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Abstract 
In this study, the calibration of the rain-flow conceptual model UFGModel1.1 is 

carried out, and the uncertainties in the predictions of flow rates associated with the 
parameter set estimates are evaluated by the Generalized Likelihood Uncertainty 
Estimation (GLUE) and Differential Evolution Adaptive Metropolis (DREAM). The 
water catchment area of the Botafogo Stream, located in the city of Goiânia, Brazil, was 
selected as experimental for the development of the study, in which a more distributed 
spatial discretisation degree (thirteen planes and six channels) was adopted for this basin. 
The results showed that the various parameter sets were considered optimal, allowing 
high modelling efficiency, despite the loss of the quality of the simulations and 
uncertainty increase when using the GLUE.  

 

1 Introduction 
The prediction of hydrological events is important to develop reliable engineering projects, 

especially about extreme events. In this sense, even if extreme events are natural climatic and 
watercourse processes, it has been observed that rapid and disordered urban growth has related these 
events to tragedies in urban environments. 

Thus, many hydrological models have been developed and improved over the last decades with a 
focus on understanding hydrological-hydrological dynamics and quantifying the reliability of 
hydrological forecasting and uncertainty estimation, so that better decisions can be made for different 
environments and their particularities (Di Baldassarre & Montanari, 2009; Kuczera et al., 2006; Liu et 
al., 2017; Vrugt et al., 2008) 
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Thus, there are specificities that are inherent in the modelling processes, in which in relation to the 
quantification of the error in the application of hydrological models has often been discussed in the 
scientific field and, since the uncertainty produced during the modelling cannot be avoided, only 
reduced, has been therefore more frequently studied (Liu et al., 2017). Thus, knowing about the 
uncertainties produced during modelling has been of great interest to hydrological modellers, especially 
those who use statistical methods capable of estimating uncertainty (Smith et al., 2015). 

This is because unstructured modelling is facilitated or possible through a Bayesian approach. 
Bayesian inference has already proved to be an essential tool for estimating parameter and uncertainty 
in modelling as shown by (Li & Xu, 2013). Therefore, Bayesian statistics are applied in several fields 
of study to adjust multimodal and complex problems of calibration and optimisation. 

The Generalized Likelihood Uncertainty Estimation (GLUE) has shown considerable results in its 
applications and is still widely used because of its ease of implementation (Beven & Benley, 1992) 
However, there are some problems about its Bayesian informality, as it tends to make the statistical 
inferences considered weaker to summarise the parameters. The popularity of GLUE is attributed to its 
conceptual simplicity and relative ease of execution, where it can be assumed that many researchers 
and practitioners will, at least shortly, prefer to continue using simple methods for estimating 
uncertainty (Vrugt, 2016). 

However, there is currently a modern approach that has been widely accepted, the Differential 
Evolution Adaptive Metropolis (DREAM) (Vrugt et al., 2008; 2009) model, based on the Metropolis 
method, an evolution of Shuffled Complex Evolution Metropolis (SCEM-SCEM-UA) (Vrugt et al., 
2003). The DREAM algorithm presents reliable results, working through a complex scale of sampling, 
that is, of high dimensionality, keeping the consistency of the natural system behaviour as realistic as 
possible, thus inducing the minimisation of epistemic errors (Vrugt, 2016). 

Although DREAM seems to be a better option to be applied in solving problems than GLUE, its 
complexity is even more significant. Thus, it is interesting to apply the GLUE to compare the results 
found for different problems. To evaluate the reliability of the Bayesian GLUE and DREAM 
approaches, the objective of this study was to compare the uncertainties obtained and the calibration of 
parameters with the model UFGModel1.1, proposed by (Pereira, 2015) in an urban river basin. 

2 Material and Methods  
The GLUE and DREAM algorithms were applied to determine the parameters of the UFGModel1.1 

model, based on kinematic wave equations for planes and channels, and the SCS method for infiltration 
in the Botafogo Stream basin in Goiânia-GO, Brazil, which has as characteristic almost urbanized 
entirely, having only 4% permeable area (Figure 1). 

The basin was spatially discretised in thirteen planes and six channels using GIS software. The 
physical characteristics of the planes and channels were obtained using orthophotos, a plan-altimetric 
survey with GPS RTK Trimble R6 and a Digital Elevation Model (MDE), a by-product of the Light 
Detection and Ranging (LiDAR) data, with a resolution of 1m. 

The flow and precipitation data were obtained with the use of pen and pens, in increments of one 
minute. Eight events were selected and classified, ranging from Forts to Weak (Table 1), four events 
being used for calibration and four events for validation (Table 2). 

The maximum likelihood functions employed were those of Nash and Sutcliffe (1970) and the sum 
of the Square of Errors, already included in the base of the algorithm DREAM. The development of the 
model, the implementation of the algorithms and the simulations were performed in MATLAB 
environment. The Manning roughness coefficient for the permeable area (0.01 - 0.2), the Manning 
roughness coefficient for the channel (0.01 - 0.2), the Initial loss (1.0 - 30) and Curve number (20 - 
100). 
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Figura 1: Study area - watershed of the Botafogo Stream. 

 Event Classification Mean Intensity (mm/min.) 
Forte ≥ 0,45 

Médio à forte 0,39 – 0,44 
Médio 0,35 – 0,38 

Médio à fraco 0,30 - 0,34 
Fraco < 0,30 

 
 

Table 1: Characterization of selected events. 

zEvent/Date Event Classification Int. (max.) 
mm/min. 

Int. 
(mean) 

mm/min. 

Vol. 
Total mm 

Flow 
(max.) 
m³/s 

Flow 
(méd.) 
m³/s 

1 (12/12/2013) Strong  1,80 0,57 52,98 70,59 20,76 
2 (06/03/2014) Medium 0,92 0,38 27,53 31,80 13,40 
3 (15/04/2014) Medium to strong 1,07 0,41 33,02 44,93 20,92 
4 (06/12/2013) Weak  0,78 0,27 13,34 20,56 8,73 
5 (12/11/2013) Strong 1,93 0,51 50,57 65,17 23,83 
6 (24/01/2014) Strong 1,73 0,46 54,14 64,20 28,34 
7 (24/03/2014) Medium to strong 1,26 0,42 29,49 53,61 17,84 
8 (18/12/2013) Medium to weak 1,04 0,32 16,90 31,88 12,46 

 
 Table 2: Characterization of the events selected for the Botafogo stream in intensities, volumes and flows. 
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3 Results and Discussion 
The predictions of the UFGModel1.1 model closely followed the flow observations with both 

algorithms in the calibration (Figure 1). Qualitatively, the flow uncertainty ranges with the DREAM 
have always been narrow when compared with those obtained with GLUE. In general, the medians of 
the predictions of the values of the individual parameters found in the calibration (Table 1), were 
consistent with the physical characteristics of the experimental basin, where there was a satisfactory 
adjustment for the different events analysed, and the uncertainties could be obtained numerically.  

The results of the calibration show that the infiltration model met most of the events, with a setting 
of 5.0 and an average CN of 86, values compatible with the soil use conditions of the basin. For events 
1 and 4, it was verified that there were events of previous rains, which explains the high values of CN 
and Manning of the Plan, probably having greater surface flow due to the initial soil moisture condition 
associated with system deficiency of the region. Channel Manning coefficient was the one that 
presented the most considerable variation in the results, indicating that the model is less sensitive to this 
parameter since there is not much change in the likelihood function when its value changes. This can 
be explained physically because the channel stretch of this basin is relatively small, having little 
influence on the hydrograph format. 

The validated events (Figure 3) with the following calibration parameter sets with the GLUE and 
DREAM algorithms, showed that the model works well for simulations with events that use parameters 

 
Figura 2: Flow prediction and uncertainty intervals derived with GLUE the DREAM at calibration to the 

events 1 (Strong), 2 (Medium), 3 (Medium to strong) and 4 (weak), respectively.   

Parameters Event 1 (Strong) Event 2 (Medium) Event 3 (Medium to 
strong) Event 4 (Weak) 

GLUE DREAM GLUE DREAM GLUE DREAM GLUE DREAM 
Manning plan 

(s.m-1/3) 0.07 0.11 0.02 0.016 0.018 0.012 0.02 0.015 

CN 
(dimensionless) 86 85 87 86 85 79 93 99 

Ia  
(mm/h) 7.0 5.4 4.0 5.1 5.0 5.0 3.0 10.5 

Manning channel 
(s.m-1/3) 0.05 0.005 0.07 0.12 0.05 0.197 0.08 0.197 

 Table 3: Median of prediction of the values of the individual parameters for the events in calibration. 
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derived from other events of similar characteristics, even for events classified as weak, except for events 
with more than one peak. Also in the validation, the associated uncertainties could be quantified 
numerically for each of the events by the inspection of the hydrograms.  

 
Figure 3: Hydrographs of the simulated flows for the events 5 (weak), 6 (Medium), 7 (weak) and 8 (medium to 

weak), with each of the parameter sets of events 1, 2, 3 and 4, respectively, found in calibration with GLUE and 
DREAM and uncertainty intervals. 
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Thus, for Event 5, validated with the parameter sets of events 1, 2, 3 and 4, respectively, there are 
smaller uncertainties with the use of DREAM for validation with the parameter sets of the Event 1 
(Figure 3 (5)), where the uncertainty with this algorithm was almost five times lower than with GLUE 
(Figure 3 (1)), according to the evaluation between the observed and the maximum bands (26.8 m³ 
However, for the other events, there was no satisfactory validation regarding the adjustment of the peaks 
of the hydrograms, but in general, there were right adjustments in time. (Fig. 3 (3)). In this case, it is 
possible to estimate the uncertainty of minimum values of observed values, mainly for the validation 
with parameter sets of Event 3. 

For Event 6, there were similar results to Event 5, in which there was validation with both algorithms 
with parameter sets of Event 1 (Figure 3 (9 and 13)), but with narrower uncertainty ranges with DREAM 
( 15.3 m³/s) than with GLUE (28.7 m³/s). For the other events, there was also no satisfactory validation 
regarding the adjustment of the peaks of the hydrograms. However, there were reasonable adjustments 
in time. With the GLUE, the minimum bands were also close to the values of observed flows for 
validation with parameter sets of Event 3 (Figure 3 (11)), with a difference of only 11.7 m³/s between 
the simulated and the observed. 

For Event 7, there was satisfactory validation with both algorithms using the parameter sets derived 
from Event 2 (Figure 3 (18 and 22)), where the flows were contained within the narrow uncertainty 
ranges of the DREAM and presented uncertainty of 44.3 m³/s with the GLUE. Also with GLUE, 
uncertainties were also lower for validation with Event 3 parameter sets than with DREAM (Figure 3 
(19 and 23)), with a difference of only 4.9 m³/s and 24.4 m³/s, respectively, between the observed and 
simulated maximum flow. There was no validation with the set of parameters derived from Event 1 
with both algorithms (Figure 3 (17 and 21).) However, there were proper adjustments for the times of 
most hydrograms. We should point out once again that with GLUE, the minimum bands were also close 
to the values of observed flows for validation with parameter sets of Event 4 (Figure 3 (20)), with a 
difference of 25.9 m³/s between simulated and observed. 

As for Event 8, there was a satisfactory adjustment only for the validation with parameter sets 
derived from Event 4 (Figure 3 (28 and 32), with lower total uncertainty ranges using DREAM (16.3 
m³/s) of (GLUE) and the GLUE (19.5 m³/s). There was no validation for the simulations with parameter 
sets derived from Event 1 with the use of both algorithms (Figure 3 (25 and 29)). With the DREAM for 
the simulations with the parameter sets derived from events 2 and 3 for the hydrograph times, but not 
for the peaks, because the flow rates were underestimated (Figure 3 (26, 27, 30 and 31)). 

Thus, the results of these analyses using different calibration algorithms and uncertainty analysis 
show that for the model used, parameter sets derived from strong events validate only strong events, as 
occurred with events 5 and 6 (Figure 3 (1, 5, 9 and 13)). Meanwhile, the parameter sets derived from 
medium and medium to strong events tend to validate strong events with GLUE in the minimum range. 
However, parameter sets derived from weak events do not validate strong events but validate events 
from medium to strong and medium to weak, and probably weak events. 

4 Conclusions 
The calibrated model acceptably adjusted the observed data, since the efficiency reached was 

satisfactory in the validation. Although GLUE tends to overestimate flow rates, it is a good analytical 
tool. However, DREAM is recommended.  

The DREAM has been shown to be a better and much more robust method of calibration and 
assessment of prediction uncertainty than GLUE, but it is also proportionally more complex. In general, 
DREAM proved to be an excellent calibration tool because it can select sets of solutions with higher 
quality and with relatively narrow uncertainty limits. The validation was efficient since the model was 
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able to select expressive sets of satisfactory solutions to represent the observed behaviour with narrow 
total uncertainty limits, which inspires confidence in the predictions of flow. 

The proposed model has shown to be able to provide relatively reliable modelling results when few 
data are available, which is very common for small urban basins, quantifying numerically expressed 
uncertainties. However, it is further recommended that a greater number of observed hydrograms be 
used to verify that they provide better results. This recommendation is made even though the method 
adopted, considering several sets of parameters to represent the observed behaviour, has proved to be 
efficient. 

It should be noted that this model version uses only four calibration parameters obeying, in addition 
to the equifinality, the parsimony, so it is quite lean. 
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