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Abstract—The frame of un-renormalized electron chain propa-
gator, which composed of different physical processes, is analyzed
in the standard model, and the un-renormalized electron chain
propagator is given through dimensional regularization method.
The analytical expression of the renormalized electron chain
propagator is obtained by introducing the counter term, and
then absorbing the counter term to the “bared” un–renormalized
quantity in the “on-shell” renormalization scheme. The analytical
expressions of renormalized electron neutrino chain propagator
is also obtained by the same treatment. Finally, the relative
corrections of the chain propagators to the tree propagators are
given in large scale of propagator energy. The results show that
the correction of the chain propagators are reasonable.

Index Terms—Standard Model; Electron chain propagator;
Renormalization; Relative correction.

I. INTRODUCTION

Electroweak Standard Model (SM) is the most influential
phenomenological theory in particle physics. It has made
great success in describing the weak and electromagnetic
interactions, and the new physics predicted by SM have been
confirmed in many experiments, especially the Higgs particle
was founded at LHC[1][2]. Since the standard model has been
proposed by Weinberg and Salam, it has aroused a serious of
related theoretical studies. Meanwhile, the works involving the
“precision” test of SM the theoretical earned special academic
concern all along. These theoretical studies have proposed the
development of SM. Moreover; using perturbative quantum
field theory to do calculation is the most important works when
we do theoretical computing.

Theoretical predictions should have an accuracy com-
pared to or even better than the experimental errors. So
we are forced to take into account high order corrections
if we want to do accurate calculations. The contribution of
“renormalized finite quantity” (radiation correction) is very
small, but this small contribution is very important to the
deep study of related physical problems[3][4][5][6][7][8]. ,
It is obviously can reflect “radiation correction” of phys-
ical matter more accurately if one can acquire the exact
result of this tiny correction effectively. Furthermore, the
exact results are also helpful to the study and discussion
of physical problems in depth. Many important processes,
such as Bhabha scattering[9][10][11][12][13]and Compton
scattering[14][15][16][17][18], involve electron and electron
neutrino propagators in particle physics.

In this paper, we will introduce the model of electron and
electron neutrino chain propagators to research the interactions
that involving electron and electron neutrino in SM. We ana-
lyze the framework of electron chain propagator, which com-
posed of different physical loops in detail first. In addition, we
acquire the renormalized electron chain propagator S(chain)

F,R
(p)

by introducing the counter terms in the on-shell scheme and
absorbing the counter terms into the un-renormalized “bare”
parameters; then we figure out the renormalized electron
chain propagator S

(chain)

F,R
(p) by complex function integral

method. Meanwhile, we also obtain the analytical expressions
of renormalized electron neutrino chain propagator S(chain)

ν,R (p)
by the same treatment. Finally, the relative corrections of the
electron and electron neutrino chain propagators to the tree
propagators are given in large scale of propagator energy.

The rest of the paper is organized as follows. Section II gives
the construction of the electron chain propagator. In Section
III, the analytical and numerical results of the renormalized
electron chain propagator are carried out. Section IV gives the
analytical and numerical results of the renormalized electron
neutrino chain propagator. Finally, we conclude the work in
Section V.

II. THE CONSTRUCTION OF THE ELECTRON CHAIN
PROPAGATOR

After spontaneous symmetry breaking the Lagrangian for
the electron field in SM is [19]

L =
ie

4sW cW
ψ̄eγ

µ2(cV − cAγ5)ψeZµ − eψ̄eγµψeAµ

− e

2
√

2sW

[
ψ̄eγ

µ(1− γ5)ψνeW
−
µ

+ ψ̄νeγ
µ(1− γ5)ψeW

+
µ

]
− eme

2sWmW

[(
ψ̄eψeH + iψ̄eγ5ψeφ0

)
+

1√
2
ψ̄e(1− γ5)ψνeφ−

]
(1)

By the interaction Lagrangian, the electron self-energy
involves 6 different physical processes in SM that shown in
Fig.1.

Science the electron participates different physical interac-
tions in SM, its chain propagator S(chain)

F (p) contains com-
plex internal electroweak interactions. The construction of
S

(chain)
F (p) can be found in Fig.2.



Fig. 1. Electron self-energy loops in SM.

Fig. 2. The construction of Feynman diagram for electron chain propagator
in SM.

By Fig.2, the electron chain propagator S(chain)
F (p) can be

expressed as

S
(chain)
F (p) = SF (p) ·

∞∑
n=0

[−iΣ(p) · SF (p)]
n

= SF (p) · 1

1 + iΣ(p) · SF (p)

(2)

Where, Σ(p) = Σγ(p)+ΣZ(p)+ΣW(p)+ΣH(p)+Σφ0(p)+
Σφ±(p).

There will appear an infinite number of complex internal
interactions when we consider chain propagator, one need
to introduce the counter term to eliminate the divergence:
−iΣ̂(p)= − iΣ(2)(p) + (−iδΣ(2)(p)). Thus the renormalized
electron chain propagator can be expressed as

S
(chain)
F,R (p) = SF (p) · 1

1+iΣ̂(p) · SF (p)
(3)

So the count of the renormalized finite quantities of elec-
tron chain propagator attributes to the count of the 6 loop
divergences in Fig.1. Their sum general expression can be
expressed as

Σ(p) = p̂ΣV (p) + p̂γ5ΣA(p) +meΣS(p) (4)

Specifically, ΣV (p), ΣA(p) and ΣS(p) are given by

ΣV (p) =
α

4π

[(
2B0(p2, λ,me) + 2B1(p2, λ,me)− 1

)
+

(1− 4s2
W )

2
+ 1

16s2
W c

2
W

(
2B1(p2,me,mZ) + 1

)
+

1

4s2
W

(
2B1(p2, 0,mW ) + 1

)
+

m2
e

4s2
Wm

2
W

(
B1(p2,me,mH)

+B1(p2,me,mZ) + 2B1(p2,mλ,mW )
)]

(5)

ΣA(p) = − α

4π

[
1− 4s2

W

8s2
W c

2
W

(
2B1(p2,me,mZ) + 1

)
− 1

4s2
W

(
2B1(p2, 0,mW ) + 1

)
+

m2
e

2s2
Wm

2
W

B1(p2,mλ,mW )

]
(6)

ΣS(p) =
−α
4π

[
(1− 4s2

W )
2 − 1

16s2
W c

2
W

(
4B1(p2,me,mZ)− 2

)
+

m2
e

4s2
Wm

2
W

(
B1(p2,me,mZ)−B1(p2,me,mH)

)
+
(
4B0(p2, λ,me)− 2

)]
(7)

Where, sW = sin θW , cW = cos θW , and θW is Weinberg
angle, which defined as cos θW = mW /mZ . The photon
contribution was calculated with a small photon mass λ in
order to regularize possible infrared divergences. Besides, the
two-point functions B0 and B1 are defined as

B0(p2,m1,m2) = ∆−
∫ 1

0

ln [f(p, x)
/
M2]dx

B1(p2,m1,m2) = −1

2
∆ +

∫ 1

0

x ln [f(p, x)
/
M2]dx

(8)

Where, f(p, x) = p2x(x − 1) + m2
1(1 − x) + m2

2x − iε,
∆ = 2

ε − γE + ln 4π − ln (M2
/
µ2), µ is the renormalized

scale, M is an arbitrary mass and its value does not influence
the result of electron renormalized chain propagator in the on-
shell scheme.

Instead of the vector and axial vector parts of the self-
energies ΣV,A in Eq. (3), it may be more convenient to use
the right- and left-handed parts

Σ(p) = p̂
1− γ5

2
ΣL(p) + p̂

1 + γ5

2
ΣR(p) +meΣS(p) (9)

Where, ΣR = ΣV + ΣA and ΣL = ΣV − ΣA.

III. ANALYTICAL RESULTS OF THE RENORMALIZED
ELECTRON CHAIN PROPAGATOR

In this section, we will calculate the analytical result of
renormalized electron chain propagator. One needs to calculate
the two point functions B0(p2,m1,m2) and B1(p2,m1,m2)
first. The analytic results read[20]

B0(p2,m1,m2) = ∆−
{

ln (p2
/
M2)+

∑
λ=1,2

ln (1− xλ)

− xλ ln (1− 1/xλ)− 1} (10)



B1(p2,m1,m2) = −∆

2
+

1

2

ln
p2

M2
+
∑
λ=1,2

ln (1− xλ)

−xλ − xλ2 ln

(
1− 1

xλ

)
− 1

2

}
(11)

xλ are the roots of the equation p2x2+
(
m2

2 −m2
1 − p2

)
x+

m2
1 − iε = 0:

lim
ε→0

xλ(p2, ε) =
(p2 +m2

2 −m2
1)

2p2

±



√
(p2+m2

2−m2
1)2−4p2m2

2

4p4 for p2 < 0,

0 < p2 < (m1 −m2)2, p2 > (m1 +m2)2

−i
√

4p2m2
2−(p2+m2

2−m2
1)2

4p4

for (m1 −m2)2 < p2 < (m1 +m2)2

(12)

It is not difficult to calculate the derivative of B0 and B1

∂B0

∂p2
=

−1

p2(x1 − x2)

∑
λ=1,2

ln (1− xλ)

· [−xλ ln (1− 1/xλ)− 1] (13)

∂B1

∂p2
=

1

p2(x1 − x2)

∑
λ=1,2

ln (1− xλ)

·
[
−xλ − xλ2 ln (1− 1/xλ)− 1/2

]
(14)

It is rather difficult to evaluate B1 numerically if xλ is too
large. In practice we use the formula involving the logarithm if
|xλ| < 100; for |xλ| ≥ 100 we express B1 and ∂B1

∂p2 as Eq. (15)

and (16) after Taylor expansion of ln
(

1− 1
xλ

)
= −

∞∑
n=1

1
nxnλ

.

B1 = −1

2
∆ +

1

2

{
ln

p2

M2
+
∑
λ=1,2

ln (1− xλ)

+
1

3xλ
+

1

4x2
λ

+
1

5x3
λ

+ · · ·
} (15)

∂B1

∂p2
=

1

p2(x1 − x2)

∑
λ=1,2

ln (1− xλ)

·
(

1

3xλ
+

1

4x2
λ

+
1

5x3
λ

+ · · ·
) (16)

By introducing counter terms δZL, δZR and δme in the on-
shell scheme[21], the renormalized electron self-energies can
be written as

Σ̂(p) = p̂ΣRV (p) + p̂γ5ΣRA(p) +meΣ
R
S (p) (17)

Or

Σ̂(p) = p̂
1− γ5

2
(ΣL + δZL) + p̂

1 + γ5

2
(ΣR + δZR)

+me

(
ΣS +

δme

me
+

1

2
δZL +

1

2
δZR

)
(18)

With

δZL = ReΣL(me) +m2
e

∂

∂p2
Re [ΣL + ΣR + 2ΣS ]|p2=m2

e

(19)

δZR = ReΣR(me) +m2
e

∂

∂p2
Re [ΣL + ΣR + 2ΣS ]|p2=m2

e

(20)

δme = −meRe

[
1

2
ΣL(me) +

1

2
ΣR(me) + ΣfS(me)

]
(21)

It is not difficult to calculate the results of δZL, δZR and
δme through Eq.(5-7) and Eq.(10,11). The numerical results
ΣRV (p), ΣRA(p) and ΣRS (p) are shown in Fig.3 and Fig.4. Fig.3
shows the real parts corrections of electron self-energy, and
Fig.4 shows the imaginary parts corrections of electron self-
energy.
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Fig. 3. Real parts corrections of electron self-energy.
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Fig. 4. Imaginary parts corrections of electron self-energy.

By introducing four parameters: Λ(p), Ω(p), Υ(p) and
Θ(p), we have

− iΣ̂(p) · SF (p) = Λ(p) + Ω(p)p̂+ Υ(p)γ5 + Θ(p)p̂γ5 (22)



With

Λ(p) =
[
p2ΣRV (p) +m2

eΣ
R
S (p)

]/(
p2 −m2

e

)
Υ(p) = p2ΣRA(p)

/(
p2 −m2

e

)
Θ(p) = meΣ

R
A(p)

/(
p2 −m2

e

)
Ω(p) = me

[
ΣRV (p) + ΣRS (p)

]/(
p2 −m2

e

)
(23)

According to Eq.(22), the electron chain propagator also can
be expressed as after introducing four corrective parameters

S
(chain)
F,R (p) =

ip̂

p2 −m2
e

ξ1(p) +
ime

p2 −m2
e

ξ2(p)

+
ip̂γ5

p2 −m2
e

ξ3(p) +
iγ5

p2 −m2
e

ξ4(p)

(24)

With

ξ1(p) =
[(1− Λ)−meΩ]F1 + 2[(1− Λ)me − Ωp2]F2

G1
2 − 4F2

2p2

(25)

ξ2(p) =
[(1− Λ)me − Ωp2]F1 + 2p2[(1− Λ)− Ωme]F2

(G1
2 − 4F2

2p2)me
(26)

ξ3(p) =
(Υ +meΩ)F1 + 2(Θp2 −Υme)F2

G1
2 − 4F2

2p2
(27)

ξ4(p) =
(Υme + Ωp2)F1 + 2p2(Θme −Υ)F2

G1
2 − 4F2

2p2
(28)

where F1 = (1− Λ)2 + Ω2p2−Υ2−Θ2p2, F2 = (1−Λ)Ω−
ΥΘ and G1 = (1− Λ)2 −Υ2 + (Ω2 −Θ2)p2.

Compared to the electron tree propagator SF (p) = ip̂
p2−m2

e
+

me
p2−m2

e
, the ξi=1,2,3,4(p) in formula (23) can be interpreted as

corrective parameters. Table I and Table II give the corrective
parameters ξ1(p), ξ2(p), ξ3(p), ξ4(p) for p2.

It can be seen from table I that the relative correction of
ξ1(p) and ξ2(p) is not more than 5%, which is accord with
the magnitude of electroweak correction. It also can be seen
from table II that ξ3(p) and ξ4(p) are very small, which means
that although there are two extra terms (ξ3(p) and ξ4(p)) in
electron chain propagator compared to the tree propagator,
their contributions are very small.

TABLE I
CORRECTIVE PARAMETERS ξ1(p), ξ2(p) FOR p2

p2(GeV2) ξ1(p) ξ2(p)
−10002 0.9890− 0.0100i 0.9417− 0.0033i
−1002 0.9924− 0.0101i 0.9531− 0.0032i
−102 0.9952− 0.0102i 0.9636− 0.0030i
−1 0.9978− 0.0102i 0.9741− 0.0029i
1 0.9979− 0.0070i 0.9740− 0.0019i
102 0.9952− 0.0069i 0.9635− 0.0018i
1002 0.9929− 0.0071i 0.9534− 0.0016i
10002 0.9890− 0.0100i 0.9417− 0.0005i

TABLE II
CORRECTIVE PARAMETERS ξ3(p), ξ4(p) FOR p2

p2(GeV2) 102 × ξ3(p) 105 × ξ4(p)
−10002 −1.1541+0.4278i 1.8786− 0.4996i
−1002 −1.3518+0.4347i 1.3659− 0.4911i
−102 −1.3821+0.4377i 0.9449− 0.4822i
−1 −1.3897+0.4401i 0.5307− 0.4729i
1 −1.3978+0.5756i 0.5415− 0.2352i
102 −1.3908+0.5721i 0.9555− 0.2399i
1002 −1.4389+0.8304i 1.3403− 0.2501i
10002 −1.1651+0.2606i 1.8776− 0.3968i

IV. THE RENORMALIZED ELECTRON NEUTRINO CHAIN
PROPAGATOR

The electron neutrino self-energy involves 3 different physi-
cal processes in SM. Similar to the calculation of the renormal-
ized electron self-energy, we can also obtain the renormalized
electron neutrino self-energy

Σ̂ν(p) = p̂
1− γ5

2
(ΣνL(p) + δZνL) (29)

Where,

ΣνL(p) = − α

4π

{
1

2s2
W

(
2 +

m2
e

m2
W

)(
B1(k2,me,mW ) + 1

)
+

1

4s2
W c

2
W

(
2B1(k2, 0,mZ) + 1

)}
(30)

The renormalized electron neutrino self-energy can be writ-
ten as formula (30) in the on-shell condition scheme

Σ̂νL(p) = ΣνL(p)− ReΣνL(0) (31)

The tree propagator of electron neutrino propagator in SM
is Sν(p) = ip̂

/
p2. The renormalized electron neutrino chain

propagator can be expressed as

S
(chain)
ν,R (p) =

ip̂

p2
ς1(p) +

ip̂γ5

p2
ς2(p) (32)

Where, ς1(p) =
2−Σ̂νL(p)

2−2Σ̂νL(p)
, ς2(p) =

Σ̂νL(p)

2−2Σ̂νL(p)
. Fig.5 and

Fig.6 give the corrective parameters |ς1(p)| and |ς2(p)| for p.
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Fig. 5. The value of |ς1(p)| with propagator energy.
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V. CONCLUSIONS

In this paper, we analyzed and discussed the framework
of electron and electron neutrino propagators and its renor-
malization in detail via SM. We obtained the analytical and
numerical results at the same time, and the numerical results
show that our results are in accordance with the magnitude
of the electroweak correction. The renormalization model
of this paper, not only taking into the “part infinite high
order situation of perturbation theory, but the renormalized
constants of counter terms into physical parameter (the mass of
electron m) reasonably. Thus this renormalization and its count
model undoubtedly has some theoretical significance academic
reference.
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