
EasyChair Preprint

№ 72

Experience Report: Automated System Level

Regression Test Prioritization Using Multiple

Factors

Per Erik Strandberg, Daniel Sundmark, Wasif Afzal,
Thomas J. Ostrand and Elaine J. Weyuker

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 17, 2018



Automated System Level Regression Test
Prioritization in an Industrial Context

Per Erik Strandberg∗, Daniel Sundmark†, Wasif Afzal†, Thomas J. Ostrand† and Elaine J. Weyuker†

∗ Westermo Research and Development AB, Västerås, Sweden
Email: per.strandberg@westermo.se

† Mälardalen University, Västerås, Sweden
Email: {firstname.lastname}@mdh.se

Abstract—We propose a new method of determining an effec-
tive ordering of regression test cases, and describe its implemen-
tation as an automated tool called SuiteBuilder developed by
Westermo Research and Development AB. The tool generates
an efficient order to run the cases in an existing test suite
by using expected or observed test duration and combining
priorities of multiple factors associated with test cases, including
previous fault detection success, interval since last executed,
and modifications to the code tested. The method and tool
were developed to address problems in the traditional process
of regression testing, such as lack of time to run a complete
regression suite, failure to detect bugs in time, and tests that are
repeatedly omitted. The tool has been integrated into the existing
nightly test framework for Westermo software that runs on large-
scale data communication systems. In experimental evaluation of
the tool, we found significant improvement in regression testing
results. The re-ordered test suites finish within the available time,
the majority of fault-detecting test cases are located in the first
third of the suite, no important test case is omitted, and the
necessity for manual work on the suites is greatly reduced.

I. INTRODUCTION

Software testing is performed for many reasons. Possible
objectives include giving feedback, finding or preventing fail-
ures, providing confidence and measuring quality. Regression
testing is an important part of the maintenance process for
software systems that undergo periodic revision and enhance-
ment. Whenever a system is updated, either with fixes or
improvements to existing code or with new functionality, it is
necessary to ensure that the system has not regressed, i.e., that
the modifications have not introduced faults that might affect
previously satisfactory operation of the system. Regression
testing aims to detect such faults in the modified system by
running all or some of the existing test cases that were used
to evaluate the system’s former version.

Because there is frequently not enough time, equipment or
personnel available to rerun the entire test suite, regression
testers focus on selecting the most effective subset of the
test suite, and prioritizing or determining an efficient order
to execute the selected test cases.

Testing requires resources including machine and staff-
hours, hardware, and calendar time, which impacts the time
to market. In our environment, software is automatically
compiled, and regression testing is done nightly when the
software is not being changed.

In this paper we identify problems related to this process,
and describe our solutions. We found that the root cause
for many, but not all, problems was insufficient time. We
therefore propose a new method for prioritizing regression
test cases, describe an industry-quality tool that implements
it, and provide an evaluation of the method and tool as used
at Westermo Research and Development AB (Westermo).

Section II gives an overview of earlier work relating to
prioritization methods for regression testing. Section III de-
scribes the specific problems faced by Westermo in its original
regression testing process. Section IV describes the prioritiza-
tion method and the SuiteBuilder tool that implements it. The
method is based on a set of individual prioritizers that each
focus on a single goal, and a priority merger that combines the
separate priorities. The SuiteBuilder tool facilitates the use of
automated test case prioritization for nightly regression testing,
and is part of the existing continuous integration framework
of our software development environment.

In Section V we give detailed descriptions of the results
of experimental evaluation of SuiteBuilder for software that
controls the operation of large-scale networks of hardware de-
vices. In Section VI we analyze the results of the experimental
evaluation, which indicate that most of the problems that mo-
tivated the creation of the prioritization method and tool were
mitigated. Section VII discusses limitations of SuiteBuilder
and presents possible directions for future work and extensions
of the tool. Section VIII summarizes the regression testing
problems, the solution arrived at, and the contributions of the
paper.

II. RELATED WORK

In [21], Yoo and Harman reviewed existing research on
three strategies for coping with regression: Minimization, to
eliminate test cases from a suite if they are redundant with
respect to a given set of test requirements; Selection, to select
the subset of test cases in a test suite that are most relevant
to execute, given knowledge of changes to the software under
test; and Prioritization, the process of reordering the test cases
in a suite to favor some desirable property.

Selection can be based on properties such as code coverage
[14], most likely or expected locations of faults [16], topic
coverage [8] or historic test execution data [3]. Prioritization



can be viewed as a type of selection, as the first tests in an
ordered suite may be the only ones run. Overviews of selection
and prioritization techniques appear in [21], [3], and [4].

Mathematical optimization approaches have also been pro-
posed to solve the test selection problem. Recent examples
include work by Herzig et al. [9] and Mondal et al. [14],
where the goal has been to optimize on cost, code coverage,
test diversity and/or test duration.

The paper by Walcott et al. [20] proposes using a genetic
algorithm to find the most effective ordering based on the
combination of estimated fault detection ability of a regression
test suite, and the expected running time of each individual
test. Fault detection ability in this case is approximated by the
code coverage of the test suite. It is unknown if the approach is
practically usable as the genetic algorithm was only applied to
two small programs (less than 2000 LOC), with seeded faults.

Cost-effective regression testing has become particularly
important due to the increased use of continuous integration
processes. Elbaum et al. [2] note that traditional regression
testing techniques that rely on source code instrumentation
and availability of a complete test set, become too expensive
in continuous integration development environments, partly
because the high frequency of code changes makes code cov-
erage metrics imprecise and obsolete. Thus recent regression
test techniques are based on information sources that are more
readily available and light-weight.

A recent study by Hemmati et al. [8] shows that a prioritiza-
tion of test cases based on their prior fault detection capability
improves test effectiveness when moving to a rapid release
environment. Elbaum et al. [2] use a simple prioritization
of test suites based on their prior failure in a given time
window. Their results show large variance in performance
across window sizes, but typically better than no-prioritization.
Our approach includes a similar prioritizer, as one of our
multiple priority variables.

Saff and Ernst [18], consider several strategies for test pri-
oritization as part of their investigation of continuous testing.
They compare the original test suite order and random order
to orderings that give highest priority to tests that failed most
recently, tests that failed most often, and tests with the shortest
running time. In one of their experiments, all of these orderings
performed at approximately the same level, while in the other
experiment they found the best result by initially selecting
tests that failed most recently. A key difference between their
examination of priorities and ours is that they look at each
ranking method independently, while we build a test case
priority by merging multiple independent rankings.

Marijan [13] described a study that used impact of detected
failures, test execution time, failure frequency of a test case
and functional coverage to prioritize test cases efficiently.
Although the context is continuous integration, it is not clear
if the proposed approach is integrated into the nightly build
process. In contrast, SuiteBuilder is an integral part of the
Westermo nightly test environment.

Other studies have used historical data for test prioritization.
Kim and Porter [11] used a test prioritization technique based

on three properties: when a test case was last executed, if a test
case resulted in the identification of a fault, and the functions
exercised by the test case. However, their approach was not
evaluated in an industrial setting.

Following the study by Kim and Porter, several other studies
investigated history-based prioritization [3], [5], [10], [17].
However, these approaches were also neither deployed nor
evaluated in industrial settings. The same is true for [5], [10],
[17] which used small programs that provided useful demon-
strations of proof of concept but did not provide evidence of
their usefulness in practice.

While the work reported in [3] is an industrial case study
with a prototype implementation of a tool, the results are still
preliminary and the study was done in an offline mode. In
contrast, our approach provides a fully automated tool that
is integrated in the nightly build and test environment at
Westermo and is being successfully used in production.

III. PROBLEM DESCRIPTION

This paper addresses problems related to regression test
selection and prioritization experienced at Westermo R&D.
Westermo designs and manufactures robust data communica-
tion devices for harsh environments, providing communication
infrastructure for control and monitoring systems where other
commercial grade products are not sufficiently resilient.

A. Context

The focus of this paper is on automated testing of target
devices: controlling and configuring a device running WeOS
(Westermo Operating System), as an embedded system, in a
real network.

To run test cases on one or more devices under test (DUTs),
a test framework has been implemented and maintained over
a period of several years. The framework provides an en-
vironment for tests to be executed manually by a human
tester, or for automated tests that can run and have their
results recorded by the framework without human intervention.
The automated testing is used in combination with several
other test approaches, e.g., manual exploratory testing. This
combination provides a broad and repetitive regression testing
on many hardware platforms by the automated testing, and also
incorporates a critical perspective by experienced members of
the test team, allowing them to focus on the high risk areas
in each WeOS release.

In order to test different scenarios, a number of test systems
with varying physical topologies have been constructed aimed
at test coverage of a certain hardware product, a software
feature or a customer case. The physical topologies contain
from 4 to 25 devices communicating with each other using
traditional Ethernet cables, optical cables, serial ports etc..
Each device is built from physical components and firmwares,
as well as its customized version of WeOS. The latter consists
of many software libraries, which are in turn composed of
source code files, each containing many methods, functions
or classes. See Figure 1 for an example of a topology and an
illustration of this structure.



Fig. 1. A topology is many layers of abstraction above a source code method.

An automated test case is implemented as a class in the
Python programming language. The class includes a descrip-
tion of a logical topology that specifies requirements on the
physical topology. The logical topology instructs the test
framework on how many DUTs the test needs and how they
are interconnected, for example, by enabling or disabling ports
or by altering firewall rules. Individual DUTs are configured
according to the instructions in the test cases. A test class
includes methods that create setup, test execution, and tear
down instructions for the test cases, and is defined with
parameters that can be used to build a large number of specific
test cases.

An example of a test case is our test on Power over Ethernet
limits, which is a feature that lets a DUT power external
devices. If the total power consumed by the external devices
is above a certain limit, the DUT disables ports according to a
configured priority. The test case reconfigures these priorities
according to different patterns, verifies that the port with the
lowest priority is disabled and that no other port is disabled.

The outcome of a test is typically pass or fail, but other types
of results are also possible, for example when the test frame-
work is unable to communicate with external hardware needed
for the test, when unexpected states cannot be recovered from,
or if a logical topology cannot be mapped onto a physical
topology. Depending on the number of WeOS versions to test,
and the types of suites needed, between one and ten test suites
are needed per test system per night.

B. The Problems

1) Nightly testing does not finish on time: Testing requires
time and time for testing is limited. An informal study of dura-
tions of different types of testing was performed at Westermo:
Manual testing of a suite of 14 test cases had been performed
for a recent WeOS release. These test cases required a par-
ticularly complicated test setup with virtual machines running
authentication services. Manual testing required an effort of
roughly 1 hour per test case, including time for configuration,
learning about the topic, reporting and interpreting the results.
These test cases were subsequently automated. Running the
automated cases required between 1.33 and 7.25 minutes, with
an average of 2.96 minutes per test case. This is a speed up
of a factor 20 when compared to manual testing. Automated
test cases that can run without an embedded system, but
that require communication, for example with a database, are
faster. The tests for one of the modules used in SuiteBuilder
required 3.5 seconds for 5 test cases, or about 0.7 seconds per
test case. Unit tests are even faster. Unit testing of one of the

libraries of SuiteBuilder requires 0.033 seconds for 155 test
cases, or about 0.2 milliseconds per test case.

There are many reasons why testing on target devices is
lengthy. For example, if a DUT needs to reboot, perhaps to
assure that a configuration was stored on the disk, several
seconds are required for this action alone. If the DUT has
hardware such as special ports, the device may need time to
load the firmware before it reaches the desired state. Tests of
common ethernet protocols like Rapid Spanning Tree Protocol
(RSTP) also have intrinsic time consuming characteristics due
to the timing in which the protocol sends packets between
devices on a network.

We gathered statistics of the durations of automated test
cases in the automated test framework for three of the test
systems from the first quarter of 2014 for tests that either
passed or failed. The test durations ranged from 0.2 to 37
minutes, with an average of between 1.6 and 2.5 minutes.
These values are presented in Table I.

TABLE I
DURATIONS OF TESTS IN MINUTES FROM Q1 2014 FOR NIGHTLY TESTING.

System Fastest Average Slowest Std.dev.
Test System 1 0.2 1.58 28.8 1.18
Test System 2 0.2 1.58 36.8 1.31
Test System 3 0.2 2.48 29.6 3.34

The nightly test suites for regular testing of WeOS grew
over time as more test cases were implemented. Eventually,
the nightly suites did not finish until after 8am, when the
Westermo work day starts. When a nightly suite did not finish
on time, we sometimes manually stopped it. In addition to
requiring manual labor, this could also lead to undefined states
in the test systems.

2) Manual work and forgotten tests: Due to insufficient
time for nightly testing, we tried to implement a workaround
by manually removing tests to decrease the length of the suite.
The intent was to manually add these tests into the suites
during the weekend. This often led to tests that were ignored
for months, sometimes leading to lost test opportunities or
issues in WeOS not being detected. Moreover, any manual
work with the suites was risky as one might unintentionally
introduce syntax errors, or break the suite in other ways.

3) No priority for the test cases: Tests are typically named
according to the functional area that they aim at. Tests were
originally ordered alphabetically in the suites, so if a test had a
name late in the alphabet, it was executed at the end of the test
run. This default ordering had two consequences. First, tests
related to a functional area late in the alphabet were canceled
more frequently than tests with early names. If a late name
test was not canceled but failed, the failure would consistently
be noted late in the suite, providing less rapid feedback and
less time for debugging. It is preferable for failures to occur
early in the suite, so that feedback is faster, and more time is
available for debugging.

Second, we discovered previously unknown and unexpected
failures when the suites were manually reordered, similar to



Fig. 2. Overview of the workflow of the SuiteBuilder tool.

the observations in [12] and [22]. These failures indicated
insufficient clean up in various state transitions of the test
framework or sometimes also in WeOS products.

IV. THE SUITEBUILDER TOOL

The problems described in the previous section are certainly
not unique to regression testing at Westermo. Others have
noted them and looked for solutions, as surveyed in Section
II. Our goal was to solve all of the above-mentioned problems
while maintaining Westermo’s existing nightly testing frame-
work and adhering to the following principles:

• the solution should be easy to extend,
• if the solution included weighted priorities, then the

weights must be easy to change,
• it must be possible to explain the approach to knowledge-

able testers in less than 15 minutes.
These principles reflect the need for the system to be flexible

enough to allow for easy modification as priorities change.
Our solution was a method that includes a vector of

priorities, each of which can be assigned to a test case
independently. The method merges the priorities of each test
case into a single final value which is used for the final
ordering of the entire regression test suite. Some priorities are
assigned statically by humans, others are derived automatically
from historic test outcomes or source code changes.

The priority merging process is controlled with weights for
each priority that can be adjusted by the test team, according
to which goals are deemed most important at a particular time.

A. Approach and Overall Workflow

The fully automated workflow of SuiteBuilder (also illus-
trated in Figure 2) can be summarized in five main steps:

1) Collection of raw test suites. Upon invocation,
SuiteBuilder parses the files that describe available
tests, and builds a suite that includes all tests currently
in use.

2) Assigning priorities. Next, a set of prioritizers assign a
set of priorities to each test case in the raw test suite.
This process will be explained in detail in Section IV-B1.

3) Merging priorities. Once all test cases have been as-
signed priorities, each test case is given a final priority
by merging the individual priorities. The outcome of

this step is a list of all test cases in the raw test suite,
sorted based on their assigned final priority. The priority
merging process is described in Section IV-B2.

4) Selecting the final suite. Given the prioritized list of test
cases, and the time allotted for testing, the final suite
is selected through a two step process. First, the list of
test cases is filtered based on the capabilities of the test
system in question. Second, the remaining test cases are
allowed into the final suite in order of priority, using
a greedy algorithm up to the suite’s allotted time. The
time estimated for a partially-built suite is the sum of the
individual test case times, based on their prior running
times. If there is no prior history for a test case, a default
of 3 minutes is used. The details of the selection of the
final suite are provided in Section IV-B3,

5) Executing the suite. The final suite is executed by the
test framework, and the results from the test session are
stored in the test results database.

The above steps are repeated for each release to be tested,
for each test system, and for each accompanying test suite.

B. Prioritization, Priority Merging and Suite Selection

The following sections explain the prioritization of test
cases using prioritizers, how different priorities are merged
and combined into a final priority for each test case, and how
the list of prioritized test cases are combined into a final suite.

1) Assigning Priorities: TestPrioritizer assigns a static pri-
oritization for an individual test, determined by experienced
WeOS developers, written in configuration files that are rarely
modified. It assigns a low baseline value for most tests, an
increased priority for tests that can only run on limited test
systems, and a decreased value for tests that can be run on
most or all test systems.

The TagPrioritizer assigns a priority to all members of
a group of tests. Tests are organized into groups by WeOS
developers, based on domain and test framework knowledge
using a tag concept. A detailed example of this concept is
given in Section IV-C2. Like the TestPrioritizer, this is a
static prioritization made with configuration files that are rarely
modified. The TagPrioritizer gives a rough prioritization for an
entire group of tests, while the TestPrioritizer provides a fine-
tuned priority that works on individual tests.

Failing tests might indicate issues in WeOS, so a test that has
failed recently and/or frequently will have its priority increased
with the FailPrioritizer. By using threshold values, it increases
the priority on test cases with more than a specific number of
failures within a specific number of days.

The RecentPrioritizer increases priority for tests that have
not been selected recently. A goal of SuiteBuilder is to assure
test circulation so that no tests consistently have low priority
and hence never get tested.

The software under test control physical machines and
generally do not permit the measurement of code coverage
while the software runs on these target devices. This type
of monitoring would impact the program execution in ways
that would make the value of the test results very low [19].



However, we note that from the source code repositories of
WeOS and the test framework, we can extract very detailed
logs on where code changes are located in the software under
test, and also in the test framework. Two SourcePrioritizers
parse these logs for tags to increase the priority of tests
associated with code areas that have recent changes.

2) Merging Priorities: The purpose of the PriorityMerger
is to derive a single final priority for each test case, based on
the values provided by the individual prioritizers. The current
implementation of SuiteBuilder uses a weighted average of
the prioritizer values. In case a test lacks a value from a
particular prioritizer, that prioritizer is not included in the
weighted average for that test. This is similar to what was
proposed by [3], [5], [10].

The individual prioritizers use constants with numerical
values for their priorities: LOWEST, LOW, MEDIUM, HIGH or
HIGHEST, with numerical values 1, 3, 5, 7 and 10.

Table II shows an example of merging three priorities for
four test cases. Prioritizer A provides values for all four test
cases and assigns priorities with the numerical values 5, 3, 7
and 5 respectively. Prioritizer B only assigns priorities to two
of the test cases and Prioritizer C to three of them.

The final priority for each test case is the weighted average
of its individual priorities. T1, for example, is assigned a pri-
ority by only one prioritizer, so the value from this prioritizer
is used. The test case T2 gets the final priority 9·3+2·1

9+2 = 2.6.

TABLE II
EXAMPLE TO ILLUSTRATE HOW THE PRIORITYMERGER WORKS.

T1 T2 T3 T4
Prioritizer A (weight 9) 5.0 3.0 7.0 5.0
Prioritizer B (weight 5) - - 5.0 7.0
Prioritizer C (weight 2) - 1.0 5.0 7.0
Final Priority 5.0 2.6 6.1 5.9

In order to get initial weights, we created scenarios where
the prioritizers competed over tests. For example “if a test
is not tested recently and has code changes, then it is more
important than a failing test”. This was a good start, but led to
frequent frustrations when expected tests were not included in
nightly testing. This led to many initial changes in the weights
of the prioritizers, until we reached the consensus that, for
us, the most important tests are the ones that recently failed.
Now that the weights have stabilized, the FailPrioritizer is the
prioritizer with the most impact. An overview of the weights
is presented in Table III.

TABLE III
RELATIVE WEIGHTS OF THE PRIORITIZERS.

Prioritizer Weight
FailPrioritizer 9.3
SourcePrioritizer (WeOS) 6.1
SourcePrioritizer (Test Framework) 6.1
RecentPrioritizer 4.1
TestPrioritizer 2.6
TagPrioritizer 2.2

3) Selecting the Final Suite: SuiteBuilder uses four main
parameters to select which test cases to include in the final
suite: (i) the raw test suite with test cases ordered by final
priority, (ii) knowledge of which test cases can be run on
which test systems, (iii) the expected execution time of each
test case, and (iv) the desired duration of the suite in question.

The list of potential test cases is first filtered based on
the capabilities of the test system in question. Filters for
experimental tests and experimental functional areas, as well
as tests with known issues limit the number of test cases that
can be considered for a nightly test suite. We have learned
from experience that the latter two types of tests sometimes
cause the test framework to enter undefined states from which
it cannot recover. If these tests are run first, this sometimes
causes the remaining test results to be lost. Therefore, suites
containing these types of tests are run in isolation, after the
regular nightly testing.

Execution times of the test cases are estimated based on
prior execution times of the same test case. When historic data
on test duration is not available, for example for new tests, a
default duration of 3 minutes is used, as this is slightly higher
than the average of all test execution times. This avoids the
risk of adding too many test cases so that a suite generally
will finish on time.

The desired duration of the suite also needs to be provided.
At Westermo, the desired duration of the suite in question is
typically a portion of the full night. Examples of expected and
actual durations are presented in Figure 3. The duration of a
test does not affect the prioritization, but if slow tests have
a high priority then the final suite will contain fewer tests as
the total duration of the suite was determined a priori. Test
cases are placed into the final suite with a greedy algorithm
in priority order, until the allocated duration is reached. When
more than one test case has the same priority, alphabetical
sorting is used as a tie breaker.

C. SuiteBuilder Tool Implementation

The entire SuiteBuilder solution is implemented in Python
as 15 modules with a total of a few thousand lines of code.
This section provides details of the tool, an accompanying test
result database and test suite library.

1) Test Result Database: Originally, the test framework
reported results from nightly testing in conventional log and
report files. In 2012, we started placing results into a relational
database with generous reading rights, to make it easily acces-
sible by staff and possible future tools. After about 20 months,
we had accumulated more than one million test outcomes.

The Test Result Database allows us to rapidly answer ques-
tions like: "When was a particular test case last successfully
run on a specific test system?", "How many times has a
particular test case failed on a specific test system in the
last few days?", "What is the long term pass/fail ratio for a
particular product version over time for a particular set of
functional areas?", or "What is the average duration for a
particular test case?" The result database provides one of the
major sources of data for the prioritizers.



2) Tags: A central concept of SuiteBuilder is the use of
tags to group tests together in a form of key-value pairs,
where the key is a tag and the value is the set of tests
associated with this tag. A hypothetical example could be the
tag backup with the associated tests backup1, backup2 and
backup3. These tag to tests mappings are used by three of the
prioritizers (TagPrioritizer and both SourcePrioritizers), two of
which (both SourcePrioritizers) use them together with source
code history to adjust the priority of the tagged tests. A tag
can have an assigned priority, which is inherited by all its
associated tests.

A test can be associated with several tags, so that its priority
can be governed by any one of the tags. The tags are manually
configured in a configuration file that contains entries with a
tag and a number of patterns to match test paths:

- tag: poe
tests:
- src/test/poe/*
- src/test/*/*poe*

- tag: backup
tests:
- src/test/backup/*

3) Prioritizers: All prioritizers share the BasePrioritizer
class as a common base class. It handles information on test
cases, and can be asked what the priority of a test case is.
The idea is to allow a prioritizer to increase the priority of a
test case if the priority is elevated from the perspective of
this prioritizer, for instance if the test recently failed. The
prioritizer may also decrease the priority if the test should
be suppressed, for example, if it has frequently been part of
nightly testing. It is also possible for a prioritizer to remain
silent if the test is unknown from the perspective of this
prioritizer.

This example illustrates how the base class can be extended
into a simple prioritizer with only four Python statements:

from priority import *

class MyLowPrioritizer(BasePrioritizer):
def get_prio(self, path, params):

return PRIO_LOW

The prioritizers with a static priority (TestPrioritizer and
TagPrioritizer) parse the required configuration files in order
to give their priorities. FailPrioritizer and RecentPrioritizer
instead query the Test Results Database for theirs.

The two SourcePrioritizers (one for changes in WeOS code
and a second for changes in the test framework) parse the
news feed from the source code repositories, extract details
on the names of files altered, and also parse the messages
of the change sets. A typical content of such a feed entry is
illustrated below. Because this entry contains the word poe, it
will affect any tests that are in the group with tag "poe".

Date: October 11, 2016
Author: Per Erik Strandberg
Message: Fixed a bug in the POE wrapper.

Changed files:
+ src/lib/POE.py
+ src/test/POE/my-POE-test.py

This illustrates how the tag key is also used as a trigger
word. In this case, all tests associated with the tag poe can
expect a priority increase since we have detected changes
relevant to the poe tag.

4) Suite Handler Library: Partial suites and test system
capabilities are input data to SuiteBuilder. These specify what
test cases each test system can run and may limit the number
of possible tests for each test system, based on hardware re-
quirements. This processing of configuration files, and export
to suite file is implemented in a Suite Handler Library.

V. EXPERIMENTAL EVALUATION

Our experimental evaluation of SuiteBuilder examines the
extent to which the proposed method implemented by the tool
solves Westermo’s original regression testing problems.

A. Nightly testing does not finish on time

The first, and most problematic, issue addressed by
SuiteBuilder concerns the selection of test cases given that a
limited amount of time was allocated for nightly regression
testing. To address this problem, SuiteBuilder selects test
cases based on the prioritization algorithm. The expected
running time for an individual test case is based on the times
of previous runs of the case. A potential test suite is allocated
a certain amount of running time, and test cases are added to
the suite in order of priority as long as there is at least some
time left. When the suite is completed, its expected duration
is the sum of the expected times of all its test cases. For
practical reasons, the suite’s expected duration is typically a
little longer than the allocated duration, at worst almost as
much longer as the last test to be included.

In order to determine if the suites created by SuiteBuilder
finish on time, we compared the actual running time durations
of 701 test suites created by the tool during one of the
months after SuiteBuilder began nightly usage to the expected
durations of those suites.

Figure 3 shows the expected and actual durations of the
701 suites. The expected durations are plotted as a blue line,
and the actual durations as red dots. The running time of the
great majority of suites was very close to their expected time.
For some suites, the actual time is significantly lower than the
expected time (red dots that are far below the blue curve).
These are typically suites for which no test cases could be
found to match the requirements (such as an experimental suite
when there are no experimental tests), suites that crashed or
were aborted or suites that had poor estimates, perhaps because
they had one of the above issues in the past.

We found that no suite took more than 120% of its expected
duration. The largest underestimation in absolute time between
an expected and an actual time was 50 minutes. Of the 701
investigated suites, 12 required between 105% and 120% of
the expected duration, 433 required between 95% and 105%
of the expected duration, 211 required less than 95% of the



expected duration, and 45 had no duration at all. Suites in the
last category were either empty or aborted at the start.

This evaluation has given us positive feedback that most
test suites are now finishing close to their expected time and
therefore typically run to completion without having to be
aborted at start of business the following day.

Fig. 3. Actual and expected durations of suites.

B. Manual work and omitted tests

The second problem addressed by SuiteBuilder concerned
the need for substantial manual effort for preparing suites for
nightly testing, and the risk of removing and eventually totally
omitting certain tests in this process.

In order to investigate whether tests had been omitted from
the test suites by SuiteBuilder, we first collected all the tests
that had been part of the regular nightly testing for nine
months preceding and three months following the introduction
of SuiteBuilder. We then compared this 12-month set of tests
against all the tests generated by SuiteBuilder in the second
month after its introduction.

By comparing the two sets of test cases, we can assess to
what extent tests are omitted by SuiteBuilder, as they often
were when the manual process was used. In particular, if
many of the test cases in the 12-month set are missing from
the tests generated by SuiteBuilder in a single month, this
would indicate that SuiteBuilder’s selection process has not
solved the omitted test case problem. Conversely, if none or
very few test cases from the 12-month set are missing in the
SuiteBuilder set, this would indicate that SuiteBuilder does
not tend to systematically omit test cases over a long period
of time.

On initial examination, it appeared that almost 100 test
cases that were present in the 12-month set had been omitted
from the SuiteBuilder set. However, after careful examination
we discovered that in fact no test case had really been
systematically omitted by SuiteBuilder. The missing test cases
were explained as follows.

Forty-one test cases in the 12-month set that at first seemed
to be missing from the SuiteBuilder set turned out to be

actually identical to tests in the SuiteBuilder set, except for
inconsequential changes such as parameter order. Nine test
cases in the 12-month set had either been deliberately renamed
or removed. Eight tests were blocked due to changes in WeOS.
These tests had been modified and reintroduced in the nightly
suites after the investigated period ended. Six test cases, or
the features in WeOS they covered, had become unstable.
These tests had been moved to the experimental suites for
investigation.

Two test cases belonged to test scripts where unique iden-
tifiers had accidentally been duplicated so that they were not
included in database queries. One test case was blocked due to
physical wear and tear; it rewrites a memory area on a physical
disk device that can only withstand a few hundred rewrites, and
the test should not have been included in the nightly testing.
Another test case had been blocked due to special topology
needs. It was later reintroduced. One test case was missing due
to manual labor prior to the implementation of SuiteBuilder.
It had been moved around in the suite to investigate if the
suite order was significant for an infrequent and sporadic error
to occur. In this manual shuffling, it had accidentally been
removed and later forgotten.

Finally, because the period covered by the 12-month set
extended beyond the one month period of the SuiteBuilder
set, 28 new test cases that were created during that additional
time could not have been included in a regression suite by
SuiteBuilder because they didn’t exist yet.

The conclusion from this experiment is that during the
single month, SuiteBuilder selected all tests it should have
from the preceding nine months, and did not allow any test to
be systematically omitted for months at a time.

In order to determine if the need for manual work had
decreased, we relied on expert opinion by interviewing test
specialists who have spent a lot of time manually working
with the suites. Some relevant answers were: (i) “There is
still manual work, for example when introducing a new test
or when moving tests between suite types.” (ii) “Before the im-
plementation of SuiteBuilder, suites were manually altered to
allow more testing during the weekends. This was not always
done. Tests were easier to forget before the implementation
of SuiteBuilder. Another improvement is that the length of
the suites are changed dynamically depending on how much
time we have available.” (iii) “An inconvenience that existed
before SuiteBuilder was when developers or testers came in
to the office in the morning, looked at partially complete
test suites and wanted the rest of the tests aborted, so that
debugging could start on a particular test system. Suites finish
on time now and there is no need to perform these steps.” (iv)
“Yet another issue was when developers came to work in the
morning and tests they were particularly interested in were
still in queue.”

The feedback given by the test specialists show an obvious
reduction in the risky manual work, which is a positive result
for Westermo.



C. No test case priority

The third and final problem addressed by SuiteBuilder is
the lack of a meaningful prioritization of test cases within a
test suite. Consequently, one of the SuiteBuilder goals is to
have different priorities associated with test cases in order to
reflect their relative importance.

We first examine how rankings set by all prioritizers in
one suite on one test system for one night are merged to a
single test case priority, thus yielding a prioritized test suite.
Second, we evaluate the meaningfulness of the prioritization
by investigating how the final priority correlates with fault
detection.

The plot in Figure 4 illustrates the actual priorities on test
cases in the one night/one test system test suite mentioned
above. Tests in the suite now have a concept of priority,
and the test cases with the highest priorities are the ones we
determined to be most relevant in our environment.

Fig. 4. Priority of test cases of a test suite of 203 test cases.

Fig. 5. Normalized fail distributions before and after the introduction of
SuiteBuilder. The top row includes all test suites. In the bottom row, short
and broken suites have been removed from the data set.

In order to determine if SuiteBuilder had altered the dis-
tribution of the failing tests, we gathered test results from

nearly four years of regular nightly testing, excluding any
experimental test suites. We compared the distribution of
failing tests in the 6758 suites that were run during the 23
months before the introduction of SuiteBuilder against the
distribution of failures in the 8930 suites run during the 23
months once we began using SuiteBuilder.

Our goal is to measure the percent of all failures that are
detected by tests relative to their positions in a suite. The
suites are typically not of the same length, so in order to get
the failure distribution of all suites, we scaled the index of
each failing test to a number between 0 and 1, so that the
normalized position can be expressed as pnorm = p

len , where
p represents the test’s position in the suite and len the number
of tests in the suite.

Figure 5 shows the failure distributions of the pre- and
post-SuiteBuilder test cases. Each bar represents the failures
detected by 1/20 of all the test cases. The first bar is the failures
that are detected by the first 5% of test cases that run in all
suites over the relevant 23 month period.

Imagine that the execution period of each suite is divided
into 20 segments with equal numbers of test cases in each
segment (the segments don’t have to use equal time), and
consider the bars to be numbered from 1 to 20. Bar i represents
all of the tests from all suites that ran in segment i of their
suite. The height of the bar represents the percent out of all
failing tests over the entire 23 month period that occurred in
segment i.

These distributions are illustrated in plots 1 and 3 in
Figure 5. Before SuiteBuilder, the first third of the tests in
the suites contained fewer than a third of the failures. Once
SuiteBuilder was used, the first third contained half of the
failures.

Sometimes the nightly testing was prematurely aborted.
This could happen when WeOS was left in an unstable state
before nightly testing. This also might occur when the test
framework is in an unstable state, or that the test framework
had not compensated for recent changes in WeOS. The effect
is typically a "broken suite", that is either aborted prematurely,
or cause all or many of the test cases in the suite fail. Since
short suites with many failures would result in failures all over
the distribution once the position is normalized, we suspected
that these initial distributions (plots 1 and 3 in Figure 5) might
hide more meaningful distributions.

Therefore, in order to determine the performance of
SuiteBuilder in terms of failing test distribution, we removed
"broken suites" from the data set used for this assessment.
This was done in a two step process. We first eliminated
suites containing fewer than 20 tests, and second, we removed
any of the remaining suites with a higher than 40% failure
rate. This “cleaning” process removed a sizable percent of
the failures so that the cleaned suites contained 54% of the
original failures in the pre-SuiteBuilder period, and 39% of
the original failures in the post-SuiteBuilder period.

The failure distribution of the cleaned suites before
SuiteBuilder was introduced remained poor, with only about
27% of the failures in the first third of the suites. However,



after the introduction of SuiteBuilder, the cleaned suites
identify just above two thirds of the failures in the first third
of the suites. The cleaned distributions are illustrated in plots
2 and 4 in the bottom row of Figure 5.

Our conclusion is that SuiteBuilder has clearly improved the
failure distribution, leading to much earlier identification of
failures in a typical suite and therefore these failing test cases
are far more likely to be included in the nightly regression test
suite.

VI. DISCUSSION

As shown by the evaluation in the previous section,
SuiteBuilder has effectively addressed most of the problems
related to lack of time in nightly regression testing at
Westermo. The evaluation also shows the feasibility of an
automated nightly regression test selection process in an
industrial environment.

The key aspects and benefits of the SuiteBuilder project are:
• System Level Regression Testing: The Westermo test

framework runs testing on target device topologies. Tests
are run nightly to test for regressions.

• Automated Regression Test Selection: SuiteBuilder is im-
plemented as a system of a few Python modules. It rapidly
builds suites for many test systems by using requirements
for suites, a set of test priorities, and properties of
hundreds of existing automated tests. The time required
to build the suites is small compared to the time needed
to run the test cases.

• Automated Testing: The outputs, and some of the inputs,
of the SuiteBuilder are suite files that are used by the test
framework without human intervention.

• Industrial Context: SuiteBuilder solves real problems
in an eco-system of build servers, test systems with
topologies of target devices, source code management
systems, a test result database, and human beings.

SuiteBuilder was placed in production at Westermo in the
late spring of 2014. Since then it has been used continuously
to build suites for nightly testing.

A number of significant changes have been made to
SuiteBuilder as we gained experience with its use. We made
modifications to the configuration of the PriorityMerger to
increase the impact of the FailPrioritizer. We also added
indices in the database tables, added optimizations in the
database queries to improve the efficiency and included the
SourcePrioritizer for the test framework.

The majority of the issues with SuiteBuilder have been one
of the following two types: (i) Unbalanced priority merging:
“Test X failed on test system Y last night - why was it
not tested tonight?”. This has been mitigated by altering the
balance of the prioritizers. (ii) Syntax Errors: If a test is added
in a suite file it is now more complicated to realize if there are
issues. This is because the suites are now built by an automated
system some time in the evening and not manually as soon
as tests are added. This has been mitigated with thorough self
tests of SuiteBuilder, as well as gated commits so that code
changes with obvious syntax errors are rejected.

The building of suites is not time critical, as it can be
done some time before the nightly testing is to start. The time
needed to build a typical suite is less than 15 seconds on a
cold start, and factors such as database caching can reduce
the time even further. This is a good result but could perhaps
be improved with more optimizations in the database design,
indices, or by improving the database queries. The time to
build the suites is low (seconds) in comparison to the length
of the suites built (hours).

We have no doubt that similar approaches, perhaps as simple
as a system of one prioritizer, could be of tremendous use
for many organizations. The architecture of the SuiteBuilder
allows for reduction, but also extensions. During the imple-
mentation of SuiteBuilder and in the period of time after
its launch, we sometimes questioned some aspects of the
implementation. We would like to see more studies on topics
like: “What are the best ways to combine prioritizers for other
types of suites?”, “Can other aspects of test cases be covered
with other prioritizers?”, “How are different characteristics
of the suites altered with different implementations of the
PriorityMerger?”, “How does one add a suite minimizer in
an existing suite building process in the best way?”, and
“Is the framework proposed in this paper general enough to
support plug-and-play of prioritizers and flow-modules such
as minimizers?”

VII. LIMITATIONS AND FUTURE RESEARCH

While the method detailed in this paper has shown positive
effects, and its evaluation can be seen as a first indication of
feasibility, there are several extensions that could be consid-
ered to further improve the performance of SuiteBuilder.

A. Other Possible Suite types

Internal discussions on possible usages of SuiteBuilder has
proposed that we could modify the configuration to allow other
types of suites, for example: Smoke Test Suite: A short suite
for the continuous integration framework to be executed after
a source code commit. The SourcePrioritizers are of particular
interest for this suite, perhaps by using an approach similar to
the one presented in [1]. Weekend Test Suite: Perhaps tests that
are particularly slow should be included only in the weekend
suites. Release Test Suite: Certain test cases are destructive,
for example ones that overwrite delicate memory hardware.
Should these perhaps be included only once per release cycle?

B. Other Possible Prioritizers

We speculate that other prioritizers could be of interest.
Examples include a LockPrioritizer that includes certain tests
in every execution of the suite and a ReleasePrioritizer that
focuses on the priorities of a certain code branch.

Discussions of where in the source code to invest the
test effort are presented in for example [15], [16], where
the authors make significant use of an issue tracker. The
SuiteBuilder tool is trying to solve a related problem, but
since the current implementation is not connected to an issue
tracker, we use a tag heuristic and SourcePrioritizers to focus



test effort on certain parts of the test suite. However, given
an explicit issue tracker connection, one could conceive of an
IssuePrioritizer that directly targets bug fixes. If an issue is
resolved, or later reopened, we want the associated tests to get
an increased priority.

In [3] the authors use what could correspond to an AgePrior-
itizer. It is used to decrease the priority of old test cases. This is
an interesting concept, also supported by Feldt [6], that seems
to overlap with the SourcePrioritizers and the FailPrioritizer.
A test that rarely fails and that has not had its source code
altered for a long time could be considered old, and have its
priority decreased over time.

C. Minimization and Diversification

The current implementation of SuiteBuilder does not in-
clude any minimization. However, the framework could easily
support the addition of a SuiteMinimizer. In order to determine
if we needed one, we investigated the number of outcomes
from test classes, as opposed to test cases, and found that
certain test classes have been over-tested. The most commonly
selected test class outnumbers most others by a factor of 10,
and some test classes are outnumbered by a factor of 100.

Over-testing could be perfectly normal in many scenarios as
we want high-priority tests run more often. However, in our
case the most over-tested class is frequently tested mostly due
to its ability to handle many different parameter combinations.

In addition, preliminary evidence suggests that there might
be some value in altering the order of the tests in the suites.
We discovered this when suites were no longer testing from
A to Z. The authors of [14] and [7] suggest that the concept
of diversification is a promising approach. We speculate that
diversification somehow overlaps with minimization and that
if one implements one concept, then you also get the other.

D. Other Approaches for Priority Merging

Using a weighted average in the PriorityMerger is an
intuitive and flexible way of merging the priorities. What
advantages and disadvantages come with this approach com-
pared to a mathematical optimization approach such as the
one investigated in [9], or approaches including a cost-benefit
ratio analysis such as the one investigated in [14]?

VIII. CONCLUSIONS

In this paper we describe an implementation and evaluation
of the SuiteBuilder tool that aims at solving problems we en-
countered at Westermo with nightly regression testing. These
problems included:

1) Nightly testing did not finish on time: SuiteBuilder
addressed this problem adequately so that time allotted
for the nightly run, typically closely matched the time
needed to run the generated regression suite. This is
shown in Figure 3. Consequently, nightly testing gen-
erally finishes prior to the start of business, and we no
longer need to manually interrupt testing.

2) Manual work and omitted tests: We have seen that the
test circulation is now adequate. Test cases no longer

go for extended periods of time without being included
in the test suite. As a result, most of the risky manual
work has been removed. There are, however, a few
manual tasks that remain such as the introduction of new
test cases. We emphasize here that while SuiteBuilder
automatically generates regression test suites, it does this
by selecting from among existing test cases. It does not
generate new test cases. This must be done manually,

3) No priority for the test cases: We now have a priority
distribution, as illustrated in Figure 4. The output from
SuiteBuilder is one or more suite files with tests that
are sorted in priority order based on the criteria our
team determined were most relevant to our needs. The
majority of the failing tests are now located in the first
third of the suites, as illustrated in Figure 5.

These problems were solved by implementing SuiteBuilder,
a framework of prioritizers that provide priorities based on dif-
ferent characteristics of the test cases. The individual priorities
are merged into one overall prioritized suite where tests are
selected in order until the allocated time has been consumed.
In Figure 2 we illustrate the overall flow through this process
of nightly testing. Steps could be added or removed depending
on the needs of the organization. We believe that SuiteBuilder
is an extendable framework that could be used by many
organizations in many different scenarios.

ACKNOWLEDGMENTS

The authors thank colleagues at Westermo R&D, for their
cooperation and assistance. Thanks in particular to Johan
Beijnoff for eliciting requirements, discussing the design and
evaluating the outcome of SuiteBuilder; and also to Raimo
Gester and Peter Johansson for encouragement.

This work was in part supported by the Swedish Research
Council through grant 621-2014-4925 and the Swedish Knowl-
edge Foundation through grants 20130258 and 20130085.

REFERENCES

[1] E. Dunn Ekelund and E. Engström, “Efficient Regression Testing Based
on Test History: An Industrial Evaluation” in International Conference
on Software Maintenance and Evolution. IEEE Computer Society, 2015.

[2] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments”
in The 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 2014.

[3] E. Engström, P. Runeson and A. Ljung, “Improving Regression Test-
ing Transparency and Efficiency with History-Based Prioritization–An
Industrial Case Study” in Software Testing, Verification and Validation
(ICST), 2011 IEEE Fourth International Conference on. IEEE, 2011.

[4] E. Engström, P. Runeson and M. Skoglund, “A systematic review
on regression test selection techniques” in Information and Software
Technology 52.1 (2010): 14-30.

[5] Y. Fazlalizadeh, A. Khalilian, M. Abdollahi Azgomi and S. Parsa,
“Prioritizing test cases for resource constraint environments using histor-
ical test case performance data” in Computer Science and Information
Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on.
IEEE, 2009.

[6] R. Feldt, "Do System Test Cases Grow Old?" in Proceedings of the
2014 IEEE International Conference on Software Testing, Verification,
and Validation, ICST 2014, pp. 343–352,

[7] H. Hemmati, A. Arcuri and L. Briand, “Achieving scalable model-based
testing through test case diversity” in ACM Transactions on Software
Engineering and Methodology (TOSEM) 22.1 (2013): 6.



[8] H. Hemmati, Z. Fang and M. V. Mäntylä, “Prioritizing Manual Test
Cases in Traditional and Rapid Release Environments” in Software
Testing, Verification and Validation (ICST), 2015 IEEE 8th International
Conference on. IEEE, 2015.

[9] K. Herzig, M. Greiler, J. Czerwonka and B. Murphy, “The art of testing
less without sacrificing quality” in Proceedings of the 37th International
Conference on Software Engineering-Volume 1. IEEE Press, 2015.

[10] A. Khalilian, M. Abdollahi Azgomi and Y. Fazlalizadeh, “An improved
method for test case prioritization by incorporating historical test case
data” in Science of Computer Programming 78.1 (2012): 93-116.

[11] J-M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments” in The 24th
International Conference on Software Engineering. ACM, 2002.

[12] Q. Luo, F. Hariri, L. Eloussi and D. Marinov, "An Empirical Analysis of
Flaky Tests" in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, 2014,
pp. 643–653

[13] D. Marijan, “Multi-perspective regression test prioritization for time-
constrained environments” in 2015 IEEE International Conference on
Software Quality, Reliability and Security. 2015.

[14] D. Mondal, H. Hemmati and S. Durocher, “Exploring Test Suite Diver-
sification and Code Coverage in Multi-Objective Test Case Selection”
in Software Testing, Verification and Validation (ICST), 2015 IEEE 8th
International Conference on. IEEE, 2015.

[15] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large
industrial software system” in ACM SIGSOFT Software Engineering
Notes. Vol. 27. No. 4. ACM, 2002.

[16] T. J. Ostrand, E. J. Weyuker and R. M. Bell, “Predicting the location and
number of faults in large software systems” in Software Engineering,
IEEE Transactions on. 31.4 (2005): 340-355.

[17] H. Park, H. Ryu and J. Baik, “Historical value-based approach for
cost-cognizant test case prioritization to improve the effectiveness of
regression testing” in 2nd International Conference on Secure System
Integration and Reliability Improvement. 2008.

[18] D. Saff and M.D. Ernst, "Reducing wasted development time via
continuous testing" in International Symposium on Software Reliability
Engineering. Nov. 2003.

[19] M. Tikir and J. Hollingsworth, "Efficient Instrumentation for Code
Coverage Testing", Proceedings of International Symposium on Software
Testing and Analysis, ISSTA 02, Jul 2002, Rome

[20] K. Walcott, M. Soffa, G. Kapfhammer and R. Roos, "Time-Aware Test
Suite Prioritization", in International Symposium on Software Testing
and Analysis, Portland, Maine, Jul. 2006.

[21] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey” in Software Testing, Verification and Reliability
22.2 (2012): 67-120.

[22] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and D.
Notkin, "Empirically revisiting the test independence assumption," in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, 2014, pp. 385–396.


	Introduction
	Related work
	Problem Description
	Context
	The Problems
	Nightly testing does not finish on time
	Manual work and forgotten tests
	No priority for the test cases


	The SuiteBuilder Tool
	Approach and Overall Workflow
	Prioritization, Priority Merging and Suite Selection
	Assigning Priorities
	Merging Priorities
	Selecting the Final Suite

	SuiteBuilder Tool Implementation
	Test Result Database
	Tags
	Prioritizers
	Suite Handler Library


	Experimental Evaluation
	Nightly testing does not finish on time
	Manual work and omitted tests
	No test case priority

	Discussion
	Limitations and Future Research
	Other Possible Suite types
	Other Possible Prioritizers
	Minimization and Diversification
	Other Approaches for Priority Merging

	Conclusions
	References

