
Djinn, Monotonic

(extended abstract)

Conor McBride
Department of Computer and Information Sciences

University of Strathclyde
conor@cis.strath.ac.uk

Abstract

Dyckhoff’s algorithm for contraction-free proof search in intuitionistic propositional
logic (popularized by Augustsson as the type-directed program synthesis tool, Djinn) is
a simple program with a rather tricky termination proof [4]. In this talk, I describe my
efforts to reduce this program to a steady structural descent. On the way, I shall present an
attempt at a compositional approach to explaining termination, via a uniform presentation
of memoization.

1 Introduction

Let us grasp the problem. In order to focus on termination issues, I shall consider only the
implicational fragment of the logic: higher-order implication is the termination troublemaker.
In a language like Haskell, we might declare a type formulae—atoms closed under implication.

data Fmla = Atom String | Fmla ⊃ Fmla

Again, for simplicity, let us consider the task merely of checking whether (rather than how)
one formula holds, given hypotheses. The first step is to introduce hypotheses, until an atomic
goal remains.

fmla :: [Fmla]→ Fmla→ Bool
fmla hs (h ⊃ g) = fmla (h : hs) g
fmla hs (Atom a) = atom hs a

Next, we scan the hypotheses in the hope that one will deliver the goal.

atom :: [Fmla]→ String→ Bool
atom hs a = try [] hs where

try :: [Fmla]→ [Fmla]→ Bool
try js [] = False
try js (h : hs) = from h a (js ++hs) ∨ try (h : js) hs

Note that try retains the list js of the hypotheses tried already. When we attempt to derive a
from a chosen hypothesis h, we may need the other hypotheses js ++hs to solve any subgoals
which may arise in the process, implemented as follows. Each premise of the hypothesis in use
becomes a subgoal.

from :: Fmla→ String→ [Fmla]→ Bool
from (Atom b) a hs = b ≡ a
from (g ⊃ h) a hs = from h a hs ∧ fmla hs g

Each time the algorithm backchains on a hypothesis, the context shrinks, but as the resulting
subgoals are decomposed, the context grows. There is no apparent structural descent: Dyckhoff
shows termination by appeal to a carefully crafted measure. The key point is that each step
of backchaining and introduction eliminates a hypothesis of higher order than those added.
Correspondingly, a lexicographic recursion structure lurks latently within this algorithm. Let
us expose and develop it.

14 E. Komendantskaya, A. Bove, M. Niqui (eds.), PAR-10 (EPiC Series, vol. 5), pp. 14–17

conor@cis.strath.ac.uk


Djinn, Monotonic Conor McBride

2 Memo Structures and Recursion Operators

One way to legitimize forms of recursion over some set X is by means of a memo structure—a
record with two components (here in Agda notation):

record Memo (X :Set) : Set1 where field
Below : (X → Set)→ (X → Set)
below : (P :X → Set)→ ((x :X)→ Below P x→ P x) → ((x :X)→ Below P x)

Given a memo structure, we acquire its recursion operator

rec : (M :Memo X)→ (P :X → Set)→ ((x :X)→ Below M P x→ P x) → ((x :X)→ P x)
rec M P p x = p x (below M P p x)

In effect, rec M helps you to solve a problem P for any given x by offering you whatever
information Below M remembers about x—typically that P holds for values which are in some
sense ‘below’ x. Indeed, a popular choice for Below is

Below P x = (y :X)→ y < x→ P y

for some well founded relation, <. This choice effectively packages Nordström’s generic approach
to terminating general recursion in type theory [9].

We are always free to make the trivial choice M1 : MemoX with

Below P x = 1

which gives no useful information. Whilst the trivial memo structure supports only non-
recursive programming, it proves helpful to have a ‘nil’ when composing memo structures.

For the natural numbers, consider NatStep : Memo Nat, choosing

Below P zero = 1
Below P (suc n) = P n

below P zero p =
below P (suc n) p = p n (below P n)

This gives rec NatStep the one-step reach of Peano’s induction principle. If case analysis exposes
a top-level suc constructor, Below responds by offering an inductive hypothesis. For a two-step
reach (perhaps to write Fibonacci’s function), choose

Below P zero = 1
Below P (suc zero) = P one
Below P (suc (suc n)) = P n × P (suc n)

I leave below as an exercise in this case. One can imagine constructing just the right memo
structure to deliver the calls required by a particular function, and in this way to emulate the
method of Bove and Capretta [2]

Alternatively, one might seek to build more reusable kit. For many-step constructor-guarded
recursion in general, we may use a construction which dates back to my doctoral research with
Goguen and McKinna [7], defining Below thus:

Below P zero = 1
Below P (suc n) = Below P n × P n

below P zero p =
below P (suc n) p = (ps, p n ps) where

ps = below P p n

15



Djinn, Monotonic Conor McBride

In this way, many-step recursion reduces to one-step recursion. We use this presentation as
the basis for recursive computation in the Epigram language [8]. Termination checking in
Epigram amounts to elaborating recursive calls as projections from such memo structures—
a näıve search, constructing a an object in an underlying theory validated by type checking
alone. We use type theory as a language of evidence. By contrast, Agda and Coq both rely on
syntactic termination criteria, documented primarily by their implementations and invulnerable
to reason. We may hope to develop a compositional library of memo structures and with it, a
flexible method of accounting for termination.

3 Lexicographic Memo Structures

Given some S : Set and a family T : S → Set, we may form the type of dependent pairs Σ S T .
If, moreover, we have memo structures MS : Memo S and MT : (s :S) → Memo (T s), we
may form their lexicographic combination:

MΣS,T MS MT : Memo (Σ S T )
MΣS,T MS MT = record {

Below P (s, t) = Below (MT s) (λt′ 7→ P (s, t′)) t× Below MS (λs′ 7→ (t′ :T s′)→ P (s′, t′)) s
below P p (s, t) = {−implementation details−}

}

That is, below (s, t) we may make recursive reference to (s, t′) for any t′ below t, or to (s′, t′)
for any s′ below s and any t′ at all—we may blow t up if we reduce s. The implementation is
easy in a type-directed setting, because the problem is so abstract!

4 Formulae and Contexts Revisited

The crucial observation on which proof search termination relies is that backchaining is strictly
order-reducing. It is correspondingly useful to index formulae by an upper bound on their
order. The strategy of turning a measure into an index has a track record of success [6, 3]!

data Fmla : Nat→ Set where
atom : ∀{n} → String→ Fmla n
⊃ : ∀{n} → Fmla n→ Fmla (suc n)→ Fmla (suc n)

We now have the information we need to refine the notion of context by dividing it into
buckets according to order. We may take

Ctxt : Nat→ Set
Ctxt zero = 1
Ctxt (suc n) = Bucket (Fmla n) × Ctxt n

where, for our purposes, a Bucket is a list of known length

Bucket X = Σ Nat λi 7→ Vec X i

Correspondingly, deleting any element from a Bucket makes its length structurally smaller.
Lexicographic combination of numerical recursion with trivial vector recursion

MBucket : Memo (Bucket X)
MBucket = MΣ NatStep (λn 7→ M1)

16



Djinn, Monotonic Conor McBride

captures the idea that recursion makes sense for any vector whenever the length decreases by
one.

Contexts, meanwhile, are iterated products, so they also support iterated lexicographic
recursion.

MCtxt : (n :Nat)→Memo (Ctxt n)
MCtxt zero = M1
MCtxt (suc n) = MΣ MBucket (λ 7→ MCtxt n)

Crucially, this allows us to take out a higher-order formula from an earlier bucket and backchain
on it, adding formulae to lower-order buckets. We have thus justified the recursion strategy for
Dyckhoff’s method in structural terms.

5 Overview of Talk

In my talk, I shall show the program which arises from this analysis of formulae and contexts. It
falls outside the class readily acepted by Agda’s termination oracle [1] but is codable ‘Epigram-
style’ by direct appeal to rec. I shall consider how memo structures might give rise to a more
flexible economy of termination explanation, using the typechecker as the basis for trust.

References

[1] Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recursion. J. Funct.
Program., 12(1):1–41, 2002.

[2] Ana Bove and Venanzio Capretta. Modelling general recursion in type theory. Mathematical
Structures in Computer Science, 15(4):671–708, 2005.

[3] Ana Bove and Thierry Coquand. Formalising bitonic sort in type theory. In Filliâtre et al. [5],
pages 82–97.

[4] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log., 57(3):795–807,
1992.

[5] Jean-Christophe Filliâtre, Christine Paulin-Mohring, and Benjamin Werner, editors. Types for
Proofs and Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France, December
15-18, 2004, Revised Selected Papers, volume 3839 of Lecture Notes in Computer Science. Springer,
2006.

[6] Conor McBride. First-order unification by structural recursion. J. Funct. Program., 13(6):1061–
1075, 2003.

[7] Conor McBride, Healfdene Goguen, and James McKinna. A few constructions on constructors. In
Filliâtre et al. [5], pages 186–200.

[8] Conor McBride and James McKinna. The view from the left. J. Funct. Program., 14(1):69–111,
2004.

[9] Bengt Nordström. Terminating general recursion. BIT, 28(3):605–619, 1988.

17


	Introduction
	Memo Structures and Recursion Operators
	Lexicographic Memo Structures
	Formulae and Contexts Revisited
	Overview of Talk

