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Abstract

In this work we significantly increase the performance of the Vampire and E automated
theorem provers (ATPs) on a set of loop theory problems. This is done by developing Em-
pireTune, an Al system that automatically invents targeted search strategies for Vampire
and E. EmpireTune extends previous strategy invention systems in several ways. We have
developed support for the Vampire prover, further extended Vampire by new mechanisms
for specifying term orderings, and EmpireTune can now automatically invent suitable term
ordering for classes of problems. We describe the motivation behind these additions, their
implementation in Vampire and EmpireTune, and evaluate the systems with very good
results on the AIM (loop theory) ATP benchmark.

1 Introduction

Modern automated theorem provers (ATPs) are routinely used to attack a wide range of formally
expressed problems coming from areas such as mathematics, program analysis, or verification.
To achieve their performance, state-of-the-art ATP systems such as Vampire [20] and E [2§]
employ and combine a large number of complicated search strategies. Each strategy is typically
described by many search options, sometimes using dedicated domain-specific languages for
their hierarchical combinations.

Inventing targeted proof search strategies for a specific prover and specific problem sets
is a difficult task, which may however be very rewarding. Several machine learning systems
that invent strategies automatically for ATPs were proposed recently [26, 21], including our
BliStr(Tune) system [30, 11] which uses the ParamILS [10] implementation of iterated local
search. These systems were typically used on ATP problems extracted from the large libraries
of today’s interactive theorem prover (ITP) systems [4, 3, 5, 13, 14]. All the above systems
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Function BLISTRLOOP(ﬂevalv ﬂcutofﬁ ﬁimp7 ﬁmir‘n ﬁmaxu Btopsu Bbests)

All < INITIALS; // Initialize current generation to the initial strategies
loop
EVALUATE (AL, Bovals Bmin, Bmax);  // Fvaluate all strategies with timeout Beval (1)
G < REDUCE(AIL, Brops, Brests);  // Select only Biops best-performing strategies (2)

S < SELECT(G); // Select a strategy to improve (3)

if S is undefined then return G; // Terminate when all strategies are improved

S’ < IMPROVE(S, Beutoft, Bimp ) // Improve S on best-performing problems (4)

All «+— AlLU{S'} // Extend current generation
end

Figure 1: An outline of the BliStr strategy invention loop.

have so far targeted the E prover, and none of the systems has so far focused on automated
invention of suitable term orderings, which is an extremely important part of the proof search.

In this work we develop EmpireTune, a system that invents strategies both for E and Vam-
pire. Vampire has been for a long time the strongest ATP system, consistently having best
performance in CASC (the CADE Automated System Competition). To be able to automat-
ically invent new term orderings, we extend Vampire by several new options and mechanisms
allowing both fixed and weighted ordering schemes. Several other changes are implemented,
which primarily allow us to extend the strategy-invention loop to ATP architectures that are
(like Vampire’s recent AVATAR [31, 23]) not purely saturation based. For the evaluation we
choose an ATP benchmark where rewriting (and thus good term orderings) is very important.
This is the AIM benchmark used in the CASC 2016 ATP competition [29], consisting of 1020
training and 200 evaluation problems coming from a large theorem proving project in loop
theory [16].

The rest of the paper is organized as follows. Section 2 discusses the invention of proof
search strategies, focusing on our BliStr architecture and its EmpireTune extensions. Section 3
describes the Vampire proof strategies in general, and Section 4 focuses specifically on term or-
derings, their Vampire implementation and the extensions needed for their automated invention.
The system is evaluated in several ways in Section 5, showing very significant improvements of
both Vampire and E on the AIM benchmark. Section 6 describes the EmpireTune configuration
parameters together with a practical guidelines on their initial setting, and Section 7 concludes.

2 Invention of Theorem Proving Strategies

The BLISTR strategy invention loop [30] improves a given ATP system with given initial strate-
gies (INITIALS) on a given set of training problems (PROBLEMS). This is done by gradually
evolving new strategies specialized for classes of the training problems. The specialization of a
strategy on a specific subset of problems is done by the PARAMILS [10] automated algorithm
configuration framework. PARAMILS is based on iterated local search in parameter configura-
tion space and hence requires the space of ATP strategies to be represented in the PARAMILS
syntax. Possible representations have been previously described for E Prover [30, 11] and in
this work we present Vampire representation (Section 3).

Figure 1 provides an outline of the BliStr strategy invention loop which is common for all
strategy invention methods in the BliStr family (BliStr [30], BliStrTune [11], and EmpireTune
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introduced in this work). The loop consists of four basic steps whose implementation might
differ in a specific method. Because no strategy can be improved more than once on the same
set of problems (see Step 3) and the set of all possible strategies is typically finite, the loop
must eventually terminate.! A more detailed explanation of the four basic steps follows.

Step 1: Generation Evaluation. In the first phase, all strategies (All) are evaluated on all
training problems PROBLEMS. The ATP is run on each problem with time limit Beya yielding
(1) the overall result (solved/unsolved) and (2) a number measuring the length of the proof
search. In EmpireTune the proof search length measured in millions of instructions is newly
used as an effective measure of the proof search performance, whereas the previous versions
of BliStr used the number of given clauses processed by E Prover. This change is needed to
accommodate different proof search approaches that might not be purely saturation-based. This
is particularly important for Vampire’s new AVATAR architecture, which tightly integrates a
superposition theorem prover with a SAT or an SMT solver. In more detail, we now consider
the ATP-independent measure of CPU instructions, using the perf Linux tool.?

For each strategy .S, we compute its set of best-performing problems Ps (C PROBLEMS), that
is, all the problems where S outperforms all other strategies. The set Pg is further restricted
to contain only the problems provable with the proof search length ranging between S, and
Bmax- This is to later avoid improving S on problems which are “too easy” (because there is
not much to improve) and which are “too hard” (to speed up the learning process).

Step 2: Generation Reduction. In the next step, we reduce the strategies invented so far
(All) to contain only the strategies S with at least Spests best-performing problems (that is,
with |Pg| > Bpests). From the remaining strategies, we take only Biops best strategies, where the
strategies are compared by the number of best-performing problems (| Ps|). The first restriction
keeps only the best-performing strategies (that is, the strongest individuals), while the second
reduces their count keeping the size of G within the selected bound (|G| < Biops). This is done
to prevent overfitting on the training problems by having a large number of overspecialized
strategies.

Step 3: Strategy Selection. The next step is to select a strategy to be improved on its
best-performing problems. As a rule, no strategy can be improved on the same problems
more than once within one execution of the BLISTRLOOP function. Because the sets of best-
performing problems vary in time, the same strategy can be improved more than once but
only on different problems. Our selection approach is to prefer improving strategies on diverse
problems. Hence we prefer to improve strategies whose best-performing problems have not been
used for improving so often.? If no strategy can be selected, the algorithm terminates with the
current generation G as the result.

Step 4: Strategy Improvement. The strategy improvement is done by the PARAMILS [10]
automated algorithm configuration framework. Given a strategy S and a set of problems

1 Note however that the set of all possible strategies is usually astronomically large, and relatively fast
termination is due to more complicated factors influenced by the BliStr settings.

2 perf is a performance analysis tool for Linux, used to count the number of CPU instructions. A precise user-
space counting (“perf stat -e instructions:up”) rounded up to millions provides a reliable and deterministic
measure for a particular machine.

3 In more detail, for each problem p, we keep a counter ¢, which is increased by 1/ |Ps, | whenever a strategy
So is improved on p (that is, when p € Pg,). We select the strategy S with (currently) the lowest average c;
over the best-performing problems Pg. In the case of equal values, we prefer the strategy with higher |Pg].
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P (C PROBLEMS), PARAMILS attempts to find an ATP strategy S’ with possibly the best
performance on P. ParamlILS employs an iterated local search (ILS) from the initial strategy
S, occasionally perturbing a strategy to escape from a local optimum. ParamlILS is a generic
framework which is capable of finding well performing configurations for an arbitrary algorithm.
In our case, the algorithm is an ATP with a time evaluation limit Seytoft-

In order to employ ParamlLS, the space of ATP strategies must be described in the
ParamILS syntax, yielding the ParamILS configuration space ©. The configuration space ©
is described by a finite set of parameters where each parameter is assigned a finite domain
of possible values. A configuration 8 € © is then a finite assignment of specific values to all
parameters from space ©. ParamILS additionally allows to specify conditional arguments and
forbidden values (see [10] for details). ParamILS also needs to be provided with a performance
metric which estimates the quality of individual ATP runs. In EmpireTune we use the same
metric as in Step 1, i.e., millions of CPU instructions.

We always launch ParamILS to improve a strategy S on its currently best-performing prob-
lems Ps. Either a single run of ParamILS can be used, as in BliStr [30], or, alternatively,
several ParamILS runs can be combined to improve a strategy in a hierarchical manner, as in
BliStrTune [11]. In both cases, ParamILS is always launched for a specific time limit, which is
provided as the input parameter Simp.

3 Inventing Strategies for Vampire

In order to use an ATP like E or Vampire within the BliStr loop, the space of ATP’s proof search
strategies must be described as a ParamILS configuration space ©, as explained in Section 2.
The configuration space does not necessarily need to cover all possible ATP strategies and, in
practice, it usually covers only a subset. This subset, however, determines strategies that can
possibly be invented by the BliStr loop. Hence this subset should be reasonably large. A subset
of E Prover strategies has been previously described as ParamILS configuration space and used
within the BliStr loop [30, 11]. In this section, we show how to describe a subset of Vampire
strategies, carefully selected by a human expert.

The most recent version of Vampire (version 4.2) provides more than one hundred options
for setting up a particular proof search strategy. Most of the options are either boolean or finite
multi-valued, but many have also integer or even floating point domains. Vampire’s CASC
mode, a portfolio mode of preselected strategies designed to score well on a wide range or prob-
lems, makes active use of around half of these options. For our experiment, we picked a subset
of the 32 most important options. We selected a small representative set of values for those op-
tions which have in principle unbounded domains. Also, we made use of ParamILS’ conditional
arguments and forbidden values to block combinations of options which are incompatible due
to dependencies. This way we obtained a ParamILS configuration space for Vampire Oy .

Let us give a brief overview of the options used for defining Oy, .4

1. There are several options influencing preprocessing of the input problem and related to
normal form transformation [24].

2. A few options define whether and how the Sine aziom selection scheme [9] is used.

3. The next and probably the most important category is related to the saturation algorithm.
Vampire implements the standard Otter and Discount loops, along with the limited re-
source strategy (LRS) [25]. Independently, the InstGen [18] paradigm can be used instead

4 For a full list check our implementation at http://github.com/aidreason/EmpireTune.
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of these. Further options belonging to this category are the age-weight ratio option deter-
mining clause selection, a multi-valued option for controlling literal selection [8], and an
option sp for determining the symbol precedence and thus the term ordering used during
saturation.

4. There are options for enabling and tweaking the AVATAR architecture [31, 23].

5. Finally, there are options for enabling and disabling a set of various inference rules and
redundancy checks, such as extensionality resolution [7], (forward and backward) sub-
sumption and demodulation, and several others.

It should be noted that many option configurations render Vampire incomplete. However, this
is always detected so the prover never reports a wrong result. (Instead, the prover reports
“Unknown” in the case of finite saturation.) Moreover, incomplete strategies have been shown
invaluable for solving many problems which cannot be solved otherwise.

4 Strategies and Term Orderings

4.1 Term Orderings and Their Importance in Proof Search

Term orderings are a well-known device used for restricting and guiding proof search of first-
order automated theorem provers (ATPs). In more detail, a term ordering parametrises the
resolution and the superposition calculi [1, 22] employed by a prover, taking part in determining
which exact inferences should be performed. The two most commonly used classes of orderings
are the Lexicographic Path Ordering (LPO) [15] and the Knuth-Bendix Ordering (KBO) [17].
To get a concrete instance of an ordering from either class one needs to specify a symbol
precedence, a total order on the predicate and function symbols occurring in the given problem.”

It is well known that the choice of the ordering can have a huge impact on the success or
failure of the subsequent proof attempt. For example, giving a high precedence to symbols
introduced during clausification as names of sub-formulas [24], will effectively lead to their im-
mediate elimination during saturation and thus give rise to an exponential clause set. However,
there is no obvious general way for choosing a good ordering in advance and ATPs typically
provide only a few heuristic schemes for the automatic selection of the precedence.’ Note that
this leaves the majority of the n! possibilities of how to choose a precedence (for a problem
with a signature of size n) inaccessible to a typical theorem proving strategy. The alternative
of allowing to explicitly specify a full precedence out of the n! possibilities is, nevertheless, only
rarely used, because each problem comes, in principle, with its own signature which means that
precedences are problem-specific and the ensuing strategy cannot be easily transferred.

In this section, we propose and evaluate a new approach for exploring the space of possible
term orderings. We extended Vampire to allow specifying linear combinations of the previously
available heuristic schemes (see Section 4.3)). Moreover, we allow symbols to be assigned user-
specified weights, by which the precedence is in the end sorted. We evaluate the new approach
in a simplified setting in which all problems share the same signature. This allows us to ask the
question whether orderings can be found which work well for a whole set of related problems
such as those describing related conjectures within the context of a fixed theory.

5 To fully determine a KBO, one also needs to specify an admissible weight function.
6 Cf. the option sp mentioned before.
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4.2 General Framework for Ordering Invention

We have proposed and developed the following general modification of the BliStr loop for
inventing useful orderings in EmpireTune.

In Step 4 of the BliStrLoop (Section 2) a strategy .S is improved on its best-performing
problems Ps. Our previous experience with designing and parameterising complex E strate-
gies [12, 11] has shown that running a single ParamILS instance to improve S becomes inefficient
when the set of possible strategies is too large. Since the additional parameter space needed
for term-ordering invention is in general going to be of nontrivial size, we employ a hierarchical
invention similar to BliStrTune [11]. The improvement is done in two phases:

1. In the first phase, ParamILS is launched to improve S on Pg, but it is not allowed to
change term ordering specified by S. Only the elements of S which are not specific to
term ordering can be updated. The result of the first phase is a strategy S’ which specifies
the same term ordering as S, but in which other parts may differ.

2. In the second phase, ParamlILS is launched to improve S’ on Pg, but this time only term
ordering settings might be adjusted. The result of the second phase is a strategy S’
which shares with S’ the details unrelated to term ordering, but the term ordering setting
might differ. Strategy S” is returned as the overall result of the strategy improvement
step (Step 4 of the BliStrLoop).

4.3 Vampire Term Orderings and Their Invention

The term ordering implemented in Vampire is the standard Knuth-Bendix Ordering, optionally
extended to the transfinite case using predicate levels [19]. Version 4.2 fixes variable and symbol
weight to 1 and offers an option (sp) for computing symbol precedence by one of the following
schemes:

occurrence By default, precedence orders symbols by the order of their occurrence in the
input problem.

arity Symbols are ordered by their arity.
frequency Symbols are ordered by the number of occurrences in the input.”

There are also “reverse” versions for the latter two values, meaning that both ascending and
descending order is available.

To allow for a more refined tuning of the precedence, we replace the multi-valued option
sp by three integer options spoc, spac, spfc to work as coefficients for mixing contributions
from “occurrence”, “arity” and “frequency”, respectively. In this new setting, the precedence is
constructed as follows. First, Vampire computes the precedences Poccyrrence a1d Preguency that
could have been used in the original setting. Notice that these can be understood as mappings,
assigning each symbol s from the signature 3 values from the range 0,...,n — 1 where n = |X|
is the size of the signature. Then, each symbol s € X is assigned a final value

val(s) = spoc - Poccurrence () + spac - arity(s) + spfc - Pprequency(S), (1)

where arity(s) is the arity of s. The final precedence is then obtained by sorting the symbols of
Y by the final value val(s). This gives us the expressive power to define the originally available

7 This scheme has been a recent valuable addition adopted from E Prover [27].
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precedences,® but also many others obtained by linear combination of the contribution values.
Note that the contributions of occurrence and frequency are “normalised” by using the values
from the respective precedences, rather than the actual values. We keep arity intact, as its
values are already small non-negative integers.

To allow for explicitly setting an arbitrary precedence, we add one more numeric option
coefficient spuc, which stands for “user”. Additionally, there is an option for explicitly assigning
user values uv(s) to every symbol.” The sum (1) is extended with an additional term taking into
account the user coefficient and user values. We are aware that the approach with symbol values
and sub-sequent sorting as a means for obtaining a precedence actually gives us more degrees
of freedom than would be strictly needed (specifically, there is n™ meaningful assignments,
but only n! precedences). We believe, however, that this gives rise to a setup better suited
for parameter tuning. In particular, we can expect local changes in a value to have a local
influence on the final precedence. This is in contrast with explicitly navigating the space of all
permutations, which seems to lack this natural notion of “continuity”.

5 Experimental Evaluation of EmpireTune

We evaluate EmpireTune'® on the CASC 2016 AIM benchmark [29]. AIM is a long-term large-
scale project [16] in applied automated deduction concerned with proving open algebraic (loop
theory) conjectures by Kinyon and Veroff. In the CASC 2016 competition, 1020 problems (and
their Prover9 proofs) were provided for the training of ATPs, while additional 200 problems
were used for the evaluation. The AIM problems have a fixed signature with only 10 symbols,
which is useful for the evaluation of our term ordering invention methods.

We first (Section 5.2) evaluate EmpireTune on AIM both for E and Vampire without the
invention of term orderings introduced in Section 4. Then (Section 5.3) we evaluate the addi-
tional impact of invention of new term orderings in Vampire. While EmpireTune can be used
to invent strategies for E and Vampire for an arbitrary benchmark set, our method for term
ordering invention (Section 4) has so far been implemented only for Vampire and only for the
fixed AIM problems signature.

5.1 Common Evaluation Setup

The evaluations in both sections share a common setup. We take 820 problems out of the 1020
CASC training problems and we use them as the training problems for EmpireTune (the set
PROBLEMS from Section 2). The remaining 200 CASC training problems are kept for a later
independent cross-validation of the invented strategies. As the initial strategies (set INITS), we
take 10 well-performing strategies extracted from the CASC mode in the case of Vampire, and
from the auto-schedule mode in the case of E. EmpireTune must be currently run separately
for E and separately for Vampire. In the E Prover mode, EmpireTune currently works similarly
to BliStrTune [11], however using our new evaluation criteria (see Section 2). For each prover
mode (E or Vampire) we run several EmpireTune instances with various parameter settings
(parameters ;). The selection of the EmpireTune parameters is briefly discussed in Section 6.
Although an EmpireTune run can be terminated after a specific time (for example, after one

8 For instance, the reversed frequency precedence is obtained by setting spoc = 0, spac = 0, and spfc = —1.

9 Symbols introduced during preprocessing, namely the Skolem functions and sub-formula names, have their
own meta-identifier and can thus be given one (shared) value each.

10 Our implementation is available at http://github.com/ai4reason/EmpireTune. The strategies developed
in the experiments described here are at http://forsyte.at/static/people/suda/gcai-protos.tar.gz.
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ATP H runs ‘ tune time | invented ‘ greedy ‘ solved ‘ V+ ‘ E+
Vampire 4.2 (EmpireTune)

- - - 45 | +0% | +45%
- - - 31| -31% +0%

Vampire 4.2 (CASC mode)

6 | 12.8 days 1597 7 52 | +16% +68%
E 2.0 (auto-schedule) -

E 2.0 (EmpireTune) 4 | 15.4 days 1010 15 74 | +64% | +139%
1

Table 1: Evaluation of the best EmpireTune strategies on 200 AIM testing problems with 300
seconds overall time limit per problem.

day), in these experiments we keep all the runs running until they terminate. As the final set of
strategies we do not use only the strategies in the final generation (the returned G) but collect
all the strategies invented during all the EmpireTune runs. As this can give us hundreds of
strategies, we use for final strategy selection cross-validation on the 200 independent problems
which were not used for training but were kept aside previously.

The purpose of cross-validation is to limit the number of invented strategies. We evaluate
all the invented strategies on all 200 cross-validation problems with 10 seconds time limit. From
the results, we greedily compute a subset of strategies which is enough to cover all the solved
problems as follows. We start with the set P of 200 cross-validation problems. We select the
strategy which solves the most problems from P and we remove them from P. This process is
iterated as long as there is at least one strategy solving some problems from P. The process of
greedy coverage is described in more details in our previous work [11] and typically leaves us
with dozens of strategies (depending on the size of set PROBLEMS and other factors).

Finally, we evaluate the strategies from the greedy cover on the 200 CASC testing problems
with an overall 300 seconds time limit per problem. This overall time limit is evenly divided
between the strategies from the greedy coverage. This allows us to directly compare the number
of solved problems with the automated modes of E and Vampire run also for 300 seconds.

5.2 Evaluation of EmpireTune Strategies

Results of the evaluation of strategies invented by EmpireTune for E and Vampire are presented
in Table 1. The best invented E and Vampire strategies are shown in Appendix A. The column
runs shows the number of different EmpireTune runs (where applicable), the column tune time
shows the sum of runtimes of all EmpireTune runs in days, the column invented presents the
total number of strategies invented by all the runs, and the column greedy shows the number of
strategies in the greedy coverage described above. Finally, the column solved shows the number
of AIM test problems solved, and the column V+ (or the column E+ respectively) shows the
gain in percents on Vampire’s CASC mode (or on E’s auto-schedule mode respectively). The
table contains four rows for the four ATP systems, that is, for (1) E with strategies invented by
EmpireTune, (2) Vampire with strategies invented by EmpireTune. (3) Vampire’s CASC mode,
and (4) E’s auto-schedule mode. All ATPs were given 300 seconds time limit per problem and
we are using Vampire version 4.2 and E version 2.0.

We can see that both EmpireTune versions outperform their respective built-in automated
modes. From this we can conclude that both E and Vampire largely benefit from invention of
targeted strategies on the AIM problems. E Prover, however, produces better results and thus
seems to be more suitable for strategy invention. This should be most likely attributed to the
size of the strategy space, because E provides a richer language to parametrize strategies. Fur-
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thermore, in our current implementation, an average size of the ParamILS configuration space
for E is around 10°° while for Vampire it is only 10'6. This is partly due to our previous atten-
tion to E and partly because of the richness of E’s native configuration space. The ParamILS
configuration space size is reflected in longer average run times of EmpireTune runs (3.9 days for
E while only 19.2 hours for Vampire). It should be noted that different EmpireTune runs can be
parallelized and thus the results can be produced faster than indicated in the tune time column.
The union of the two EmpireTune runs solves 77 problems altogether and these 77 problems
cover all the problems solved by the automated modes of both E and Vampire. The best of
the EmpireTune runs for Vampire was able to solve 375 training problems while the best run
for E solved 464 training problems. It seems that EmpireTune produces better strategies for E
than for Vampire. This might be related to the configuration space size mentioned above. The
Vampire configuration space might be extended in the future version of EmpireTune, however,
E simply provides more options for user configuration than Vampire.

The remarkable improvement of E’s performance should be considered specific to the se-
lected AIM benchmark problem set. Our previous results on MPTP benchmarks [11] also
outperformed Vampire’s CASC mode, but not so dramatically (+5% improvement). Both E’s
and Vampire’s automated modes are being constantly developed by their maintainers and tuned
for different problem sets. It might well be the case that these automated modes were not yet
specialized for AIM (or similar) problems. This, however, increases the importance of Empire-
Tune which gives the user an opportunity to develop their own targeted strategies, without
reliance on external sources.

It is interesting to note that the seven Vampire strategies selected by EmpireTune for the
AIM problems do not make use of the whole repertoire of available option values. This can
be explained by the special form of the AIM benchmarks. It seems plausible that a specific
benchmark set requires specific techniques to be solved efficiently. For example, because the
AIM problems are unit equality problem, splittable clauses never occur during derivation and
thus it does not make sense to employ splitting. Indeed, none of the seven strategies enable
the AVATAR mode. Furthermore, five of these strategies use the Otter saturation algorithm
(used also by Prover9) which is not deemed to be superior in general. The remaining two use
LRS, thus Discount is never used. Also, the InstGen, which is known not to be well suited for
equational problems is not used. Besides, all the seven strategies agree on the following values for
the following options: ”backward demodulation” (preordered), ”backward subsumption” (off),
”backward subsumption resolution” (off), ”forward subsumption” (on), ”forward subsumption
resolution” (off). This fact, however, does not seem to have a simple explanation.

5.3 Experiments with Term Orderings

The impact of the tuning of term orderings (described in Section 4) is presented in Table 2.
The table has the same columns as Table 1 described in the previous section. We compare
EmpireTune using term ordering tuning against EmpireTune used without term ordering tuning
(that is, with the runs from Section 5.2) and against Vampire’s CASC mode. As mentioned
above, the tuning of term orderings is currently implemented only for Vampire and only for the
fixed signature of AIM problems.

We can see that the tuning of term orderings has significantly increased an average Em-
pireTune runtime from 19.2 hours to 2.3 days. This is because of the additional term ordering
tuning phase. Moreover, we can see that the version with the term ordering tuning invented
more strategies but fewer strategies were actually needed for the greedy coverage. From the fact
that a smaller number of strategies solved more problems, we can conclude that EmpireTune
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ATP H TUNS ‘ tune time | invented ‘ greedy ‘ solved ‘ V+

EmpireTune (with ordering tuning) 7 | 16.3 days 1651 6 57 | +27%
EmpireTune (no ordering tuning) 16 | 12.8 days 1597 7 52 | +16%
Vampire 4.2 (CASC mode) - - - - 45 | +0%

Table 2: Evaluation of the impact of EmpireTune term ordering tuning for Vampire.

with term ordering tuning produced more universal, and hence better, strategies. Finally, the
version with term ordering tuning provided an additional valuable improvement of 11% over
the Vampire’s CASC mode. This means that the invention of term orderings is a promising
area of future research. The best of the EmpireTune runs for Vampire with ordering tuning was
able to solve 414 training problems, compared to 375 problems solved without ordering tuning.

6 Tuning EmpireTune Configuration

This section briefly describes the EmpireTune configuration parameters together with a prac-
tical guidelines on their initial setting. The parameters can be split into the following three
groups. (1) Parameters influencing the selection of best-performing problems (SBmin, Smax)- (2)
Parameters influencing generation reduction (Biops Bbests). (3) Time limits for strategy evalu-
ation and improvement (Beval, Scutoff; Simp)- 10 practice, we usually run several testing runs,
fixing all but one parameter, to determine an optimal value for each parameter.

Parameters Bnin and Bmax are used to limit the set Pg of best-performing problems of
strategy S only to the problems which are neither too easy nor too hard. The number of
instructions executed to solve a problem must be bounded by these parameters. The initial
setting of Fmin and PBnax can be established from the evaluation of initial strategies on the
training problems. We usually set the parameter span to cover 80% of problems solved by the
initial strategies.

Parameters Biops and Bpests influence the size of the current generation G and the size of
individuals (that is, strategies). The size of G is required to be limited by Biops (|G| < Brops)
while only strategies S which are best-performing on at least Spests problems (|Ps| > Bpests)
are allowed in G. Increasing Biops Or decreasing Spests increases runtime because there are more
strategies to improve. However, longer runtime does not necessarily mean better results. It
seems that there is an optimal ratio between the size of the generation and the size of individuals.
We usually fix one parameter and run several evaluation EmpireTune runs with different values
for the second parameter to find out the best combination.

Parameters Boval and Seutom set time limits for running ATPs in the evaluation and strategy
improvement phase respectively. We set Seval to a higher value than Seuiof, usually Beval = 5
and Beutoff = 1 seconds. Parameter S, sets the time limit for running a single ParamILS run
in the strategy improvement phase. In BliStr and BliStrTune, there is a fixed time limit for
each ParamILS run, which is independent on the size of Pg (we use either 100 or 300 seconds).
In practice, the size of Ps ranges from dozens to hundreds, hence it would make sense to adjust
the time limit for ParamILS accordingly to the size of Pg.

Recently, we have developed an automated selection mode for parameter Sip,p. In this mode,
several ParamILS instances are launched in parallel (at least two instances are required). During
ParamILS runs, each instance keeps reporting its progress in the form of a triple (6, @, n), where
0 is the best configuration found so far, ) is the quality of 6§ where @) is based on evaluation
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of # on n problems. The number n only increases in time as new results are acquired. In
our automated mode for Bimp, we keep checking this progress reports, and wait for the first
ParamlILS instance to report a configuration 6, evaluated on all Ps problems (that is, n = | Ps|).
Then we keep only this instance and restart all the other instances but from initial state 6.
This process is repeated as long as the best quality @ keeps improving. In our implementation,
this experimental mode is turned on by setting Simp = 0.

7 Conclusions and Future Work

In this work we have started to automatically invent targeted strategies for Vampire, and to
automatically invent new Vampire term orderings for classes of problems. We have focused on
the AIM benchmark coming from loop theory, where the signature is small and allows us to
explore various methods for term ordering invention. The overall result is a very significant
improvement of the performance of E and Vampire on the AIM problems, making them much
more useful for the AIM project.

The first results show that automated invention of term orderings indeed leads to stronger
strategies that better generalize to unknown testing problems. We have also shown that the
larger parameter space available for E prover makes a significant difference in comparison to
Vampire, where the training phase converges much faster, but in general with worse strategies.
The general enhancements needed for Vampire now allow any ATP system to be included in
the EmpireTune, regardless of its particular ATP proof search methods.

Future work includes further extension of the term ordering invention to large signatures,
arising e.g. in the problems coming from the ITP libraries. Another important direction par-
ticularly useful for the AIM project would be addition of strategy invention for Prover9 and its
powerful search exploration methods such as proof sketches and proof hints.
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A Best obtained strategies
A.1 E Prover

--definitional-cnf=24 --split-aggressive --split-clauses=7 --forward-context-sr
--destructive-er-aggressive --destructive-er --prefer-initial-clauses -tKB06

-Garity -F1 --delete-bad-1imit=150000000 -WSelectMaxLComplexAvoidPosPred

-H’ (1*ConjectureSymbolWeight (PreferUnitGroundGoals, 300,400,400,3,-1,4,3,0.2),
1*xStaggeredWeight (SimulateS0S,1) ,21*Refinedweight (SimulateS0S,200,-1,9999.9,1.5,0.2),
8xConjectureSymbolWeight (Defers0s,10,18,10,200,2,3,0.1,0.1))°

A.2 Vampire without ordering

-av off -awr 2 -bce on -bd preordered -bs off -bsr off -cond off -drc off
-erd input_only -fd all -fde unused -fs on -fsr off -gs off -gsp off -ins 8
-lcm reverse -nm 64 -s -4 -sa otter -sas minisat -sd 0 -sgt 4 -sos off
-sp reverse_frequency -ss axioms -st 2 -updr off -urr off

A.3 Vampire with ordering

-av off -bce on -bd preordered -drc off -fd preordered -fde unused

-fp ’"identity O 6#multiply 2 O9#associator 3 bS#commutator 2 6#left_division 2 1#
right_division 2 7#left_inner_mapping 3 8#right_inner_mapping 3 8#
middle_inner_mapping 2 4# sKx 0 10"’

-fsr off -nm 26 -s 1004 -sa otter -sas z3 -spoc O -spuc 1 -updr off -urr on
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