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Abstract 

Building fire incidents pose significant risks to human lives and property, making 

fire safety compliance a critical aspect of building management. Traditional compliance 

checks are largely manual, relying on expert inspectors to assess and report on fire 

safety standards. While prior research has explored Automated Compliance Checking 

(ACC) during the design phase, limited attention has been given to the operational 

phase, where dynamic risks necessitate continuous monitoring. This study proposes a 

novel approach that leverages vision Large Language Models (vLLMs) to automate fire 

safety compliance monitoring in the operational phase. The developed method frames 

hazard recognition as a Visual Question Answering (VQA) task, enabling the model to 

analyze visual data and respond to textual queries regarding potential fire hazards. The 

system employs a Vision Transformer (ViT) for visual encoding and a multimodal 

fusion process, allowing the vLLM to generate contextually relevant descriptions of 

observed hazards, along with regulatory references including Occupational Safety and 

Health Administration (OSHA) standards. Evaluation results demonstrate significant 

improvements in hazard recognition over a generic vLLM baseline, with an average 

BLEU score of 0.1355 compared to 0.0410 and higher ROUGE scores reflecting 
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superior precision and coherence. The model’s ability to automatically generate 

structured hazard description reports has practical implications for assisting expert-

driven inspections, offering a comprehensive and effective solution for long-term fire 

safety management. This study thus advances ACC research by providing a 

comprehensive, automated method for continuous fire safety compliance in operational 

building environments. 

1 Introduction 

Building fire incidents pose significant threats to human lives and properties, making fire safety 

compliance an essential aspect of building management. Regulatory frameworks are in place to ensure 

a minimum standard of safety and performance for built assets, yet these checks predominantly 

depend on manual inspections. Although prior research has focused on automated compliance 

checking (ACC) during the design phase, there is a notable gap in automating compliance checking 

throughout the operational phase of buildings. This gap is especially concerning as fire risks require 

continuous monitoring to ensure safety measures remain effective beyond initial design compliance. 

The operational phase presents unique challenges for fire safety compliance, where risks are 

dynamic and necessitate ongoing assessment. Fire safety measures, such as the installation of fire 

doors and maintenance of unobstructed escape routes, are critical during the design and construction 

phase but may be compromised over time. For instance, fire doors could be propped open, or escape 

paths could be blocked by stored items, undermining their intended purpose. Thus, continuous 

monitoring is essential to maintain the integrity of these safety measures, effectively mitigating risks 

that may emerge during a building’s operational lifespan. 

 

Table 1. Summary of Automated Code Compliance Checking Methods 

Literature Applicable Phases Technological Approach 

Malsane et al. (2015) Design Phase Developing object model for automated 

compliance checking 

Jiang et al. (2022) Design Phase Using ontology mapping and rule-based 

reasoning for ACC 

Fitkau and Hartmann 

(2024) 

Design Phase Ontology-based knowledge 

formalization for ACC in fire safety 

Zhang and El-Gohary 

(2017) 

Design Phase Using NLP and logic reasoning for fully 

automated code checking 

Zhou et al. (2022) Design Phase Integrating NLP and CFG for rule 

interpretation in ACC 

Bloch et al. (2023) Design Phase Using graph neural networks for ACC 

Chen et al. (2024) Design Phase Using computer vision and deep 

generative models for ACC 

Bosché (2010) Construction Phase Automated recognition of CAD objects 

in laser scans for compliance control 

Cheng et al. (2022) Construction Phase Computer vision and deep learning for 

safety compliance monitoring 

Ding et al. (2022) Construction Phase Using visual question answering and 

deep learning for safety compliance 

checking 

Beach et al. (2024) Operational Phase Feasibility study on moving ACC to 

operational phase 
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Table 1 summarizes the key contributions of previous research in ACC, highlighting the 

applicable phases and technological approaches employed. Historically, the literature on ACC has 

emphasized Building Information Modeling (BIM) as a primary tool for compliance verification 

during the design phase. This emphasis has led to substantial advancements in areas such as structural 

safety, fire risk assessment, and water distribution systems. These studies typically rely on BIM data 

combined with rule-based reasoning, aligning design models with regulatory standards. For example, 

Martins and Monteiro (2013) developed the "LicA" application for automating water distribution 

network checks using IFC-based BIM models, while Malsane et al. (2015) introduced an object model 

for fire safety compliance. Zhang et al. (2013) further extended BIM's application to safety rule 

checking, applying algorithms to prevent fall hazards in construction planning. These design-phase 

solutions illustrate BIM's capacity to enhance safety and regulatory compliance early in a building’s 

lifecycle. 

Recent advances in Natural Language Processing (NLP) and Machine Learning (ML) have further 

enhanced ACC automation by reducing reliance on manual interpretation of regulatory texts. Zhang 

and El-Gohary (2017) and Zhou et al. (2022) developed NLP frameworks to extract regulatory 

requirements directly from text, converting complex legal language into computable rules. These 

innovations are crucial for addressing one of the most labor-intensive components of ACC, 

facilitating a more scalable approach to compliance checking. Additionally, Bloch et al. (2023) 

applied Graph Neural Networks (GNN) to ACC, specifically targeting accessibility requirements in 

residential designs. By bypassing traditional hard-coded rules, GNNs enable a more flexible and 

scalable approach, demonstrating the potential of ML techniques in overcoming the limitations of 

conventional rule-based systems. 

While recent studies have started to address the gap in lifecycle-wide compliance with an 

emphasis on extending ACC into the operational phase, significant work remains to be done. Beach et 

al. (2024) advocated for automated data capture and analysis to facilitate compliance during building 

operations. However, fully automated compliance checking and monitoring specifically tailored for 

the operational phase of buildings is yet to be developed. 

The use of computer vision in ACC has become an emerging focus, particularly for compliance 

monitoring and hazard recognition. Cheng et al. (2022) developed a deep learning model for 

classifying Personal Protective Equipment (PPE) and tracking worker movement on construction sites. 

Their approach highlights how vision-based models can support real-time monitoring of safety 

compliance by recognizing and categorizing visual data relevant to worker safety. In parallel, Ding et 

al. (2022) leveraged a Vision-and-Language Transformer (ViLT) model for Visual Question 

Answering (VQA) to detect unsafe behaviors on construction sites. By incorporating both visual and 

language processing capabilities, their model exemplifies a more advanced integration, enabling 

nuanced hazard detection through complex reasoning about images and textual queries. 

These studies underscore the potential of image-based data for automating hazard recognition in 

ACC, signaling a shift toward image-driven applications that support operational compliance 

monitoring. The rapid advancement of vision models—especially with contrastive learning 

techniques—has further enabled complex scene understanding (Radford et. al, 2021). This recent 

technique aligns visual data with text for richer interpretation beyond traditional vision-based tasks 

such as object detection. Recently, Large Language Models (LLMs) have expanded these capabilities, 

allowing more sophisticated reasoning tasks on image inputs (Touvron et. al, 2023; Liu et. al, 2024). 

Yet, despite these advancements, the application of such technologies to hazard recognition for 

image-driven ACCs in building operational environments remains largely unexplored. 

In light of these advancements, this study proposes a novel approach using computer vision, 

particularly vision Large Language Models (vLLM), to automatically identify fire safety non-

compliance in buildings during the operational phase. By enabling long-term, dynamic compliance 

monitoring, this method seeks to assist managers and inspectors in generating compliance reports, 
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reducing the workload for fire safety experts and improving the efficiency of ongoing fire risk 

management. 

 

2 METHOD 

Ensuring fire safety compliance during the operational phase of a building requires a systematic 

approach capable of identifying dynamic hazards in real time. This study introduces a novel method 

leveraging vision-Large Language Models to automate hazard recognition and reporting. The 

proposed approach frames hazard detection as a Visual Question Answering problem, enabling the 

generation of detailed and context-aware descriptions of fire safety non-compliance. The framework, 

referred to as Fire Compliance Visual Question Answering (FCVQA), integrates computer vision and 

natural language processing techniques to analyze multimodal inputs and produce actionable outputs. 

The following subsections describe the problem formulation, the FCVQA framework, the model 

training process, and the evaluation metrics used to assess the model’s performance. Each component 

contributes to the overall objective of automating compliance checks in operational building 

environments, offering an effective solution to augment traditional expert-based inspection workflows. 

 

2.1 Problem Formulation 

To enable automated assessment of potential fire hazards in the operational phase, we deploy a 

vision-Large Language Model (vLLM) to perform hazard recognition in building environments. This 

model uses advanced computer vision techniques to evaluate risks based on visual inputs, offering an 

advanced method for identifying non-compliance with building regulations in real time. 

The hazard recognition task is framed as a Visual Question Answering (VQA) problem (Antol et. 

al, 2015), where the model receives an image of a building environment alongside a textual query 

about potential fire hazards. The vLLM integrates these inputs to generate a description of any 

detected risks. For example, given an image with the query, “What fire hazards do you see?” the 

model may respond with, “The fire exit is obstructed by a large box,” or “The fire door is propped 

open, compromising its function.” 

Formally, this task can be described as:  

 

M(I, Q) → A,                                   (1) 

 

where M is the vLLM, I is the input image, Q is a natural language question about possible 

hazards, and A is the generated answer describing any observed fire safety non-compliance issues. 

 

2.2 Fire Compliance Visual Question Answering (FCVQA) Framework 

This work introduces the Fire Compliance Visual Question Answering (FCVQA) framework for 

effective hazard recognition in building operations. The FCVQA framework, as depicted in Figure 1, 

integrates visual and textual data through a multimodal encoding and decoding process, leveraging the 

robust reasoning capabilities of large language models (LLMs) for contextual hazard assessment. 

 

Vision LLM Hazard Recognition D. Chen et al.

831



 
Figure 1. The proposed vLLM-driven FCVQA framework for operational hazards recognition 

 

The FCVQA process includes several key stages: 

Vision Encoding: A Vision Transformer (ViT) encodes the visual input, transforming the 

building environment’s image into a high-dimensional latent representation. This representation 

captures relevant details, such as object shapes and spatial arrangements, essential for identifying fire 

hazards. 

Text Encoding: The textual query about fire risks is tokenized and encoded to produce a 

compatible latent representation. This enables the model to interpret specific fire-related questions, 

such as identifying blocked exits or verifying the functionality of fire doors. 

Multimodal Fusion: The encoded image and text representations are combined within a shared 

latent space, allowing the vLLM to process visual and textual information concurrently. This fusion 

enables the model to analyze complex visual contexts and correlate them with fire safety questions. 

LLM Decoding and Response Generation: Using a large language model decoder, the FCVQA 

framework processes the combined latent representation to generate a textual response. This output 

describes any fire hazards detected in the image, providing actionable insights aligned with the 

original query. For instance, if the image depicts a blocked fire exit, the model would generate a 

response indicating this specific non-compliance issue. 

By leveraging the FCVQA framework, the system can dynamically assess fire safety conditions in 

real time. This approach enables comprehensive hazard recognition, capturing both obvious and 

subtle risks within building environments. Examples of hazards that the vLLM can detect include 

obstructed exits, inadequately stored flammable materials, and disabled fire safety equipment, all of 

which are essential for ongoing compliance with fire safety regulations. The vLLM’s strength lies in 

its ability to interpret and reason about complex scenes. Unlike conventional object detection models, 

which only localize predefined objects, vLLMs can understand contextual factors that determine 

whether an object or scene poses a fire hazard. For instance, a stack of furniture may not be inherently 

dangerous, but when positioned to obstruct egress, it becomes a regulatory violation. The vLLM’s 

capacity for contextual reasoning is therefore essential for identifying these nuanced risks, allowing 

for a more sophisticated assessment of fire safety compliance. 

 

2.3 Model Training 

The model training approach first follows a vision-language pre-training (VLP) strategy, where 

larger datasets are utilized to pre-train models on various vision and language tasks prior to specific 
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Visual Question Answering (VQA) training. This VLP strategy, as discussed by Gan et. al (2022), 

facilitates the transfer of knowledge from a range of related tasks, thereby enhancing the model’s 

understanding of concepts that go beyond the constraints of limited VQA datasets. For VLP, 

interpretative VQA datasets were reviewed as potential sources of pre-training data. Several popular 

VQA datasets representing diverse scenarios were combined to enrich the pre-training phase, 

specifically VizWiz-VQA (Gurari et. al, 2018) and VQAv2 (Goyal et. al, 2017). 

Following the pre-training, the model was fine-tuned using a smaller, specialized dataset 

developed for this study, referred to as the Fire Compliance VQA dataset. This dataset comprises 135 

image-text pairs focused on common operational fire hazards in building environments, such as 

blocked fire exits. This small dataset serves as the foundation for this preliminary experiment  to 

validate the feasibility of the proposed approach. The dataset was split into training, validation, and 

test sets with an 8:1:1 ratio. Model training was conducted on a single Nvidia A6000 GPU, utilizing a 

learning rate of 0.001. Each image is paired with the question, ‘What fire hazards do you see?’ 

alongside a human-generated response that describes the scene, identifies non-compliance issues, and 

references relevant Occupational Safety and Health Administration (OSHA) regulations. In this work, 

OSHA regulations relating to the maintenance, safeguards, and operational features for exit routes, as 

outlined in Maintenance, Safeguards, and Operational Features for Exit Routes (29 C.F.R. § 1910.37; 

OSHA, n.d.), and fire protection, as detailed in Fire Protection (29 C.F.R. § 1926.150; OSHA, n.d.), 

have been selected and used. The response format mirrors a hazard-report style, offering a practical 

approach to support or potentially replace expert-led building compliance inspections by providing 

precise, regulatory-aligned insights. 

During the training phase, we employed full supervision to optimize the model. For VQA, the 

sigmoid function predicted character scores 𝑠̂ between 0 and 1 as probabilities for the answer. We 

utilized the widely used binary cross-entropy (Teney et. al, 2018) as the guiding loss function. Given 

a dataset D having n samples, with image 𝑣 ∈ 𝑉,question 𝑞 ∈ 𝑄 and answer 𝑎 ∈ 𝐴, the goal is to train 

a model to optimize a mapping function 𝑓: 𝑉 × 𝑄 → ℝ|𝐴| . Hence, the answering loss 𝐿𝑎𝑛𝑠  can be 

formula as follows: 

 

𝐿𝑎𝑛𝑠 = −∑ ∑ 𝑠𝑞𝑎
𝐴
𝑎

𝑄
𝑞 log(𝑠̂𝑞𝑎) − (1 − 𝑠𝑞𝑎)log(1 − 𝑠̂𝑞𝑎),                   (2) 

 

Where 𝑠𝑞𝑎 is the true score or target probability for answer 𝑎 given question 𝑞. 𝑠̂𝑞𝑎 is the predicted 

probability score for answer 𝑎 given question 𝑞, obtained using the sigmoid activation function on the 

model's output logits. This score represents the model’s confidence in predicting 𝑎 as the correct 

answer for 𝑞. This loss function 𝐿𝑎𝑛𝑠  calculates the cumulative penalty across all questions and 

possible answers in the dataset, guiding the model to produce probability scores that align with the 

true answer distribution for each question. 

 

2.4 Evaluation Metrics 

To evaluate the accuracy and effectiveness of hazard identification and compliance flagging, 

several established metrics were utilized: BLEU-4 (Papineni et. al, 2002), ROUGE-1, ROUGE-2, and 

ROUGE-L (Lin,2004). These metrics measure the alignment between the generated descriptions and 

reference texts, focusing on precision in identifying key compliance terms, such as "fire extinguisher," 

"fire exit," and specific regulatory codes. In this evaluation, we compare the pre-trained and fine-

tuned model using our proposed method against the original, generic vLLM model as the baseline to 

validate the effectiveness of the proposed approach. 

BLEU-4 evaluates the precision of four-gram sequences in the generated text, capturing phrase 

accuracy critical for detailed compliance reporting. ROUGE-1 measures unigram overlap, verifying 
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that essential terms are included, while ROUGE-2 assesses bigram overlap, ensuring accuracy in 

phrase sequences. ROUGE-L calculates the longest common subsequence between generated and 

reference texts, reflecting structural coherence. 

Formally, these metrics are defined as follows: 

 

BLEU-4 = exp (∑
1

𝑛

4
𝑛=1 log 𝑝𝑛) × brevity penalty,                   (3) 

ROUGE-1 =
∑matched unigrams

∑ reference unigrams
,                   (4) 

ROUGE-2 =
∑matched bigrams

∑ reference bigrams
,                   (5) 

ROUGE-L  =  
LCS(generated, reference)

length of reference
,                   (6) 

 

These metrics provide a comprehensive evaluation framework for the model’s ability to generate 

precise, contextually relevant descriptions, essential for automated hazard detection and compliance 

monitoring. 

 

3 RESULTS 

 

Table 2. Evaluation Metrics Comparison 

Method Average 

BLEU 

ROUGE-1 ROUGE-

2 

ROUGE-L 

Generic vLLM 0.0410 0.3912 0.1086 0.2435 

Proposed Method 0.1355 0.5375 0.2590 0.3683 

 

The evaluation metrics for hazard identification performance were compared between the generic 

vLLM baseline and the proposed method. Table 2 highlights the substantial improvements achieved 

by the proposed method in both BLEU and ROUGE metrics. The proposed method's average BLEU 

score reached 0.1355, compared to 0.0410 from the generic vLLM baseline, reflecting enhanced 

precision in descriptive phrasing. For ROUGE metrics, the proposed method also outperformed the 

baseline significantly, with ROUGE-1, ROUGE-2, and ROUGE-L scores of 0.5375, 0.2590, and 

0.3683, respectively, compared to the baseline’s scores. These results underscore the proposed 

method’s greater effectiveness in capturing key terms, maintaining phrase structure, and preserving 

the overall coherence required for precise hazard identification and compliance monitoring. 
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Figure 2. Example output of the developed FCVQA model 

 

Upon closer examination of the model’s specific outputs, as illustrated in Figure 2, it is evident 

that the developed FCVQA model demonstrates strong capabilities in identifying and reporting fire 

safety compliance issues within building environments. In the first example, the FCVQA model 

detects that a bicycle is obstructing access to a fire extinguisher and a fire hose cabinet. The model 

accurately cites OSHA regulation 1926.150(a)(3), which mandates that fire safety equipment must 

always remain accessible. This output demonstrates the model’s ability not only to recognize objects 

in the scene but also to interpret the situation within the context of fire safety compliance, correlating 

the obstruction with relevant legal requirements. At the same time, the second example shows the 

model’s capability to identify a compliant scene. The FCVQA model observes that the exit door is 

clearly marked and unobstructed, with no visible hazards nearby. It concludes that no applicable fire 

hazard is present, illustrating the model’s capacity to affirm compliance in safe environments. This 

ability to confirm safety in compliant situations is critical for practical deployment, as it enables the 

model to assist or potentially replace expert-based inspections by offering precise, context-aware 

assessments of building fire safety compliance. 

 

4 DISCUSSION 

This section evaluates the contributions and limitations of the developed model within the broader 

context of ACC research. First, a comparative analysis highlights the advancements of the proposed 

method over existing approaches, particularly in terms of complex hazard scene reasoning and 

automated hazard report generation. Following this, the limitations of the current framework are 

discussed, along with potential future directions to address these challenges and enhance the model’s 

applicability and robustness. Together, these discussions provide a comprehensive perspective on the 

strengths and areas for improvement of the proposed method in advancing fire safety compliance 

monitoring. 

 

4.1 Comparative Analysis 

In discussing the capabilities of vision-based approaches for safety compliance monitoring, Table 

3 highlights key distinctions between the developed method and prior work by Cheng et al. (2022) 

and Ding et al. (2022). Specifically, the term "Complex hazard scene reasoning" refers to a model's 

capacity to interpret intricate hazard situations beyond simple object recognition tasks, such as those 

related to Personal Protective Equipment (PPE). Traditional CNN-based models, such as those 
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utilized by Cheng et al. (2022), are limited to identifying isolated objects and lack the interpretative 

depth necessary for complex hazard assessment. In contrast, vision-language models, as applied in 

Ding et al. (2022) and the developed approach, provide a more nuanced understanding of contextual 

safety risks, enabling a richer analysis of compliance within complex scenes. 

 

Table 3. Comparison of Vision-Based Safety Compliance Methods 

Literature Complex hazard scene 

reasoning 

Written report generation 

Cheng et. al (2022) N N 

Ding et. al (2022) Y N 

Developed method Y Y 

 

An additional, critical differentiator is the capability for written report generation. While Ding et 

al. (2022) employed a vision-language model capable of reasoning about hazard scenes, it did not 

integrate a mechanism for generating fully automated hazard reports. This limitation necessitates 

expert intervention to interpret the model’s outputs and document findings, which can be both time-

consuming and prone to human error. Automated report generation, as realized in the developed 

method, fills this gap by producing structured, regulatory-aligned hazard descriptions that support 

compliance inspections. 

The ability to generate comprehensive, written hazard reports represents a significant 

advancement in the automation of safety compliance workflows. This feature is essential for either 

assisting or potentially replacing traditional expert-driven processes, as it reduces the reliance on 

human inspectors to document compliance findings. By offering a model that interprets hazards with 

regulatory context and generates formalized reports, the developed approach not only enhances the 

efficiency of compliance monitoring but also contributes to automated hazard report generation, 

which is critical for regulatory adherence and continuous monitoring in safety-critical environments. 

In summary, the developed model distinguishes itself from previous methods by combining 

complex scene reasoning with automated report generation, thereby offering a more comprehensive 

and effective solution for building fire safety compliance monitoring.  

 

4.2 Limitations and Future Directions 

Despite the contributions of the developed model, several limitations must be addressed to ensure 

broader applicability and robustness. A key limitation lies in the dataset used for training and 

evaluation. The current dataset of 135 image-text pairs, while sufficient for proof-of-concept, is too 

small and homogeneous to generalize the model's performance across diverse real-world scenarios. 

Expanding the dataset to include a wider range of building types, operational conditions, and hazard 

scenarios, particularly edge cases such as rare fire hazards, would significantly enhance the robustness 

and applicability of the method. Leveraging larger, publicly available datasets or curated collections 

tailored for fire safety compliance would further strengthen its predictive capabilities. 

Another limitation is the lack of real-world testing under dynamic operational conditions. The 

framework has not yet been deployed in live building environments, such as high-occupancy 

residential buildings or industrial facilities. A pilot study in these settings would provide crucial 

insights into the practical performance, scalability, and utility of the model. Real-world testing would 

also enable the identification of potential challenges, such as adapting to variations in lighting 

conditions, spatial layouts, or obstruction types, which are critical for ensuring reliable hazard 

detection in practice. 

Additionally, the computational demands of the model, particularly for real-time hazard detection 

and report generation, warrant further exploration. It is unclear how the system performs under 
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constrained hardware environments or in challenging conditions, such as low-light settings or poor 

image quality. Addressing these concerns through hardware optimization or lightweight model 

adaptations would enhance the framework’s usability in resource-constrained scenarios. 

The lack of contextual integration also limits the system’s ability to fully understand hazards 

within the broader building-level context. Currently, the developed method focuses on hazard 

recognition, which, while critical, represents only part of the overall ACC workflow. Hazards such as 

blocked escape routes or improperly maintained fire doors often require contextual understanding of 

building design specifications, spatial relationships, and evacuation strategies to assess their true 

severity. Future work should address these limitations by integrating operational hazards with 

comprehensive building information, such as BIM or other digital twin technologies. This would 

enable a transition from isolated hazard detection to end-to-end ACC workflows, offering a more 

holistic solution for fire safety compliance. 

 

5 CONCLUSIONS 

The study presents a novel approach to automated fire safety compliance monitoring for building 

operational phases, addressing a critical gap in the field of ACC. While previous research has 

predominantly focused on the design phase, this work emphasizes the importance of continuous 

monitoring to manage dynamic fire risks during the operational phase. The proposed method 

leverages advanced computer vision techniques, specifically a vLLM, to assess fire safety compliance 

in the building operational phase, thus supporting long-term, dynamic fire risk management. 

The developed model frames hazard recognition as a VQA task, wherein an image of the building 

environment is processed along with a text query regarding potential fire hazards. The model 

effectively identifies hazards, generates descriptive responses aligned with regulatory standards, and 

provides references that align with OSHA regulations. This dual capability of recognizing hazards and 

producing detailed, regulatory-referenced reports is essential for enhancing the efficiency of fire 

safety inspections. By generating automated hazard reports, the model reduces the reliance on human 

experts to manually document compliance issues, offering a scalable solution for compliance 

monitoring. 

Quantitative evaluation further demonstrates the effectiveness of the proposed method. Significant 

improvements over a generic vLLM baseline were observed across BLEU and ROUGE metrics, 

indicating enhanced precision and coherence in hazard descriptions. These metrics underscore the 

model’s ability to capture critical terminology, maintain structured phrasing, and generate accurate, 

comprehensive responses. Such performance highlights the model’s potential to support or even 

replace expert-driven fire safety compliance inspections. 

Nevertheless, limitations remain. The small dataset used for fine-tuning constrains the model's 

ability to generalize across diverse building types, operational scenarios, and edge cases, such as rare 

or atypical fire hazards. Expanding the dataset to encompass a broader range of real-world conditions 

would significantly enhance the robustness and applicability of the model. Additionally, the lack of 

contextual integration prevents the system from fully understanding hazards within the broader 

building-level context, such as design specifications, spatial relationships, and evacuation strategies. 

Currently, the developed method focuses on hazard recognition, which, while critical, is only part of 

the overall ACC workflow. Future work should address these limitations by expanding the dataset and 

developing systems that integrate operational hazards with comprehensive building information. Such 

advancements would enable transition from isolated hazard detection to complete ACC workflows. 

Overall, this study contributes an automated and effective solution for fire safety compliance 

monitoring in operational building environments. By combining complex scene understanding with 

Vision LLM Hazard Recognition D. Chen et al.

837



automated reporting, the proposed method enables a more efficient approach to managing operational 

building fire risks, offering building managers and risk inspectors a powerful tool to ensure 

continuous regulatory compliance and ultimately safeguard human lives and property. 
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