 )

𝑣
(ℎ,ℎ̃)
𝑐

since 𝑃 (ℎ) is never the player and the actions of 𝑟𝑛 have to hold
because 𝑟𝑛 = 𝐻 (𝜎 | (ℎ,ℎ𝑝 ) ) and hence the corresponding action vari-
ables have to be true by definition of 𝜎 . Therefore, the RHS of (𝜙𝑝𝑟 )
also has to hold, which yields𝑢𝑃 (ℎ) (ℎ, 𝑟 ) ≥ 𝑢𝑃 (ℎ) (ℎ,ℎ𝑝 , 𝑟𝑛). Putting
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the two inequalities together, we reach 𝑢𝑃 (ℎ) (ℎ, 𝑟 ) ≥ 𝑢𝑃 (ℎ) (ℎ, 𝑡).
This concludes the induction. □

Lemma A.4. (𝑁 ′𝑝𝑟 ) =⇒ (16)

Proof. Let 𝐼 be a model of (𝜙strat) and (𝑁 ′𝑝𝑟 ), we show 𝐼 is also
a model of (16). We fix ℎ ∈ H \T , 𝑟, 𝑡 ∈ T |ℎ , 𝑝 ∈ 𝑁 and assume
𝐼 models the LHS of (16) for these ℎ, 𝑟, 𝑡, 𝑝 . For 𝑝 = 𝑃 (ℎ), trivially
also LHS of (𝑁 ′𝑝𝑟 ) and thus RHS of (𝑁 ′𝑝𝑟 ) and RHS of (16) hold. For
𝑝 ≠ 𝑃 (ℎ), we know 𝐻 (𝜎 |ℎ) = 𝑟 , i.e. the resulting history 𝜎 = 𝑓 (𝐼 )
of the strategy modeled by 𝐼 restricted to ℎ has to be 𝑟 , by applying
Lemma A.1. Let now 𝑎𝑖 be the first action in 𝑟 after which it is
player 𝑝’s turn, i.e. 𝑟 = (𝑎1, ..., 𝑎𝑖 , 𝑟𝑝 ) and 𝑃 (ℎ, 𝑎1, .., 𝑎𝑖 ) = 𝑝 . If there
is no such action 𝑎𝑖 , then H

𝑁 \{𝑝 }
|ℎ,𝑡 = H 𝑁

|ℎ,𝑡 and since LHS of (16)
and (𝜙strat) hold, 𝑟 = 𝑡 , so the RHS of (16) trivially holds. Since∧

(ℎ′,𝑎) ∈H 𝑁 \{𝑝}
|ℎ,𝑡

𝑣
(ℎ,ℎ′ )
𝑎 ,

we have 𝜎 (ℎ,ℎ′) = 𝑎 for ℎ′ after which it is not 𝑝’s turn. But from
𝐻 (𝜎 |ℎ) = 𝑟 it follows that 𝑡 = (𝑎1, .., 𝑎𝑖 , 𝑡𝑝 ) for some 𝑡𝑝 . That means
𝑟 and 𝑡 start with the same sequence of actions 𝑎1, .., 𝑎𝑖 , after which
it is 𝑝’s turn.

Now consider (𝑁 ′𝑝𝑟 ) with (ℎ, 𝑎1, ..𝑎𝑖 ), 𝑟𝑝 and 𝑡𝑝 : The LHS is im-
plied by the LHS of (16) with ℎ, 𝑟, 𝑡 , as the considered action vari-
ables are a superset of the required ones in (𝑁 ′𝑝𝑟 ). Hence, the RHS
of (𝑁 ′𝑝𝑟 ) holds:

𝑢𝑃 (ℎ,𝑎1,..,𝑎𝑖 ) (ℎ, 𝑎1, ..𝑎𝑖 , 𝑟𝑝 ) ≥ 𝑢𝑃 (ℎ,𝑎1,..,𝑎𝑖 ) (ℎ, 𝑎1, .., 𝑎𝑖 , 𝑡𝑝 ) .
Further, 𝑃 (ℎ, 𝑎1, .., 𝑎𝑖 ) = 𝑝 , (𝑎1, .., 𝑎𝑖 , 𝑟𝑝 ) = 𝑟 and (𝑎1, .., 𝑎𝑖 , 𝑡𝑝 ) = 𝑡 .
Therefore, the RHS of (16) holds, which concludes the implication
proof. □

We can now state a proof of correctness of the first-order for-
mulas for the security properties. This means that every model of
the first-order formulas provides a joint strategy that satisfies the
game-theoretic security property.

Theorem A.5 (Strategy Eqivalence). Let the honest history of
an EFG Γ = (𝑁,𝐺) be ℎ∗ = (𝑎1, ..., 𝑎𝑛). For every choice of actions 𝜎
and every Boolean interpretation I of the action variables (𝑣ℎ𝑎 )

ℎ∈H \T
𝑎∈𝐴(ℎ)

holds: If 𝜎 (ℎ) = 𝑎 ⇐⇒ I(𝑣ℎ𝑎 ) = ⊤, then the following formulas are
equivalent:

𝜎 ∈ S ∧ 𝐻 (𝜎) = ℎ∗ ∧ 𝛾sp (𝜎) ⇐⇒ I(𝜙strat ∧ 𝜙hist ∧ 𝜙sp) = ⊤ ,
(17)

where sp ∈ {wi,weri, cr, pr}.

Proof. Let us fix an interpretation I and such a choice of actions
𝜎 , with 𝜎 (ℎ) = 𝑎 ⇐⇒ I(𝑣ℎ𝑎 ) = ⊤. We need to show that 𝜎 is a
well-defined strategy.
Step 1: 𝜎 ∈ S ⇐⇒ I(𝜙strat) = ⊤. From Lemma 4.1 we know
for a 𝜎 ∈ S , 𝑓 −1 (𝜎) is a model of 𝜙strat and by definition of 𝑓 , we
know 𝑓 −1 (𝜎) = I. The same argument works vice versa since 𝑓 is
a bijection.
Step 2: 𝐻 (𝜎) = ℎ∗ ⇐⇒ I(𝜙hist) = ⊤. Since ℎ∗ = (𝑎1, .., 𝑎𝑛), we
know 𝜎 (𝑎1, .., 𝑎𝑖 ) = 𝑎𝑖+1 for 𝑖 ∈ {1, 2, . . . , 𝑛 − 1}. This is equivalent
to I(𝑣 (𝑎1,..,𝑎𝑖 )𝑎𝑖+1 ) = ⊤ for 𝑖 ∈ {1, 2, . . . , 𝑛 − 1}, which is equivalent to
I(𝜙hist) = ⊤.

Step 3: Assuming 𝜎 ∈ S and 𝐻 (𝜎) = ℎ∗, then 𝛾sp (𝜎) ⇐⇒
I(𝜙sp) = ⊤, sp ∈ {wi,weri, cr, pr}. We consider each security prop-
erty separately.

Case sp = wi: We have to show that

I

©­­«
∧
𝑝∈𝑁

∧
𝑡 ∈T


∧

(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎

 → 𝑢𝑝 (𝑡) ≥ 0
ª®®¬ = ⊤

is equivalent to

∀𝑝 ∈ 𝑁 . ∀𝜏 ∈ S . 𝑢𝑝 (𝜏 [𝜎𝑝/𝜏𝑝 ]) ≥ 0.

By the rules of first-order logic, we reach the following equivalences.
Note that the truth values of 𝑢𝑝 (𝑡) ≥ 𝑠 and 𝑢𝑝 (𝜏) ≥ 𝑠 for some
expression 𝑠 are independent of our interpretation I and our choice
of actions𝜎 .We therefore consider themBoolean values that depend
on 𝑡 or 𝜏 respectively.

I

©­­«
∧
𝑝∈𝑁

∧
𝑡 ∈T


∧

(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎

 → 𝑢𝑝 (𝑡) ≥ 0
ª®®¬ = ⊤

⇐⇒ ∀𝑝 ∈ 𝑁 . ∀𝑡 ∈ T . I
©­­«


∧
(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎

 → 𝑢𝑝 (𝑡) ≥ 0
ª®®¬ = ⊤

⇐⇒ ∀𝑝 ∈ 𝑁 . ∀𝑡 ∈ T .

(
∀(ℎ, 𝑎) ∈ H

𝑝
𝑡 . I(𝑣ℎ𝑎 ) = ⊤

)
→ 𝑢𝑝 (𝑡) ≥ 0

⇐⇒ ∀𝑝 ∈ 𝑁 . ∀𝑡 ∈ T .

(
∀(ℎ, 𝑎) ∈ H

𝑝
𝑡 . 𝜎 (ℎ) = 𝑎

)
→ 𝑢𝑝 (𝑡) ≥ 0

The truth value of a formula does not change by adding redundant
comparisons. We can therefore consider all strategies 𝜏 ∈ S and
reason about their terminal histories 𝐻 (𝜏) ∈ T to continue the
above equivalent transformation:

⇐⇒ ∀𝑝 ∈ 𝑁 . ∀𝜏 ∈ S .

(
∀(ℎ, 𝑎) ∈ H

𝑝

𝐻 (𝜏 ) . 𝜎 (ℎ) = 𝑎

)
→ 𝑢𝑝 (𝐻 (𝜏)) ≥ 0

⇐⇒
*
∀𝑝 ∈ 𝑁 . ∀𝜏 ∈ S . 𝜏𝑝 = 𝜎𝑝 → 𝑢𝑝 (𝜏) ≥ 0

⇐⇒ ∀𝑝 ∈ 𝑁 . ∀𝜏 ∈ S . 𝑢𝑝 (𝜏 [𝜎𝑝/𝜏𝑝 ]) ≥ 0 .

The equivalence (*) holds because a strategy 𝜏 which satisfies
∀(ℎ, 𝑎) ∈ H

𝑝

𝐻 (𝜏 )𝜎 (ℎ) = 𝑎 is exactly a strategy that coincides with
𝜎 along the resulting history 𝐻 (𝜏) on every action 𝑎 that player 𝑝
takes. Since only the resulting history 𝐻 (𝜏) matters for the utility
function 𝑢, we can instead just ask for 𝜏 and 𝜎 to coincide on every
action 𝑎 player 𝑝 chooses. Formally, 𝜏𝑝 = 𝜎𝑝 . The last equivalence,
finally, is only a syntactic transformation, as 𝜏 [𝜎𝑝/𝜏𝑝 ] are precisely
the strategies that coincide with 𝜎 along 𝑝’s choices.

Case sp = weri: The weak immunity proof works for weaker immu-
nity, too. We only have to replace 𝑢𝑝 by real(𝑢𝑝 ). We can do this,
as the truth value of 𝑢𝑝 (𝑡) ≥ 𝑠 (resp. 𝑢𝑝 (𝜏) ≥ 𝑠) for an expression 𝑠
is independent of our interpretation I and our choice of actions 𝜎 .

Case sp = cr: We show that

∀𝑆 ⊂ 𝑁 ∀𝜏 ∈ S .
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜎) ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜎 [𝜏𝑆/𝜎𝑆 ])
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is equivalent to

I

©­­«
∧
𝑆⊂𝑁

∧
𝑡 ∈T


∧

(ℎ,𝑎) ∈H 𝑁 \𝑆
𝑡

𝑣ℎ𝑎

 →
∑︁
𝑝∈𝑆

𝑢T
𝑝 (ℎ∗) ≥

∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡)
ª®®¬ = ⊤.

By performing the analogous equivalence transformations as for
the weak immunity proof, we get

I

©­­«
∧
𝑆⊂𝑁

∧
𝑡 ∈T


∧

(ℎ,𝑎) ∈H 𝑁 \𝑆
𝑡

𝑣ℎ𝑎

 →
∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡)
ª®®¬ = ⊤

equivalent to

∀𝑆 ⊂ 𝑁 ∀𝜏 ∈ S .
∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜏 [𝜎𝑁 \𝑆/𝜏𝑁 \𝑆 ]) .

Since 𝐻 (𝜎) = ℎ∗, it follows that 𝑢𝑝 (ℎ∗) = 𝑢𝑝 (𝜎). Finally, the fact
that 𝜏 [𝜎𝑁 \𝑆/𝜏𝑁 \𝑆 ] = 𝜎 [𝜏𝑆/𝜎𝑆 ] (for 𝑝 ∈ 𝑆 it is 𝜏𝑝 and for 𝑝 ∈ 𝑁 \ 𝑆
it is 𝜎𝑝 ) concludes the proof of equivalence.

Case sp = pr: We know that 𝜙𝑝𝑟 and (16) are equivalent under our
assumptions 𝜙strat from Lemma A.2. It therefore suffices to prove
I((16)) = ⊤ iff 𝛾pr (𝜎), that is, proving

∀ℎ ∈ H ∀𝑝 ∈ 𝑁 ∀𝜏 ∈ S |ℎ . 𝑢 |ℎ,𝑝 (𝜎 |ℎ) ≥ 𝑢 |ℎ,𝑝 (𝜎 |ℎ [𝜏𝑝/𝜎 |ℎ,𝑝 ])

equivalent to

I

©­­­«
∧

ℎ∈H \T
∧

𝑝∈𝑁
∧

𝑡,𝑟 ∈T|ℎ[∧
(ℎ′,𝑎) ∈H 𝑁 \{𝑝}

|ℎ,𝑡
𝑣
(ℎ,ℎ′ )
𝑎 ∧∧

(ℎ̃,𝑐 ) ∈H 𝑁
|ℎ,𝑟

𝑣
(ℎ,ℎ̃)
𝑐

]
→ 𝑢𝑝 (ℎ, 𝑟 ) ≥ 𝑢𝑝 (ℎ, 𝑡)

ª®®®¬ = ⊤.

Note that in 𝛾pr (𝜎) we can equivalently only consider ℎ ∈ H \T
in 𝛾pr (𝜎), since for ℎ ∈ T the strategy is empty and thus the
inequality is trivially satisfied. We can now proceed with equiva-
lently rewriting (16) analogous to the other security properties. We

rewrite I(𝑣 (ℎ,ℎ̃)𝑐 ) = ⊤ as 𝜎 (ℎ, ℎ̃) = 𝑐 for all (ℎ̃, 𝑐) such that 𝑟 (ℎ̃) = 𝑐 ,
which is equivalent to 𝐻 (𝜎 |ℎ) = 𝑟 . We obtain that

∀ℎ ∈ H \T ∀𝑝 ∈ 𝑁 ∀𝑡, 𝑟 ∈ T |ℎ .(
∀(ℎ′, 𝑎) ∈ H

𝑁 \{𝑝 }
|ℎ,𝑡 . 𝜎 |ℎ (ℎ′) = 𝑎 ∧ 𝐻 (𝜎 |ℎ) = 𝑟

)
→ 𝑢𝑝 (ℎ, 𝑟 ) ≥ 𝑢𝑝 (ℎ, 𝑡)

is equivalent to

∀ℎ ∈ H \T ∀𝑝 ∈ 𝑁 ∀𝑡 ∈ T ℎ .(
∀(ℎ′, 𝑎) ∈ H

𝑁 \{𝑝 }
|ℎ,𝑡 . 𝜎 |ℎ (ℎ′) = 𝑎

)
→ 𝑢𝑝 (ℎ, 𝐻 (𝜎 |ℎ))) ≥ 𝑢𝑝 (ℎ, 𝑡) .

This equivalence holds because for every ℎ ∈ H \T , there exists
precisely one 𝑟 that satisfies 𝐻 (𝜎 |ℎ) = 𝑟 , namely 𝐻 (𝜎 |ℎ) itself.
Therefore, replacing 𝑟 by 𝐻 (𝜎 |ℎ) in the utility function 𝑢𝑝 does not
change the truth value of the formula. From there we can again
proceed as we did for the other security properties and reach

∀ℎ ∈ H \T ∀𝑝 ∈ 𝑁 ∀𝜏 ∈ S |ℎ . 𝑢 |ℎ,𝑝 (𝜎 |ℎ) ≥ 𝑢 |ℎ,𝑝 (𝜎 |ℎ [𝜏𝑝/𝜎 |ℎ,𝑝 ]),

which is precisely (𝛾pr).

Finally, we put the three steps together, which yields 𝜎 ∈ S ∧
𝐻 (𝜎) = ℎ∗ ∧ 𝛾sp (𝜎) iff 𝜎 ∈ S ∧ 𝐻 (𝜎) = ℎ∗ ∧ I(𝜙sp) = ⊤ iff
I(𝜙strat ∧ 𝜙hist ∧ 𝜙sp) = ⊤. □

The above theorem allows generalization towards our soundness
and completeness result.

Corollary A.6. Let the honest history of a game Γ = (𝑁,𝐺) be
ℎ∗, then

∀®𝑥 ∀𝑐 ∈ 𝐶 ∪𝐶sp . 𝑐 [®𝑥] → ∃𝜎 ∈ S . 𝐻 (𝜎) = ℎ∗ ∧ 𝛾sp (𝜎) [®𝑥] (18)

if and only if

∀®𝑥 ∃I ∈ I . I ©­«
∧

𝑐∈𝐶∪𝐶sp

𝑐 [®𝑥] → 𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]
ª®¬ = ⊤ , (19)

where sp ∈ {wi,weri, cr, pr}, ®𝑥 are the variables occurring in the utility
terms (interpreted over reals),𝐶 and𝐶sp are sets of linear preconditions
on the variables ®𝑥 , and I is the set of all Boolean interpretations of
the action variables (𝑣ℎ𝑎 )

ℎ∈H \T
𝑎∈𝐴(ℎ) .

Proof. In the following, we write 𝑝 [®𝑥] for ∧
𝑐∈𝐶∪𝐶sp 𝑐 [®𝑥]. We

know that 𝜎 ∈ S ∧ 𝐻 (𝜎) = ℎ∗ ∧ 𝛾sp (𝜎) [®𝑥] iff I(𝜙strat ∧ 𝜙hist ∧
𝜙sp [®𝑥]) = ⊤, where I(𝑣ℎ𝑎 ) = ⊤ iff 𝜎 (ℎ) = 𝑎, from Theorem A.5.
Thus,

∃𝜎 ∈ S . 𝐻 (𝜎) = ℎ∗ ∧ 𝛾sp (𝜎) [®𝑥]
⇐⇒ ∃I ∈ I . I(𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]) = ⊤ .

Let us now fix arbitrary ®𝑥 = (𝑥1, . . . , 𝑥ℓ ) ∈ Rℓ .
Case 1: 𝑝 [®𝑥] = ⊤. Then,

𝑝 [®𝑥] → ∃I ∈ I . I(𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]) = ⊤

is equivalent to ∃I ∈ I . I(𝜙strat ∧ 𝜙hist ∧ 𝜙sp ( ®𝑥)) = ⊤, which is
equivalent to ∃I ∈ I . I(𝑝 [®𝑥] → 𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]) = ⊤.

Case 2: 𝑝 [®𝑥] = ⊥. Then, I(𝑝 [®𝑥] → 𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]) is ⊤
for all I. Also, 𝑝 [®𝑥] → ∃I ∈ I . I(𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]) = ⊤ holds.

Hence, the claimed equivalence holds for all values of ®𝑥 . □

Finally, the last missing piece is the correct implementation of
the case splits, which is shown in the following theorem.

Theorem A.7. For an EFG Γ = (𝑁,𝐺), (5) is equivalent to

∀®𝑥 . ∃I ∈ I . I ©­«
∧

𝑐∈𝐶∪𝐶sp

𝑐 [®𝑥] → 𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]
ª®¬ = ⊤,

(∀®𝑥 ∃I)

where sp ∈{wi, weri, cr, pr} and ®𝑥 are the variables appearing in the
utilities of the game tree.

Proof. Case (∀®𝑥 ∃I)⇐ (5): Fix ®𝑥 = (𝑥1, . . . , 𝑥ℓ ) ∈ Rℓ . This de-
fines precisely one total ordering on𝑇𝑢 , call it ⪯. We use (5) with ⪯
to obtain a model I such that

I

(
∀®𝑧.

∧
𝑐∈⪯∪𝐶∪𝐶sp

𝑐 [®𝑧] → 𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑧]
)
= ⊤. (20)
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We take the same model (the same assignment of the action vari-
ables) as a candidate for our model. We need to prove

I
©­«

∧
𝑐∈𝐶∪𝐶sp

𝑐 [®𝑥] → 𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]
ª®¬ = ⊤.

We set ®𝑧 = ®𝑥 in the formula (20). Now we know that
∧

𝑐∈⪯ 𝑐 [®𝑥]
holds by construction, so the formula simplifies to the desired one.
Case (∀®𝑥 ∃I)⇒ (5): Suppose (∀®𝑥 ∃I) holds. Let ⪯ be a total order
on 𝑇𝑢 . If5 ©­«

∧
𝑐∈⪯∪𝐶∪𝐶sp

𝑐
ª®¬ = ⊥,

then the formula

∀®𝑥 .
∧

𝑐∈⪯∪𝐶∪𝐶sp

𝑐 [®𝑥] → 𝜙strat ∧ 𝜙hist ∧ 𝜙sp [®𝑥]

is a tautology (as the left-hand side of the implication is false), so
every assignment of the action variables is a suitable model for
I ∈ I. So, suppose ®𝑟 = (𝑟1, . . . , 𝑟ℓ ) ∈ Rℓ is such that∧

𝑐∈⪯∪𝐶∪𝐶sp

𝑐 [®𝑟 ] = ⊤. (21)

We use (∀®𝑥 ∃I) with ®𝑟 to obtain a model I ∈ I and we claim I is also
a model for (5) with the ordering ⪯. From (21) we can conclude that

I(𝜙strat) ∧ I(𝜙hist) ∧ I(𝜙sp [®𝑟 ]) = ⊤. (22)

Now let ®𝑧 = (𝑧1, 𝑧2, . . . , 𝑧ℓ ) ∈ Rℓ be such that
∧

𝑐∈⪯∪𝐶∪𝐶sp 𝑐 [®𝑧]
holds. We need to prove that

I(𝜙strat) ∧ I(𝜙hist) ∧ I(𝜙sp [®𝑧]) = ⊤.

From (22) we know that I(𝜙strat) ∧ I(𝜙hist) = ⊤, so we just need to
prove that I(𝜙sp [®𝑧]) = ⊤.

We make the following observation: since ®𝑟 and ®𝑧 both satisfy the
total order ⪯ on 𝑇𝑢 [®𝑟 ] (respectively 𝑇𝑢 [®𝑧]), for every 𝑒, 𝑒′ ∈ 𝑇𝑢 [®𝑥]
we have that

𝑒 (®𝑟 ) ⪯ 𝑒′ (®𝑟 ) iff 𝑒 (®𝑧) ⪯ 𝑒′ (®𝑧) . (23)

To prove I(𝜙sp [®𝑧]) = ⊤, we consider security properties separately.

Case sp = wi: The equation I(𝜙wi [®𝑧]) = ⊤ corresponds to

∧
𝑝∈𝑁

∧
𝑡 ∈T


∧

(ℎ,𝑎) ∈H 𝑝

𝑡

I(𝑣ℎ𝑎 )
 → 𝑢𝑝 (𝑡) [®𝑧] ≥ 0.

Suppose 𝑝 ∈ 𝑁 and 𝑡 ∈ T such that

©­­«
∧

(ℎ,𝑎) ∈H 𝑝

𝑡

I(𝑣ℎ𝑎 )
ª®®¬ = ⊤.

From (22) we know that 𝑢𝑝 (𝑡) [®𝑟 ] ≥ 0 and since 𝑢𝑝 (𝑡) [®𝑥] ∈ 𝑇𝑢 [®𝑥]
and 0 ∈ 𝑇𝑢 [®𝑥], we can from (23) conclude the desired inequality
𝑢𝑝 (𝑡) [®𝑧] ≥ 0.
Case sp = weri: The proof is similar to the case sp = wi.

5This is decidable because it is just linear arithmetic.

Case sp = cr: The equation I(𝜙cr [®𝑧]) = ⊤ corresponds to

∧
𝑆⊂𝑁

∧
𝑡 ∈T


∧

(ℎ,𝑎) ∈H 𝑁 \𝑆
𝑡

I(𝑣ℎ𝑎 )
 →

∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) [®𝑧] ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡) [®𝑧] .

Suppose 𝑆 ⊂ 𝑁 and 𝑡 ∈ T such that∧
(ℎ,𝑎) ∈H 𝑁 \𝑆

𝑡

I(𝑣ℎ𝑎 ).

From (22) we know that∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) [®𝑟 ] ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡) [®𝑟 ]

and since
∑
𝑝∈𝑆 𝑢𝑝 (ℎ∗) [®𝑥] ∈ 𝑇𝑢 [®𝑥] and

∑
𝑝∈𝑆 𝑢𝑝 (𝑡) [®𝑥] ∈ 𝑇𝑢 [®𝑥],

we can from (23) conclude the desired inequality∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) [®𝑧] ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡) [®𝑧] .

Case sp = pr: We first use Lemma A.2 with model I and thus the
goal to prove becomes the following:∧

ℎ∈H \T

∧
𝑝∈𝑁

∧
𝑡,𝑡 ′∈T|ℎ
∧

(ℎ′,𝑎) ∈H 𝑁 \{𝑝}
|ℎ,𝑡

I(𝑣 (ℎ,ℎ
′ )

𝑎 ) ∧
∧

(𝑡,𝑐 ) ∈H 𝑁
|ℎ,𝑡 ′

I(𝑣 (ℎ,𝑡 )𝑐 )


→ 𝑢𝑝 (ℎ, 𝑡 ′) [®𝑧] ≥ 𝑢𝑝 (ℎ, 𝑡) [®𝑧] .

Suppose ℎ ∈ H \T , 𝑝 ∈ 𝑁 and 𝑡, 𝑡 ′ ∈ T |ℎ are such that
∧

(ℎ′,𝑎) ∈H 𝑁 \{𝑝}
|ℎ,𝑡

I(𝑣 (ℎ,ℎ
′ )

𝑎 ) ∧
∧

(𝑡,𝑐 ) ∈H 𝑁
|ℎ,𝑡 ′

I(𝑣 (ℎ,𝑡 )𝑐 )

 = ⊤.

From (22) we know that

𝑢𝑝 (ℎ, 𝑡 ′) [®𝑟 ] ≥ 𝑢𝑝 (ℎ, 𝑡) [®𝑟 ]

and since 𝑢𝑝 (ℎ, 𝑡 ′) [®𝑥] ∈ 𝑇𝑢 [®𝑥] and 𝑢𝑝 (ℎ, 𝑡) [®𝑥] ∈ 𝑇𝑢 [®𝑥], we can
from (23) conclude the desired inequality

𝑢𝑝 (ℎ, 𝑡 ′) [®𝑧] ≥ 𝑢𝑝 (ℎ, 𝑡) [®𝑧] .

□

Putting all the results together, we can now state:

Theorem 5.2 (Game-Theoretic Security). Let Γ = (𝑁,𝐺) be an
EFG with honest history ℎ∗, the formula (5) for sp ∈ {wi,weri, cr, pr}
is equivalent to its game-theoretic analog:

∀®𝑥 . ∀𝑐 ∈ 𝐶 ∪𝐶sp . 𝑐 [®𝑥] → ∃𝜎 ∈ S . 𝐻 (𝜎) = ℎ∗ ∧ 𝛾sp (𝜎) [®𝑥], (6)

where ®𝑥 = (𝑥1, . . . , 𝑥ℓ ) are the variables occurring in the utility terms
(interpreted over reals), and 𝐶 and 𝐶sp are finite sets of linear precon-
ditions on ®𝑥 .

Proof. The theorem follows from the combination of Corol-
lary A.6 and Theorem A.7. □
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B FORMULAS FOR CASE SPLITTING

In this section, we provide all adjusted formulas for the security
properties which we use to identify necessary case splits, as elabo-
rated in Section 5.1.

The formula for weak immunity, 𝜙wi, is adjusted as follows:∧
𝑝∈𝑁

∧
𝑡 ∈T

(
(

∧
(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎 ) → (ℓ(𝑢𝑝 (𝑡 ),0) → 𝑢𝑝 (𝑡) ≥ 0)
)
∧ ℓ(𝑢𝑝 (𝑡 ),0) .

(24)
The adjusted formula for weaker immunity, 𝜙weri, reads as follows:∧

𝑝∈𝑁

∧
𝑡 ∈T

(
(

∧
(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎 ) →

(ℓ(real(𝑢𝑝 (𝑡 ) ),0) → real(𝑢𝑝 (𝑡)) ≥ 0)
)
∧ ℓ

real(𝑢𝑝 (𝑡 ) ),0) . (25)

The constraint for collusion resilience, 𝜙cr, is rewritten as:∧
𝑆⊂𝑁

∧
𝑡 ∈T

(
(

∧
(ℎ,𝑎) ∈H 𝑁 \𝑆

𝑡

𝑣ℎ𝑎 )

→ (ℓ(∑𝑝∈𝑆 𝑢𝑝 (ℎ∗ ),
∑

𝑝∈𝑆 𝑢𝑝 (𝑡 ) ) →
∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡))
)

∧ ℓ(∑𝑝∈𝑆 𝑢𝑝 (ℎ∗ ),
∑

𝑝∈𝑆 𝑢𝑝 (𝑡 ) ) .
(26)

The formula for practicality, 𝜙𝑝𝑟 , is amended as follows:∧
ℎ∈H \T

∀ 𝑦ℎ
𝑃 (ℎ) .(( ∧
𝑟 ∈T|ℎ

( ∧
(ℎ′,𝑐 ) ∈H 𝑁

|ℎ,𝑟

𝑣
(ℎ,ℎ′ )
𝑐 → 𝑦ℎ

𝑃 (ℎ) = 𝑢𝑃 (ℎ) (ℎ, 𝑟 )
) )

→
( ∧
𝑡 ∈T|ℎ

(
(

∧
(𝑡 ′,𝑎) ∈H 𝑁 \{𝑃 (ℎ) }

|ℎ,𝑡

𝑣
(ℎ,𝑡 ′ )
𝑎 )

→ (ℓ(𝑦ℎ
𝑃 (ℎ) ,𝑢𝑃 (ℎ) (ℎ,𝑡 ) )

→ 𝑦ℎ
𝑃 (ℎ) ≥ 𝑢𝑃 (ℎ) (ℎ, 𝑡))

)
∧ ℓ(𝑦ℎ

𝑃 (ℎ) ,𝑢𝑃 (ℎ) (ℎ,𝑡 ) )

))
.

(27)

C GENERATING COUNTEREXAMPLES

In this section, we provide the missing proofs of the results of
Section 5.2. We also give the formulas for the generation of coun-
terexamples.

Theorem 5.10 (Counterexamples to Security). For an EFG Γ
and an honest history ℎ∗, there exists a counterexample to wi, weri,
cr or pr of ℎ∗ according to Definition 5.4–Definition 5.8 iff ℎ∗ is not
weak(er) immune, collusion resilient or practical, respectively.

Proof. We start with weak immunity. We show first that the
existence of a counterexample implies that ℎ∗ is not weak immune.

Let 𝑝 ∈ 𝑁 and 𝑠𝑁−𝑝 ⊆ 𝜏𝑁−𝑝 be a counterexample to the weak
immunity of ℎ∗ in Γ according to Definition 5.4. We first extend
the partial strategy 𝑠𝑁−𝑝 to an arbitrary strategy 𝜏𝑁−𝑝 ∈ S𝑁−𝑝 ,
𝑠𝑁−𝑝 ⊆ 𝜏𝑁−𝑝 and consider the formula

∀𝜎𝑝 ∈ S𝑝 (∀(ℎ, 𝑎) ∈ H
𝑝

ℎ∗
. 𝜎𝑝 (ℎ) = 𝑎) → 𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝 ) < 0 .

(28)

The utility remains unchanged as the extension does not impact
the generated terminal history. By definition, the history ℎ∗ is not
weak immune if

∀𝜎 ∈ S 𝐻 (𝜎) = ℎ∗ →
∃𝑝 ∈ 𝑁 ∃𝜏𝑁−𝑝 ∈ S𝑁−𝑝 . 𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝 ) < 0 . (29)

Let us now pick an arbitrary 𝜎 ∈ S with 𝐻 (𝜎) = ℎ∗ in (29). the
restriction of this 𝜎 to 𝑝’s single strategy 𝜎𝑝 satisfies the LHS of
(28). Therefore, 𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝 ) < 0, which concludes this direction
of the proof.

For the other implication, that whenever ℎ∗ is not weak im-
mune there exists a counterexample according to Definition 5.4, we
consider the SMT formula for weak immunity, which was proven
equivalent (modulo the labels ℓ𝑝,𝑡 ) in Theorem 5.2:

𝜙strat ∧ 𝜙hist ∧∧
𝑝∈𝑁

∧
𝑡 ∈T

(
ℓ𝑝,𝑡 → ((

∧
(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎 ) → 𝑢𝑝 (𝑡) ≥ 0)
)
∧ ℓ𝑝,𝑡 . (30)

We assume ℎ∗ is not weak immune, therefore the above formula is
unsat. By construction of the formula, we know that we can satisfy
𝜙strat ∧ 𝜙hist. We therefore consider a minimal unsat core of the
labels ℓ𝑝,𝑡 . Since within each player 𝑝 the relevant action variables
𝑣ℎ𝑎 are independent of the other players (we only consider actions
made by 𝑝 in H

𝑝
𝑡 ), a minimal unsat core only contains labels of

one player 𝑝 . Thus, a minimal unsat core 𝐿 consists of finitely many
labels ℓ𝑝,𝑡 , representing terminal histories 𝑡 that yield a negative
utility for player 𝑝 , if 𝑝 chose actions according these histories. As 𝐿
is a minimal unsat core, at least one of those terminal histories had
to be chosen by 𝑝 to find a strategy, but none of them can be. If we
now remove 𝑝’s actions 𝑎 from the terminal histories 𝑡 of the unsat
core, add collect the remaining choices of actions, we receive a
partial strategy 𝑠𝑁−𝑝 of the other players 𝑁 −𝑝 . The fact that 𝐿 is a
minimal core ensures that there is atmost one action at each internal
node. It also makes the constructed partial strategy 𝑠𝑁−𝑝 minimal
in the number of asserted actions. Finally, by adding the actions of
a single strategy 𝜎𝑝 to 𝑠𝑁−𝑝 , we have a path of actions from root to
leaf, since the unsat core has to contain a problem (which is label,
which is terminal history) for every possible behavior of 𝑝 .

The proof for the correctness of weaker immunity and collusion
resilience are similar.

To show the correctness of the practicality counterexamples
according to Definition 5.8, we restate what it means for a history
ℎ∗ not to be practical, already incorporating some simplifications
from Lemma A.2:

∀𝜎 ∈ S 𝐻 (𝜎) = ℎ∗ →
∃ℎ ∈ H ∃𝜏 ∈ S ./;𝑢 |ℎ,𝑃 (ℎ) (𝜎) < 𝑢 |ℎ,𝑃 (ℎ) (𝜎 [𝜏𝑃 (ℎ)/𝜎𝑃 (ℎ) ]) .

(31)

Further simplifications yielded

∀𝜎 ∈ S 𝐻 (𝜎) = ℎ∗ →
∃ℎ ∈ H ∃𝑎′ ∈ 𝐴(ℎ), 𝑎′ ≠ 𝜎 (ℎ) . 𝑢 |ℎ,𝑃 (ℎ) (𝜎) < 𝑢 |ℎ,𝑃 (ℎ) (𝜎′) , (32)

where 𝜎′ (ℎ′) = 𝜎 (ℎ′) if ℎ′ ≠ ℎ, and 𝜎 (ℎ) = 𝑎′ otherwise. That is,
𝜎′ only differs in 𝜎′ (ℎ) from 𝜎 . This also follows from Lemma A.2.
We now note that 𝜎 (ℎ) is independent of 𝜎 , since it is just the next
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action of ℎ∗, we call it 𝑎. Hence, we can simplify to

∀𝜎 ∈ S 𝐻 (𝜎) = ℎ∗ →
∃ℎ ∈ H ∃𝑎′ ∈ 𝐴(ℎ), 𝑎′ ≠ 𝑎. 𝑢 |ℎ,𝑃 (ℎ) (𝜎) < 𝑢 |ℎ,𝑃 (ℎ) (𝜎′) , (33)

which is again equivalent to

∀𝜎 ∈ S 𝐻 (𝜎) = ℎ∗ →
∃ℎ : (ℎ, 𝑎, ℎ′) = ℎ∗ ∃𝑎′ ∈ 𝐴(ℎ), 𝑎′ ≠ 𝑎

∃𝑡 ∈ T | (ℎ,𝑎′ ) , 𝑡pr. 𝑢 |ℎ,𝑃 (ℎ) (𝜎) < 𝑢 |ℎ,𝑃 (ℎ) (𝑎′, 𝑡) , (34)

where 𝑡 is practical in Γ| (ℎ,𝑎′ ) . This is the case because, when con-
straining the considered histories ℎ to prefixes of ℎ∗, we have to
ensure the respective practicality constraints in the other subtrees
by asking for practical 𝑡 . This way we can "hide" the other subtrees
away. In the above formula, we only consider subgames along the
honest history, which is why 𝑢 |ℎ,𝑃 (ℎ) (𝜎) is no longer dependent
on 𝜎 , hence

∃ℎ : (ℎ, 𝑎, ℎ′) = ℎ∗ ∃𝑎′ ∈ 𝐴(ℎ), 𝑎′ ≠ 𝑎 ∃𝑡 ∈ T | (ℎ,𝑎′ ) , 𝑡 pr.
𝑢𝑃 (ℎ) (ℎ∗) < 𝑢𝑃 (ℎ) (ℎ, 𝑎′, 𝑡) . (35)

□

Here we list the full amended formulas to generate counterex-
amples for the individual security properties, as described in Sec-
tion 5.2.

The formula for weak immunity, 𝜙wi, is rewritten as follows:∧
𝑝∈𝑁

∧
𝑡 ∈T

(
ℓ𝑝,𝑡 → ((

∧
(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎 ) → 𝑢𝑝 (𝑡) ≥ 0)
)
∧ ℓ𝑝,𝑡 . (36)

The constraint for weaker immunity, 𝜙weri, is amended as follows:∧
𝑝∈𝑁

∧
𝑡 ∈T

(
ℓ𝑝,𝑡 → ((

∧
(ℎ,𝑎) ∈H 𝑝

𝑡

𝑣ℎ𝑎 ) → real(𝑢𝑝 (𝑡)) ≥ 0)
)
∧ ℓ𝑝,𝑡 .

(37)
The constraint for collusion resilience, 𝜙cr, is adjusted as follows:∧

𝑆⊂𝑁

∧
𝑡 ∈T

(
ℓ𝑆,𝑡 →

((
∧

(ℎ,𝑎) ∈H 𝑁 \𝑆
𝑡

𝑣ℎ𝑎 ) →
∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡))
)
∧ ℓ𝑆,𝑡 . (38)

D ADDITIONAL BENCHMARKS

This section describes our manually crafted games used for evalu-
ating CheckMate.

Example D.1 (Splitscr). In the game depicted in Figure 4, player
𝐴 starts by choosing between action 𝑛 and action 𝑎. Picking action
𝑛 results in a utility of 𝑡 for player 𝐴, with 𝑡 > 0. If they take action
𝑎, player 𝐵 has to choose either action 𝑜 or action 𝑑 . Action 𝑜 yields
the utility 𝑗 for player𝐴, while action 𝑑 results in the utility 𝑓 , with
𝑗 > 𝑡 > 𝑓 ∨ 𝑓 > 𝑡 > 𝑗 . Player 𝐵 always receives a payoff of 0 in
this game.

Example D.2 (Market Entry Game). The Market Entry Game
displayed in Figure 5 is an adaptation of the Chain-Store Game
defined in [28]. Player𝑇 starts by either choosing action 𝑜 or action
𝑒 . If they pick action 𝑜 , the game ends, yielding the utility 0 for 𝑇
and 2𝑝 for 𝐸, with 𝑝 > 0. Otherwise, it is player 𝐸’s turn: 𝐸 either

takes action 𝑖 , resulting in utility 𝑝 for both players, or action 𝑠 ,
which yields the utility −𝑎 for both players, with 𝑎 > 0.

𝐴

(𝑡, 0)

𝑛

𝐵

( 𝑗, 0)

𝑜

(𝑓 , 0)
𝑑

𝑎

Figure 4: Splitscr Game with 𝑡 > 0 and 𝑗 > 𝑡 > 𝑓 ∨ 𝑓 > 𝑡 > 𝑗 .

𝑇

(0, 2𝑝)

𝑜

𝐸

(𝑝, 𝑝)
𝑖

(−𝑎,−𝑎)

𝑠

𝑒

Figure 5: Market Entry Game with 𝑎, 𝑝 > 0.

𝐴

𝐵

(𝑎𝐴, 𝑎𝐵, 𝑎𝐶 , 𝑎𝐷 )

𝐶

(𝑎𝐴, 𝑎𝐵, 𝑎𝐶 , 𝑎𝐷 )

𝐷

(𝑎𝐴, 𝑎𝐵, 𝑎𝐶 , 𝑎𝐷 )

𝑆𝐵

𝐵

𝑆𝐵

𝐶

𝑆𝐵

𝐷

𝑆𝐵

(𝑎𝐴, 𝑎𝐵, 𝑎𝐶 , 𝑎𝐷 )

𝑦 𝑛

𝑦

𝑛

𝑦

𝑛

𝑦

𝑛

𝑦

𝑛

𝑦

𝑛

𝑦

𝑛

Figure 6: Pirate Game with 𝑑,𝑔, 𝑎𝑝 , 𝑏𝑝 , 𝑐𝑝 ≥ 0 for 𝑝 ∈ 𝑁 and

𝑔 =
∑
𝑝∈𝑁 𝑎𝑝 =

∑
𝑝∈𝑁 \{𝐴} 𝑏𝑝 =

∑
𝑝∈𝑁 \{𝐴,𝐵} 𝑐𝑝 . The subgame

𝑆𝐵 is displayed in Figure 7.

Example D.3 (Pirate Game). The Pirate Game displayed in Fig-
ure 6 (and Figure 7 and Figure 8, respectively, for the subgames 𝑆𝐵
and 𝑆𝐶 ) is an adapted version of the “puzzle for pirates” introduced
by Stewart [33]. It models a voting scenario: Each player proposes
a joint utility whose sum is 𝑔. First, the players decide if they want
to accept 𝐴’s proposed distribution (in alphabetical order). If the
majority of players is in favor of the proposal (indicated by taking
action 𝑦 when it is their turn), the game ends with the utility 𝑎𝐴 for
player 𝐴, 𝑎𝐵 for player 𝐵 and so on. Otherwise, i.e. if the majority
picks action 𝑛, player 𝐴 is eliminated from the game, which results
in the utility −𝑑 for player 𝐴 when the game ends, with 𝑑 > 0. The
process repeats with the joint utility proposed by player 𝐵, where
player 𝐵 gets the utility 𝑏𝐵 , 𝐶 receives 𝑏𝐶 etc. If 𝐵’s proposal is
rejected, 𝐵 is eliminated as well and the remaining players vote on
player𝐶’s proposed distribution. In case of a tie, the decision of the
proposing player is the casting vote.
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𝐵

𝐶

(−𝑑,𝑏𝐵, 𝑏𝐶 , 𝑏𝐷 )
𝐷

(−𝑑,𝑏𝐵, 𝑏𝐶 , 𝑏𝐷 )
𝑆𝐶

𝐶

𝑆𝐶
𝐷

𝑆𝐶(−𝑑, 𝑏𝐵, 𝑏𝐶 , 𝑏𝐷 )

𝑦 𝑛

𝑦

𝑛

𝑦

𝑛

𝑦
𝑛

𝑛
𝑦

Figure 7: Subgame 𝑆𝐵 of the Pirate Game (Figure 6).

𝐶

(−𝑑,−𝑑, 𝑐𝐶 , 𝑐𝐷 ) (−𝑑,−𝑑,−𝑑,𝑔)

𝑦 𝑛

Figure 8: Subgame 𝑆𝐶 of the Pirate Game (Figures 6 and 7).
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