Meaning Formulas for Syntax-Based Mathematical
Algorithmg’
Extended Abstract

William M. Farmer

McMaster University
Hamilton, Ontario, Canada
wmfarmer@mcmaster.ca

Many symbolic algorithms work by manipulating mathematical expressions in a mathemat-
ically meaningful way. A meaning formula for such an algorithm is a statement that captures
the mathematical relationship between the input and output expressions of the algorithm. For
example, consider a symbolic differentiation algorithm that takes as input an expression (say
x?), repeatedly applies syntactic differentiation rules to the expression, and then returns as
output the final expression (say 2z) that is produced. The intended meaning formula of this
algorithm states that the function (Az : R . 2z) represented by the output expression is the
derivative of the function (Az : R . 2%) represented by the input expression.

Meaning formulas of this kind are difficult to express in a traditional logic like first-order
logic or simple type theory since there is no way to directly refer to the syntactic structure of
the expressions in the logic. We argue that, to properly express meaning formulas, a logic is
needed that has (1) an inductive type of syntactic values (e.g., syntax trees) that represent the
syntactic structures of the expressions in the logic, (2) a quotation operator in the logic that
maps expressions to syntactic values, and (3) an evaluation operator in the logic that maps
syntactic values to expressions. We call this the replete approach for integrating reasoning
about the syntax of the expressions with reasoning about what the expressions mean [5} [6].

Developing a logic that supports the replete approach is severely complicated by several
thorny logical problems. The first of these is that the liar paradox can be expressed in the logic
— which renders the logic inconsistent — if evaluation is unrestricted. This means that the
evaluation operator must denote a partial operation, the use of evaluation must be significantly
restricted, and expressions involving the evaluation operator may be undefined. The second
problem is that syntactic notions, like whether a variable is free in an expression, can depend
on the semantics of the expression as well as on the syntax of the expression. This means that,
in the presence of the evaluation operator, syntactic operations like substitution are much more
complicated than they are in a traditional logic. We have developed a version of simple type
theory called Qy%° that supports the replete approach and solves these two problems [6].

In a logic supporting the replete approach it is possible not only to formally state meaning
formulas, but also to formally prove meaning formulas. A proof of a meaning formula shows
that the intended mathematical meaning of the algorithm follows from the computational be-
havior of the algorithm. That is, that the syntactic manipulations performed by the algorithm
are mathematically correct. Of course, a formal proof of a meaning formula requires a proof
system for the logic that has effective tools for reasoning about quotation and evaluation. Qg*
includes such a proof system, and we have proved in Qy° meaning formulas for toy symbolic
algorithms [6].

*This research is support by NSERC.

10 T. Kutsia, A. Voronkov (eds.), SCSS 2014 (EPiC Series, vol. 30), pp. 10



Meaning Formulas Farmer

Meaning formulas have several applications. The first and simplest application is to use
a meaning formula as a high-level, formal requirements specification of a symbolic algorithm.
The algorithm satisfies its specification if the meaning formula is true. A second application is
to use meaning formulas to construct biform theories [Il 4] in which mathematical knowledge is
represented by a combination of axioms and algorithms. The knowledge embodied in a black-
box algorithm would be represented by a meaning formula assumed as an axiom, while the
knowledge embodied in an algorithm that has been proved correct would be represented by a
meaning formula derived as a theorem.

A third application is to define a mathematical service as a pair consisting of a biform
theory and a meaning formula for a mathematical algorithm [3]. The biform theory provides
the context for the service, and the meaning formula specifies the service. An instance of the
service is the relationship between an input expression given to the algorithm and the output
expression returned by the algorithm. An instance of the service is obtained by instantiating
the meaning formula with the input expression and then simplifying the resulting formula.

Acknowledgments

This research is part of the MathScheme project [2], a long-term initiative at McMaster Uni-
versity led by Dr. Jacques Carette and the author with the aim of producing a framework in
which formal deduction and symbolic computation are tightly integrated.

References

[1] J. Carette and W. M. Farmer. High-level theories. In A. Autexier, J. Campbell, J. Rubio, M. Suzuki,
and F. Wiedijk, editors, Intelligent Computer Mathematics, volume 5144 of Lecture Notes in Com-
puter Science, pages 232-245. Springer-Verlag, 2008.

[2] J. Carette, W. M. Farmer, and R. O’Connor. Mathscheme: Project description. In J. H. Davenport,
W. M. Farmer, F. Rabe, and J. Urban, editors, Intelligent Computer Mathematics, volume 6824 of
Lecture Notes in Computer Science, pages 287—288. Springer-Verlag, 2011.

[3] J. Carette, W. M. Farmer, and J. Wajs. Trustable communication between mathematics systems.
In T. Hardin and R. Rioboo, editors, Calculemus 2003, pages 58-68, Rome, Italy, 2003. Aracne.

[4] W. M. Farmer. Biform theories in Chiron. In M. Kauers, M. Kerber, R. R. Miner, and W. Wind-
steiger, editors, Towards Mechanized Mathematical Assistants, volume 4573 of Lecture Notes in
Computer Science, pages 66-79. Springer-Verlag, 2007.

[5] W. M. Farmer. The formalization of syntax-based mathematical algorithms using quotation and
evaluation. In J. Carette, D. Aspinall, C. Lange, P. Sojka, and W. Windsteiger, editors, Intelligent
Computer Mathematics, volume 7961 of Lecture Notes in Computer Science, pages 35—50. Springer-
Verlag, 2013.

[6] W. M. Farmer. Simple type theory with undefinedness, quotation, and evaluation. McSCert Report
No. 13, McMaster University, 2014. Available at http://imps.mcmaster.ca/doc/stt-with-uqe.
pdf.

11


http://imps.mcmaster.ca/doc/stt-with-uqe.pdf
http://imps.mcmaster.ca/doc/stt-with-uqe.pdf

