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Abstract: Maritime surveillance sensors like AIS (Automatic Identification System) and 
Radar provide useful information for decision-making support, which is of paramount 
importance for effective operations against maritime threats and illegal activities [1]. 
However, decision-making systems that trust solely on AIS information tend to fail in real 
situations because such information could be missing, inaccurate or even deceptive [2]. 
On the other hand, only Radar information is not enough to get a complete description of 
the maritime situational picture. This paper proposes a deep learning framework for vessel 
monitoring that examines a particular scenario where a deep learning solution can infer a 
navigation status based on the vessels trajectories, and thus to detect suspicious vessels 
activities. For this purpose, a dataset, named DeepMarine, has been specifically created 
by collecting data of AIS historical recordings. We demonstrate the performance of the 
developed deep learning framework for the proposed vessels activity classification, which 
can be ultimately used to report illegal activities. 

1. Introduction  

Airbus Defense and Space (ADS) has developed Airborne Mission Systems since more than 
twenty years ago. Its Fully Integrated Tactical System (FITS) based on a suite of different 
sensors is currently operating in more than fifty aircrafts like C-212, CN-235, C-295 and P-3. 
One of the FITS applications is for the maritime domain. Two main sources of information 
from the FITS are AIS and X-band radar. Broadcasted AIS messages contain kinematic and 
static data that can be transformed into useful information. Some of the fields included in the 
AIS messages are vessels identity, navigation status, rate of turn, speed over ground, position, 
course over ground or true heading. However, it is only mandatory for larger vessels, and 
therefore maritime radar data is still essential for smaller and non-cooperative vessels. AIS 
available data is used for training purposes as this kind of information is labeled, but in an 
operational environment, this information is not always available and only radar information 
can be used. In those cases information about the position and the velocity of the vessels are 
used to infer what the vessels are doing. 

An automatic capability for early detection of illegal activities can help human operators to 
improve the probability of detection of such activities. Nowadays, this is usually done by highly 
skilled operators that constantly monitor and analyze information of a large area containing 
hundreds of vessels. Moreover, the “modus operandi” of these activities is in constant evolution 
due to the criminals’ purpose of deceiving the authorities. Subsequently, a high capability to 
adapt to changing behavioral patterns is required. This is the reason why a solution based on 
the use of a Neural Network (NN) algorithm is proposed as it is able to be adapted to different 
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scenarios and it is able to manage a big amount of data which is available as AIS information 
can be obtained for a long time period. 

In some cases, the operator knows exactly what situations to look for, and it is then possible to 
define a set of rules for them [3-5]. For instance, the system in [5] can identify a number of 
basic spatial and kinematical relations among objects, and then deduce different situations, e.g. 
smuggling, hijacking and piloting.  

In other cases, the operator looks for situations that deviate from the considered normal 
behavior in an unspecified manner (i.e. anomaly detection). This insight is more complex to 
automatize, nonetheless there have been different approaches in the literature that address the 
anomaly detection problem in maritime surveillance applications. Data-Driven algorithms [6] 
build a model of normal vessel behavior from historical motion data. The models are then used 
to classify new vessel observations as normal or anomalous. They generally estimate the degree 
of deviation of new target trajectories from the learned model of normal trajectories. Different 
algorithms are capable of detecting different types of anomaly (e.g. point or speed anomalies) 
[7]. In [8], anomaly detection algorithms are divided into two classes based on the models’ 
learning characteristics: Geographical (map-dependent) model-based methods and   
parametrical (map-independent) model-based methods. These last ones have been well-studied, 
especially those that make use of trajectory and dynamic information. Features of vessel motion 
are analyzed over time by considering trajectories [9]. Most of them perform a clustering 
strategy to divide the trajectories into different groups. By clustering similar trajectories 
corresponding to regular traffic, a model of normal vessel routes can be constructed [10] [11]. 
They typically assume that in specific areas the vessels tend to have similar behaviors, which 
are subject to be clustered using different algorithms (kmeans, DBSCAN, etc.). Some of them 
classify a trajectory as anomalous based on the distance to the closest set of trajectories, 
technique called k-nearest neighbors [12] [13]. When the distance among trajectories is 
expressed in terms of likelihood, a probabilistic anomaly detection can be inferred [14] [15]. 
On the other hand, some methods perform a pre-processing of the trajectories, since commonly 
used similarity measures, such as the Euclidean distance, require equally spaced and properly 
aligned trajectories. In [16], unlike previous references, each cluster is a speed mode.   

However, clustering steps could result in loss of information. Moreover, the detection of 
anomalies needs to be performed on-line in surveillance applications. In this context, it is crucial 
to reduce delays between the start of the anomalous behavior and the alarm raised by the 
monitoring system. Sequential process control techniques have been proposed to shorten the 
average time required to signal a change in the normal process [17] [18]. It should be remarked 
that these sequential techniques assume the data streams are regularly-sampled, but this is not 
true in real applications, and interpolation or motion estimation methods should be additionally 
used. 

Statistical [19] and machine learning based techniques [20] have been also proposed for 
anomaly activity detection, where most of the approaches are based on unsupervised learning. 
In [21], a Trajectory Cluster Modelling (TCM) is proposed, representing one of the first 
attempts to apply machine learning to anomaly detection in the maritime domain. However, the 
development of learning-based systems is a critical challenge because of the noise, irregular 
time-sampling, and huge amount of data. For this reason, the presented paper proposes a 
supervised deep learning solution to infer deep semantics and behavior from the vessels’ 
trajectories a basis for illegal activity detection. For this purpose, a specific NN has been 
designed, which has two independent branches that process two independent input streams of 
Speed Over Ground (SOG) and Course Over Ground (COG) data. The outputs of these branches 
are concatenated and process by a fully-connected subnetwork, whose output is a predicted 
label that contains the navigation status: stationary, cruising, and fishing. This information 
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could be also very useful for target classification and identification task in a multi-sensor 
engine.   

2. Deep Learning Framework 

A convolutional neural network (CNN) has been designed to infer the navigation status from 
the AIS information. Then, both AIS and Radar trajectories, can be used to detect different vessel 
behaviors. For example, a fishing activity could be recognized by observing joint variations of 
course and speed, and then an alert could be raised in case of fishing in not-allowable areas.  
Note that both positional data and ship information (e.g. navigation status, ship type, or ship 
name) are necessary for the detection of an anomaly. 

The CNN has two independent inputs: a stream with SOG data and another stream with COG 
information, both ones extracted from the AIS historical recordings. The input data streams are 
vectors with a fixed number of samples, which are normalized to deal with the different nature 
of information and their range of values. It is assumed that this information is enough 
discriminative to allow the CNN to infer correctly the navigation status. In the case of a fishing 
trajectory, the high frequency changes of SOG values are very discriminative. The output of the 
CNN is a label that contains the navigation status: stationary, cruising, and fishing.  

 

Figure 1 Deep learning based solution 

The architecture of the CNN is shown in Figure 1, and it is composed by two independent 
branches and a fully-connected sub-network. The two independent branches process 
independently every input vector (COG and SOG) and have been designed using a Residual 
Network architecture [24], also called ResNet, which improves the convergence speed. Thus, 
every branch is composed by 28 layers divided into 10 blocks, as shown in Figure 2. Every block 
contains a 1D convolutional layer, a batch normalization layer, and an activation layer. The 1D 
convolutional layer have 32 filters of size 3x1. A ResNet shortcut is added between every two 
blocks of layers. This shortcut is a simple sum operation when the input and output are of the 
same dimensions, and it is a projection shortcut when the dimensions are different. 

The outputs of both ResNet branches are merged and processed by a fully-connected sub-
network that makes the final prediction about the navigation status by integrating the information 
processed by every ResNet branch. The fully-connected sub-network is composed of three dense 
layers. The first layer has 2048 elements, the second layer has 512 elements, and the last one is 
a softmax with three outputs, one for each considered navigation status. 
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Regarding the training of the proposed CNN, the cross-entropy has been used as cost function 
and the Adam algorithm has been used as optimizer with a learning rate of 1e-4. Lastly, the 
batches are composed by 32 samples. 

2. DeepMarine database 

A database, named DeepMarine, is used as basis to classify different vessel behaviour. Taking 
into account the data quality (e.g. time resolution and completeness), AIS information is 
extracted from Marinecadastre (MarineC.), a free AIS data provider [25]. The MarineC data 
source contains historical records from 2009 to 2014 in USA. Records are temporally filtered, 
interpolated (1 minute) and stored in a monthly file by a Universal Transverse Mercator (UTM) 
zone. For the sake of privacy, the ship name and call sign fields are removed. 

Recordings in a specific zone area per year could generate more than 70 GB of National 
Marine Electronics Association (NMEA) tracks coming from thousands of vessels. For the 
ongoing analysis, only a subset of AIS, namely position, speed, heading, maritime mobile service 
identity (MMSI), timestamp, and vessel-type, is needed. This information is complemented by 
external static sources of information like the vessel finder database [26].  

As part of the database creation task, an automatic method for processing AIS information 
has been developed, able to handle a large amount of data. This method groups the raw AIS 
information into files, according to the vessels identify and year. Then, a first preprocessing is 
performed by removing small and noisy trajectories. Furthermore, trajectories whose samples 
length is smaller than a threshold are also discarded. Later, the trajectories (that can be quite 
long) are split into smaller chunks, with the purpose of detecting the navigation status in each 
one. It is assumed that the ship keeps its activity during several chunks, and every chunk contains 
the enough information to be able to infer the three considered navigation status: stationary, 
cruising, and fishing.  

As the designed deep learning-based solution needs all the input trajectories to have the same 
length, i.e. the same number of samples, the entire trajectory has been split in blocks of the same 
temporal length, and an interpolation process have been made over them to have the same 
number of samples. 

Samples of the database have been acquired in two different areas of the west coast of the 
United States of America (USA), so the database is composed by two sets of trajectories, one 

Figure 2 Resnet branch.
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from the zone 15 and another one from the zone 17. Table 1 and Table 2 summarize the number 
of trajectory samples using different number of sampling points for each zone. The reason of 
considering different sampling rates is to analyze how the performance of the navigation status 
prediction changes with this parameter. 

 
Table 1 Number of trajectories for zone 15. 

Nº of sampling 
points 

Stationary Cruising Fishing 

100 14327 39107 20893 
200 6472 18859 10429 
300 3936 12204 6942 

 
Table 2 Number of trajectories for zone 17. 

Nº of sampling 
points 

Stationary Cruising Fishing 

100 4615 21251 7845 
200 2151 10434 3912 
300 1354 6864 2607 

 

3. Results  

The created database has been split into training (60% of the samples), validation (20% of the 
samples), and testing (20% of the samples) sets to properly train and test the proposed CNN. 
The metric used to measure the performance of the system is the precision that indicates the 
percentage of well classified samples of each class and can be expressed as follows: 

݊݋݅ݏ݅ܿ݁ݎܲ ൌ 100 ∗ ௧௥௨௘	௣௢௦௜௧௜௩௘	௦௔௠௣௟௘௦

௧௥௨௘	௣௢௦௜௧௜௩௘	௦௔௠௣௟௘௦ା௙௔௟௦௘	௣௢௦௜௧௜௩௘	௦௔௠௣௟௘௦
, 

where true positive samples represent the number of samples of each class classified as 
belonging to that class, and false positive samples represents the number of samples belonging 
to other classes classified as belonging to the selected class. 

Table 3 and Table 4 show the precision results using the trajectories belonging to zone 15 and 
17, respectively. It is important to notice that for all cases the precision value is greater than 
50%, and that value increases when more samples are considered, i.e. more information has been 
used to predict the status. 

Table 5 shows the precision results combining the samples belonging to zone 15 and zone 17, 
which indicate the capability of the solution to generalize using trajectories of different zones. 
In this case, the accuracy is somewhat lower for the Stationary and Cruising navigation status 
but it is higher for the Fishing one. 

On overall, the total number of trajectories is quite scarce regarding the standards of deep 
learning, leading to a moderate system performance. But it is expected to highly increase the 
performance by creating a significantly larger database in the future. Nonetheless, these 
preliminary results prove the potential of applying a deep neural network for inferring 
information from trajectories. 
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Table 3 Accuracy results over the zone 15 of the DeepMarine database. 

Nº of sampling 
points 

Stationary Cruising Fishing 

100 58 % 78 % 52 % 
200 64 % 80 % 62 % 
300 74 % 82 % 58 % 

 
Table 4 Accuracy results over the zone 17 of the DeepMarine database. 

Nº of sampling 
points 

Stationary Cruising Fishing 

100 72 % 87 % 68 % 
200 70 % 88 % 66 % 
300 78 % 89 % 69 % 

 

Table 5 Accuracy results over the combination of zone 15 and zone 17 of the DeepMarine database. 

Nº of sampling 
points 

Stationary Cruising Fishing 

100 51 % 63 % 78 % 
200 55 % 66 % 83 % 
300 61 % 70 % 88 % 

 

4. Conclusions  

This work has proposed a deep learning framework for vessel monitoring as a basis for 
anomaly detection, examining a scenario where the navigation status is inferred from vessels 
trajectories. We have demonstrated promising results classification problem by applying a 
supervised deep learning strategy. To this end, a dataset was created, however a greater amount 
of information should be collected in order to get more confidence and better results. 

In addition, Radar flight recordings from AIRBUSS FITS system Flight Tests will be used 
as final test samples to validate the NN is able to infer the navigation status for non-
collaborative targets on real environments. 
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