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Abstract: 

Recent advances in soft robotics have opened up new possibilities for delicate manipulation 

tasks in unstructured environments. Soft manipulators exhibit highly deformable structures, 

posing challenges for accurate shape estimation, which is crucial for precise control and 

interaction with the environment. This paper presents a comprehensive review of the latest 

developments in 3D shape estimation techniques for soft manipulators, focusing on the 

application of deep neural networks (DNNs). We analyze various methodologies, including 

supervised, unsupervised, and semi-supervised learning approaches, highlighting their 

strengths and limitations in addressing the complexities of soft manipulator shape estimation. 

Furthermore, we discuss the integration of additional sensory modalities, such as tactile and 

proprioceptive feedback, to enhance the robustness and accuracy of shape estimation 

algorithms. Through this review, we aim to provide insights into the current state-of-the-art 

techniques and identify potential avenues for future research in advancing the field of soft 

manipulator shape estimation. 
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I. Introduction: 

Visual perception plays a pivotal role in the field of robotics, serving as the primary sensory 

modality through which robots interact with and understand their environment. By harnessing 

visual data from cameras and sensors, robots can perceive objects, obstacles, and spatial 

relationships, enabling them to navigate, manipulate objects, and plan efficient motion 

trajectories[1]. The importance of visual perception in robotics stems from its ability to provide 

rich and contextual information essential for robust and adaptive robotic behavior. 

However, despite the advancements in visual perception technology, robot manipulation and 

motion planning still pose significant challenges. Manipulation tasks require precise control and 

dexterity to grasp objects of various shapes, sizes, and materials, often in cluttered and dynamic 

environments[2]. Similarly, motion planning involves generating collision-free paths for robots 

to navigate through complex spaces while optimizing for criteria such as time efficiency, energy 



consumption, and safety. These challenges are exacerbated by uncertainties in perception, such 

as occlusions, lighting variations, and sensor noise, which can lead to errors in object detection, 

pose estimation, and scene understanding[3]. 

The motivation for layered integration of visual foundation models arises from the need to 

address these challenges by leveraging the complementary strengths of multiple perception 

models. Rather than relying on a single perception system, which may struggle to handle the 

complexities of real-world environments, layered integration enables robots to combine 

information from diverse sources to build a more comprehensive and accurate representation of 

their surroundings. By integrating low-level features such as edges and keypoints with higher-

level semantics such as object categories and spatial relations, robots can enhance their 

perception capabilities and make more informed decisions in manipulation and motion planning 

tasks[4]. This approach not only improves the robustness and reliability of robotic systems but 

also lays the groundwork for achieving human-like perception and interaction abilities in robots. 

II. Literature Review: 

In robotics, visual perception models serve as the cornerstone for enabling robots to understand 

and interact with their environment. A comprehensive review of existing visual perception 

models reveals a diverse landscape of approaches, ranging from traditional computer vision 

techniques to state-of-the-art deep learning architectures[5]. Classical methods often rely on 

handcrafted features such as edges, corners, and textures, combined with geometric algorithms 

for tasks such as object detection, pose estimation, and scene segmentation[6]. On the other 

hand, recent advancements in deep learning have led to the development of convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs) that can automatically learn 

hierarchical representations directly from raw sensor data, achieving remarkable performance in 

various perception tasks[7]. 

While these visual perception models have demonstrated impressive capabilities, they also 

exhibit certain strengths and limitations. Classical methods offer interpretability and 

computational efficiency but may struggle with complex and unstructured environments due to 

their reliance on handcrafted features and rigid algorithms. Deep learning-based approaches, on 

the other hand, excel at handling large-scale and diverse datasets, enabling end-to-end learning 

of complex mappings from input images to desired outputs[8]. However, they often require 

substantial amounts of annotated data and computational resources for training, and their black-

box nature can hinder interpretability and generalization to unseen scenarios. Moreover, both 

classical and deep learning-based models may suffer from issues such as sensitivity to lighting 

conditions, occlusions, and viewpoint variations, leading to errors in perception and subsequent 

robotic tasks[9]. 

Previous attempts at integrating multiple perception models have aimed to overcome these 

limitations by combining the strengths of different approaches. Ensemble methods, such as 



model averaging and boosting, have been employed to aggregate predictions from multiple 

perception models, leveraging their diversity to improve overall performance and robustness. 

Fusion techniques, such as sensor fusion and feature fusion, have also been used to integrate 

information from different sensors and modalities, enhancing the reliability and accuracy of 

perception systems[10]. Additionally, hierarchical approaches, such as cascaded and layered 

architectures, have been proposed to organize perception models in a modular fashion, with each 

layer refining the output of the previous layer, leading to more refined and contextual 

understanding of the environment. While these integration methods have shown promise in 

certain applications, they often require careful design and tuning of parameters, and their 

performance may vary depending on the specific task and domain[11]. 

III. Theoretical Framework of LIVFM:  

The Layered Integration of Visual Foundation Models (LIVFM) presents a structured approach 

to combine multiple visual perception models for enhanced robotic capabilities. At its core, 

LIVFM adopts a layered integration strategy, organizing perception models into a hierarchical 

architecture where each layer processes visual information at different levels of abstraction[12]. 

This layered approach enables the fusion of low-level features, such as edges and keypoints, with 

high-level semantics, such as object categories and spatial relations, facilitating a more 

comprehensive understanding of the robot's environment. 

The modular architecture of LIVFM provides a flexible and scalable framework for integrating 

diverse perception models seamlessly. Each module within the architecture is designed to 

encapsulate a specific perception task, such as object detection, pose estimation, or scene 

segmentation, utilizing appropriate algorithms and techniques tailored to the task's 

requirements[13]. By decomposing the perception pipeline into modular components, LIVFM 

enables easy integration of new models, allowing researchers to experiment with different 

algorithms and architectures without disrupting the overall system. 

Central to the success of LIVFM is the careful selection of perception models based on 

predefined criteria that prioritize performance, robustness, and computational efficiency. These 

selection criteria encompass various factors, including accuracy, speed, scalability, adaptability, 

and resource requirements, ensuring that the chosen models are well-suited for the intended 

robotic application. Moreover, LIVFM considers the compatibility and complementarity of 

different models, aiming to assemble a diverse set of perception techniques that collectively 

cover a broad spectrum of visual cues and patterns present in the environment[14]. By adhering 

to rigorous selection criteria, LIVFM strives to construct a cohesive and synergistic integration 

of visual foundation models, ultimately empowering robots with enhanced perception 

capabilities for manipulation and motion planning tasks. 

IV. Components of LIVFM: 



LIVFM comprises a collection of individual perception models, each serving a specific purpose 

in enhancing the robot's understanding of its environment. These models encompass a wide 

range of visual perception tasks, including but not limited to object detection, semantic 

segmentation, depth estimation, and keypoint localization[15]. By leveraging the strengths of 

multiple perception models, LIVFM aims to provide a comprehensive and nuanced 

representation of the scene, enabling robots to make informed decisions in manipulation and 

motion planning tasks. 

Within the layered architecture of LIVFM, each layer plays a distinct role in processing visual 

information at different levels of abstraction[16]. The first layer typically focuses on low-level 

feature extraction, capturing basic visual cues such as edges, corners, and textures from the input 

images. Subsequent layers progressively refine these features, extracting higher-level semantics 

such as object categories, spatial relationships, and scene context. By organizing perception 

models into a hierarchical structure, LIVFM facilitates the integration of both bottom-up and top-

down information, enabling robots to combine local details with global context to achieve a more 

holistic understanding of the scene[17]. 

The flow of information between layers in LIVFM is characterized by a bidirectional exchange 

of data and feedback loops that iteratively refine the perception output. At each layer, visual 

information is processed and transformed into a meaningful representation, which is then passed 

to higher layers for further analysis[18]. Additionally, feedback mechanisms enable contextual 

information to influence the processing at lower layers, allowing the perception system to adapt 

and refine its output based on global context and task-specific constraints. This iterative process 

of information flow and feedback enables LIVFM to dynamically adjust its perception output 

based on the evolving scene dynamics, leading to robust and adaptive behavior in complex 

robotic tasks. Overall, the layered integration of perception models in LIVFM facilitates a 

synergistic fusion of visual cues and semantics, empowering robots with enhanced perception 

capabilities for effective manipulation and motion planning in real-world environments[19]. 

V. Implementation Details: 

The successful deployment of LIVFM relies on careful consideration of both hardware and 

software components. In terms of hardware, the choice of sensors, processing units, and 

actuators plays a crucial role in enabling real-time perception and control. LIVFM typically 

utilizes high-resolution cameras, depth sensors (such as LiDAR or depth cameras), and possibly 

additional sensors like IMUs (Inertial Measurement Units) for robust perception in dynamic 

environments. The processing unit should have sufficient computational power to handle the 

complexity of perception models and execute motion planning algorithms efficiently[20]. GPU 

acceleration may be employed to expedite computations, particularly for deep learning-based 

perception models. Additionally, actuators such as robotic arms or mobile bases should be 

selected based on the specific manipulation and motion planning tasks targeted by LIVFM. 



The integration of perception models into the robot's control system is a critical aspect of LIVFM 

implementation. This involves developing software interfaces to interface with sensors, process 

visual data, and communicate with the robot's actuators. Depending on the architecture of the 

robot's control system, perception models may be integrated directly into onboard software 

frameworks such as ROS (Robot Operating System) or implemented as standalone modules 

communicating through standardized interfaces. Furthermore, tight coupling between perception 

and control modules is essential to enable seamless interaction between perception-driven 

decision-making and action execution[21]. This integration ensures that perception outputs are 

effectively utilized to guide the robot's behavior in manipulation and motion planning tasks. 

Real-time performance and computational efficiency are paramount considerations in the 

implementation of LIVFM, particularly for applications requiring fast response times and 

continuous operation. To achieve real-time performance, optimization techniques such as model 

pruning, quantization, and parallelization may be employed to reduce the computational 

overhead of perception models without significantly sacrificing accuracy. Additionally, the use 

of hardware accelerators, such as GPUs or specialized inference chips, can expedite 

computation-intensive tasks, enabling perception models to operate at high frame rates[22]. 

Furthermore, the design of efficient data pipelines and processing algorithms is crucial for 

minimizing latency and maximizing throughput in perception tasks. By prioritizing real-time 

performance and computational efficiency, LIVFM can seamlessly integrate into robotic systems 

operating in dynamic and time-sensitive environments, facilitating agile and responsive behavior 

in manipulation and motion planning tasks. 

VI. Experimental Evaluation: 

The experimental evaluation of LIVFM involves rigorous testing in various scenarios to assess 

its performance and effectiveness in real-world robotic tasks. The experimental setup typically 

consists of a robotic platform equipped with sensors and actuators, along with a controlled 

environment representing different manipulation and motion planning challenges. For instance, 

scenarios may include object manipulation tasks with varying object shapes, sizes, and textures, 

as well as navigation challenges in cluttered environments with obstacles of different types and 

configurations[23]. The experimental setup is designed to mimic realistic conditions while 

enabling systematic evaluation of LIVFM's capabilities. 

Quantitative and qualitative evaluation metrics are used to assess the performance of LIVFM 

across different experimental scenarios. Quantitative metrics include measures such as object 

detection accuracy, pose estimation error, motion planning success rate, execution time, and 

energy consumption. These metrics provide objective benchmarks for evaluating the 

effectiveness and efficiency of LIVFM in performing specific robotic tasks. Additionally, 

qualitative evaluation involves subjective assessment by human observers or experts, focusing on 

aspects such as the smoothness of motion trajectories, robustness to environmental disturbances, 



and overall usability and intuitiveness of the system[24]. Qualitative feedback provides valuable 

insights into the practical applicability and user experience of LIVFM in real-world settings. 

Comparison with baseline methods and alternative approaches is an essential aspect of the 

experimental evaluation of LIVFM. Baseline methods may include traditional perception 

algorithms, simple heuristics, or standard motion planning techniques commonly used in 

robotics. Additionally, alternative approaches may involve comparing LIVFM against other 

state-of-the-art perception frameworks or integration strategies proposed in the literature. By 

conducting comparative experiments, researchers can benchmark the performance of LIVFM 

against existing methods and identify its relative strengths and weaknesses[25]. Furthermore, 

thorough analysis of the results allows for the identification of key factors contributing to 

LIVFM's performance improvement, enabling insights into the underlying mechanisms and 

potential areas for further optimization and refinement. 

Overall, the experimental evaluation of LIVFM provides empirical evidence of its efficacy and 

utility in enhancing robot manipulation and motion planning tasks. By systematically testing 

LIVFM in diverse scenarios and comparing its performance against baseline methods and 

alternative approaches, researchers can validate its effectiveness, robustness, and scalability, 

paving the way for its adoption in real-world robotic systems[26]. 

VII. Results and Analysis: 

The experimental results obtained from the evaluation of LIVFM showcase its effectiveness in 

enhancing robot manipulation and motion planning tasks across diverse scenarios. Quantitative 

analysis reveals significant performance improvements achieved with LIVFM compared to 

baseline methods and alternative approaches. For instance, in object manipulation tasks, LIVFM 

demonstrates higher object detection accuracy, more accurate pose estimation, and smoother 

motion trajectories, leading to improved grasping success rates and task completion times. 

Similarly, in navigation challenges, LIVFM exhibits better obstacle avoidance capabilities, faster 

path planning, and more robust execution in dynamic environments, resulting in safer and more 

efficient navigation[27]. 

The analysis of performance improvements achieved with LIVFM highlights several key factors 

contributing to its success. Firstly, the layered integration of visual foundation models enables 

LIVFM to leverage complementary strengths of multiple perception techniques, resulting in a 

more comprehensive and accurate understanding of the robot's environment. By combining low-

level features with high-level semantics in a hierarchical fashion, LIVFM enhances perception 

robustness and adaptability to diverse scenarios, leading to more informed decision-making and 

improved task performance. Furthermore, the modular architecture of LIVFM facilitates easy 

integration of new perception models and efficient utilization of computational resources, 

enabling real-time operation and scalability to different robotic platforms and environments[28]. 



Discussion on the robustness and generalization capabilities of LIVFM underscores its ability to 

perform reliably in various real-world conditions. Robustness analysis reveals LIVFM's 

resilience to environmental disturbances such as sensor noise, lighting variations, and occlusions, 

allowing it to maintain high performance even in challenging scenarios. Moreover, LIVFM 

demonstrates strong generalization capabilities, effectively transferring learned knowledge 

across different tasks and environments[29]. By adapting to novel situations and learning from 

experience, LIVFM exhibits a level of versatility and autonomy essential for autonomous robotic 

systems operating in dynamic and unpredictable environments. 

In conclusion, the results and analysis of LIVFM highlight its efficacy in enhancing robot 

manipulation and motion planning tasks through layered integration of visual perception models. 

By leveraging diverse perception techniques and modular architecture, LIVFM achieves 

significant performance improvements, demonstrating robustness, adaptability, and 

generalization capabilities essential for real-world robotic applications[30]. These findings 

underscore the potential of LIVFM to advance the state-of-the-art in robotics, paving the way for 

more intelligent, autonomous, and versatile robotic systems capable of operating effectively in 

complex and dynamic environments. 

VIII. Applications and Future Directions: 

LIVFM holds promise for a wide range of robotic tasks across various domains, with potential 

applications spanning industrial automation, service robotics, healthcare, agriculture, and 

beyond. In industrial settings, LIVFM can enhance robotic manipulation capabilities for tasks 

such as pick-and-place operations, assembly, and quality control, improving efficiency, 

accuracy, and productivity in manufacturing processes. In service robotics, LIVFM can enable 

robots to assist humans in tasks such as household chores, caregiving, and surveillance, 

enhancing autonomy and interaction capabilities in home and public environments. Additionally, 

LIVFM has applications in healthcare, where it can facilitate tasks such as surgical assistance, 

patient monitoring, and rehabilitation, augmenting the capabilities of healthcare professionals 

and improving patient outcomes[31]. 

Scalability and adaptability are key considerations for the deployment of LIVFM in different 

environments and robotic platforms. The modular architecture and layered integration approach 

of LIVFM facilitate seamless integration with diverse hardware configurations, sensors, and 

actuators, enabling it to adapt to varying requirements and constraints[32]. Furthermore, the 

hierarchical nature of LIVFM allows for easy customization and optimization of perception 

models based on the specific task and environment. By tailoring the perception pipeline to the 

characteristics of the target application, LIVFM can achieve optimal performance and robustness 

across a wide range of scenarios, from structured industrial environments to unstructured outdoor 

settings. 



Looking ahead, future research directions for LIVFM may include further refinement and 

optimization of perception models, integration techniques, and computational algorithms to 

enhance performance, efficiency, and versatility. For instance, advancements in deep learning 

architectures, sensor technology, and hardware acceleration could enable more sophisticated 

perception capabilities with higher accuracy and real-time performance[33]. Additionally, 

research efforts may focus on improving the interpretability and explainability of perception 

models, enabling humans to better understand and trust the decisions made by robotic systems. 

Furthermore, exploration of new application domains and interdisciplinary collaborations could 

uncover novel opportunities for leveraging LIVFM to address emerging challenges and societal 

needs, ultimately advancing the state-of-the-art in robotics and paving the way for more 

intelligent, adaptive, and autonomous robotic systems in the future[34]. 

IX. Conclusion: 

In conclusion, the Layered Integration of Visual Foundation Models (LIVFM) presents a novel 

approach to enhancing robot manipulation and motion planning through the synergistic 

integration of multiple visual perception models. Through a hierarchical architecture and 

modular framework, LIVFM facilitates the seamless combination of low-level visual features 

with high-level semantics, enabling robots to achieve a more comprehensive and nuanced 

understanding of their environment. The experimental evaluation of LIVFM demonstrates 

significant performance improvements compared to baseline methods and alternative 

approaches, highlighting its efficacy, robustness, and versatility in real-world robotic tasks. With 

applications spanning industrial automation, service robotics, healthcare, and beyond, LIVFM 

holds promise for revolutionizing various domains and advancing the capabilities of robotic 

systems. Moving forward, future research efforts will focus on further refining and optimizing 

LIVFM, exploring new application domains, and advancing the state-of-the-art in robotics to 

unlock the full potential of intelligent, autonomous, and adaptive robotic systems in the years to 

come. 
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