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Abstract 
This work presents an algorithm for real-time fault detection in the SCADA system 

of a modern water supply system (WSS) in an Italian Alpine Valley. By means of both 
hardware and analytical redundancy, the proposed algorithm compares data and isolates 
faults on sensors through the residual analysis. Moreover, the algorithm performs a real-
time selection of the most reliable measurements for the automated control of the WSS 
operations. A coupled model of the hydraulic and remote-control system was developed 
to test the effectiveness of the proposed algorithm. Simulations showed that error 
detection and measurement assessment are crucial for the safe operation of the WSS. 

1 Introduction 
In mountain regions, water supply (WS) to the local communities is usually provided by municipal 

water supply systems (WSSs) that rely on local sources and operate independently from each other. In 
the event of unexpected breakdowns or droughts (Carrera, et al., 2013), this fragmentation results in 
inefficiencies and water crisis. In order to increase the resilience of the WS service, a growing trend is 
the creation of inter-municipal water networks that connect multiple local WSSs (Massarutto, 2000). 
Coordination in the operations of multiple WSSs and diversification of water sources result in 
economic, environmental and water quality advantages (Bel & Warner, 2015; Anghileri, et al., 2012). 
These modern WSSs require an automated regulation aimed to control the operations of the entire water 
infrastructure, according to a centralized control perspective. For this reason, they are managed by 
SCADA (Supervisory Control and Data Acquisition) systems (Meseguer & Quevedo, 2017; Coelho & 
Andrade-Campos, 2014) that (i) provide real-time pressure and flow rate measurements in the key 
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points of the network and (ii) remotely control the operations of the control devices (e.g., valves, pumps, 
turbines), according to predefined management rules and to the data measured in real-time throughout 
the system.  

In this framework, lack of data or errors in the sensors may result in a misleading regulation and in 
malfunctions in the WSS operations. Therefore, it is important to equip the control systems with 
procedures that can detect errors in sensors. Fault detection and isolation (FDI) methods have been 
proposed in different fields of control engineering, like in industrial plants (e.g., Gertler, 1988; Özyurt 
& Pike, 2004) and in the automotive and aerospace engineering (Chen & Patton, 2012). However, few 
applications have been done for the validation of measurements in water networks (e.g., Ragot & 
Maquin, 2006).  

Fault diagnosis is generally based on redundancy that can be either hardware redundancy or 
analytical redundancy (Hwang, et al., 2010; Gertler, 2015). In hardware redundancy, measurements of 
the same signal generated by various sensors are compared. On the other hand, analytical redundancy 
uses a mathematical model of the system as a comparison term (Isermann, 2005). In both methods, fault 
detection involves two steps: (i) residual generation and (ii) residual evaluation. A residual is a signal 
that is zero when the system is operating correctly and non-zero when faults are present. 

The goal of this paper is to present an algorithm for faults detection in the SCADA system of a 
modern WSS (Fellini, et al., 2017). The WSS is located in an Alpine valley in northwestern Italy and 
consists of an 80-km-long water main connecting 20 municipal WSSs (Figure 1). The water main takes 
water from a high-altitude reservoir, connects the municipal tanks and provides additional water when 
needed. Moreover, there are four inline tanks along the water main, and the excess water pressure is 
converted into hydropower by three turbines. Flow adjustments through turbines and valves are 
remotely controlled by a SCADA system (Fellini, et al., 2017).  

In order to increase the safety and the reliability of the control system, an algorithm for the real-time 
detection of measurement faults has been developed. By a residual analysis, redundant measurements 
are compared and faults are automatically detected. Moreover, in case of errors, the developed 
algorithm ensures continuity in the control operations and prevents interruptions in the water supply. A 
numerical model of the hydraulic and control operations of the WSS is used to assess the developed 
algorithm.  

 
Figure 1: Scheme of the WSS. The capital letters (A, B,…) indicate the local water supply systems; the inset 

shows a typical local water system with a storage tank supplied by mountain springs, local wells, and the new 
water main. 
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2 Case study 
The case study was previously described in (Fellini, et al., 2017) and involves a modern WSS 

(Figure 1). A water main collects high quality water from an alpine reservoir and supplies the municipal 
WSSs (A to V in Figure 1). Needle valves with electronic actuators regulate the flow delivered from 
the water main to the local tanks. Four inline tanks (S1, S2, S3 and S4) split the water main in order to 
limit the static water pressure in the pipes. A Pelton turbine with electronically controlled Doble needles 
adjusts the flow entering in each inline tank. Valves and turbines are thus the active elements that 
regulate the flow rate in the entire WSS. Local PLCs (Programmable Logic Controller) control these 
devices according to (i) predefined management rules, (ii) flow and level data measured by local 
sensors, and (iii) information and data received from distant devices networked in the SCADA system. 
Data transmission in the SCADA system is guaranteed by a redundant optical fibre network.  

The management rules of the active devices were developed to optimize water distribution and to 
maximize the hydropower generation and the energy saving in the whole valley (Fellini, et al., 2017). 
In particular, flow adjustment through the turbines is aimed at (i) maintaining the water level in the 
inline tanks between predefined level thresholds and (ii) minimizing the number of turbine operations. 
Flow regulation through the needle valves is performed to optimize the distribution of water to the 
municipalities. 

3 Methods 
A simulation model was developed to analyse the performances of the WSS in different scenarios. 

This model consists of a coupled hydraulic and control model (section 3.1). Simulations (Fellini, et al., 
2017) have shown that, by means of the operating rules implemented in the SCADA system, a 
comprehensive and optimal regulation of the WSS can be achieved. However, this control system fails 
when faulty data are measured and transmitted. For this reason, an algorithm for fault detection is 
developed (section 3.2).  

 

3.1 The hydraulic and control model 
The hydraulic model is a system of non-linear equations describing (i) the flow-head loss relation 

in pipes, at valves and at turbines, (ii) the flow continuity at nodes and (iii) the boundary conditions at 
tanks. Time evolution of the system is modelled by a succession of steady states with duration ∆t. At 
each time step flow in the pipes and pressure at the nodes of the WSS are computed. Moreover, water 
level in tanks is updated using a mass balance equation.  

The control model simulates the supervision and control operations of the SCADA system. A real 
measurement from a generic sensor is simulated as m=M+ε, where M is the flow or pressure datum 
computed by the hydraulic model. This datum is perturbed with an error ε to model different kinds of 
sensor failures (statistical errors, random oscillations, drifts and signal interruptions). This perturbed 
measurement is used as input for the decision algorithms that simulate the control operations of the 
SCADA system. 

 

3.2 The algorithm for fault detection in sensors 
A method for real-time fault detection in the above presented SCADA system is developed. This 

method is based on the redundancy concept and can be applied when several values of the same physical 
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variable are available. Usually, critical sensors in a SCADA system are duplicated. This instrumental 
redundancy provides error detection in the event that the two sensors give different results but cannot 
automatically determine which sensor is faulty. Thus, a technician's on-site intervention is often the 
only solution. However, modern infrastructures require an automatic error correction to guarantee 
continuity in real-time control operations. A triple redundancy is thus required. In this case, if one of 
the three sensors fails, the other two sensors can correct and mask the fault. The algorithm we present 
detects sensor faults by comparing three values of the same measurement, provided by two redundant 
gauges (hardware redundancy) and an hydraulic equation (analytical redundancy). In this way, 
resilience is achieved and the expensive installation of three redundant sensors is avoided.  

In details, the algorithm (step I in Figure 2) receives as input the three values A, B and C. A and 
B are transmitted by two redundant sensors, while C is obtained from an hydraulic equation. Residuals 
R1, R2 and R3 are generated by calculating the difference between measurements two by two: 

R1=A-B,    R2=B-C,    R3=A-C.                                                      (2) 

Because of statistical errors in sensors (e.g., Fuller, 2009), the residuals are generally different from 
zero, even if there are no faults. Faults are detected by comparing each residual to its tolerance. The 
tolerance interval is determined in order to include statistical errors related to the instrumental precision: 

tolR1=tolA+tolB,    tolR2=tolB+tolC,    tolR3=tolA+tolC                                      (3) 

where tolA, tolB and tolC are the maximum instrumental errors for measurements A, B and C, 
respectively. If the i-th residual exceeds the tolerance, the i-th error variable switches to 1 (e.g., if 
|R1|>tolR1, E1=1). When a sensor fails, two of the three error variables (E1, E2 and E3) assume value 
equal to 1, since the error associated with a single measurement appears in the calculation of two 
residuals. As a consequence, the algorithm can automatically detect which is the faulty sensor (e.g., if 
R1 and R3 are out of tolerance, the sensor providing measurement A is identified as faulty).  

Besides real-time error detection, the developed algorithm selects the most accurate data to be 
used in the control operations of the SCADA system (step II in Figure 2). For each measurement tern, 
the minimum residual is identified (M in Figure 2). The two measurements involved in the calculation 
of M are the closest to each other and therefore considered the most representative of the true value. 
The algorithm selects one (X  in Figure 2) of these two measures for the control operations.  
This last choice is based on technical considerations. Generally, priority is given to direct measures 
compared to indirect ones (i.e., measures from analytical models).   
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Figure 2: Algorithm for fault detection (Step I) in the WSS sensors and for the choice of the most reliable 

measurement (Step II) to be used in the control operations. 

 The above presented fault isolation procedure is effective if three values A, B and C of the 
same physical variable are available. In the WSS considered in this work, the key measurements for the 
control operations of the SCADA system are (i) level measurements in the inline tanks (S1, S2, S3 and 
S4 in Figure 1) and (ii) measurements of the flow rate towards the municipal WSSs (A to V in Figure 
1). Regarding level measurements, each tank is equipped with two redundant level sensors (MH1 and 
MH2 in Figure 3a). Moreover, the tank level can be evaluated with a mass balance equation involving 
flow rate measurements into and out of the tank (MQIN and MQOUT in Figure 3a). Regarding flow rate 
measurements, two flow meters are installed along the pipes that supply each local WSS (MQ1 and MQ2 
in Figure 3b). Furthermore, multiple flow meters intercept the water main (MQA and MQB in Figure 3b). 
Thus, a third value of the flow rate towards a local WSS can be evaluated with a flow rate balance 
equation.  
 
 

 
Figure 3:  a) Level (MH1 and MH2) and flow rate (MQIN and MQOUT) sensors installed in an inline tank (with 

area AT) of the WSS. The system of equations provides three redundant values (A, B and C) of the tank level. b) 
Flow rate sensors installed along the pipe that supply one of the municipal tanks (MQ1 and MQ2) and along the 
water main (MQA and MQB). The system of equations provides three redundant values (A, B and C) of the flow 

rate towards the municipal tank 
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4 Results and Discussion 
The above presented algorithm for real-time fault detection and measurement selection was 

integrated in the control model of the WSS. First, the available gauges in the different districts of the 
WSS were located (hardware redundancy). Secondly, the balance equations that provide an additional 
value of the measured physical variables were identified (analytical redundancy). Thirdly, different 
types of error were simulated for the level and flow rate sensors installed in the WSS: (i) statistical 
errors, (ii) drifts, and (iii) critical gauge failures. Finally, simulations of the coupled hydraulic and 
decision model were performed.  

In Figure 4 the algorithm for error detection is applied to level measurements at the inline tank S1. 
As introduced in Figure 3a, two level sensors are installed in each inline tank (MH1 and MH2 in Figure 
3a). A third value of the tank level was obtained using a mass balance equation of the flow rate into and 
out of the tank, measured at sensors MQIN and MQOUT  (Figure 3a). In this simulation, all the 
measurements were disturbed by statistical errors related to instrumental accuracy. Statistical errors can 
be modelled as realizations of a Gaussian distribution with standard deviation equal to one third the 
maximum instrumental error (Emax). Emax was obtained from the technical specifications of the installed 
gauges and is equal to 1 cm for the level sensors, while it is equal to 0.25% of the flow rate for the flow 
meters. Figure 4c shows the effects of statistical errors on the three level measurements. Notice that, 
errors in the flow meters scarcely affect the precision of the level value obtained from the balance 
equation (magenta line in Figure 4c). Sensor MH1 was further disturbed by drifts (1 in Figure 4a), 
random oscillations (4 in Figure 4a) and transmission interruptions (5 in Figure 4a). Moreover, the 
signal was set on the minimum (2 in Figure 4a) and full-scale (3 in Figure 4a) constant values to simulate 
critical failures of the sensor.  
 As shown in Figure 4a, the level measured by sensor MH2 is almost equal to the value resulting 
from the balance equation. On the other hand, the level measured by MH1 considerably differs from the 
previous ones, due to instrumental failures. By means of the residual analysis, the developed algorithm 
detects with high precision the presence of errors in the measurements transmitted by MH1. In Figure 
4b, for each level value, error detection is highlighted with a red signal. Moreover, the algorithm selects 
the most reliable measurement to be used in the control operations of the WSS in real-time (green signal 
in Figure 4b). Under ordinary conditions, the algorithm alternatively selects the data measured by the 
two level sensors MH1 and MH2. In case of error detection for MH1, the measurement transmitted by 
MH2  is the only one to be selected. In this way the algorithm guarantees resilience in the operations of 
the turbine T1, whose regulation is based on the water level in tank S1 (Fellini, et al., 2017). Similar 
results were obtained by applying the method to the other level and flow rate gauges in the WSS.  

The developed algorithm is able to isolate errors only in the case of a single failure in the 
measurements involved in each system of three equations used for the residual analysis (e.g., equation 
systems in Figure 3a and Figure 3b). In the case of multiple simultaneous errors, the algorithm is not 
robust. 
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Figure 4: a) Level values from level gauges MH1 and MH2 and from a balance equation of flow rate into and 

out of the tank. The red lines are the maximum and minimum water level in tank. The blue dotted lines are the 
regulation thresholds (Fellini, et al., 2017). Measurements from MH1 experience drift (1), random oscillations (4), 
transmission interruption (5) and settle on the full-scale (3) and minimum (2) constant values. b) Error detection 
and measurement selection for the control operations in the WSS. c)-d) Measurement signals details. 

5 Conclusions 
In this work, an algorithm is proposed for real-time evaluation of data measured in the SCADA 

system of a modern WSS. The WSS faces multiple challenges: water supply over a large area, 
hydropower generation and coordination among multiple local water supply systems. Therefore, an 
automated remote-control system based on reliable flow rate and level measurements is crucial. The 
developed algorithm compares redundant data obtained from both redundant gauges and analytical 
models. By means of the residual analysis, failures and gross errors are detected in the considered 
measurements. Moreover, the algorithm performs a real-time selection of the most reliable 
measurements to be used in the control operations. The effectiveness of the method was assessed 
through numerical simulations of a coupled hydraulic and control model of the WSS. Results showed 
that high precision error detection is possible when a single failure occurs in the redundant 
measurements of the same physical variable. Moreover, the algorithm guarantees continuity in the 
operations of the WSS and the safety and the reliability of the system are increased. Further studies are 
required in the near future to extend the method to the case of simultaneous failures in redundant gauges.  
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