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Abstract 

Offsite construction (OSC) requires an integrated design and delivery system. 

Reusing prior OSC knowledge is paramount to the success of new OSC projects. 

However, a gap remains in managing and reusing this knowledge across the broader 

industry. The challenge lies in the fragmented nature of project-based organisations with 

isolated knowledge systems, which often lack integration and advanced capabilities for 

knowledge-based collaboration. This paper proposes a novel framework that leverages 

cutting-edge knowledge-based methods and artificial intelligence (AI) technologies to 

create a container-based knowledge system (CBKS) that can enhance knowledge capture 

and reuse towards collaborative OSC. Specifically, the semantic web stack is adopted to 

construct multimodal knowledge containers for both human users and AI agents. In 

addition, GPT-4o, a large language model (LLM), is embedded into the knowledge 

system for better knowledge querying, matching and retrieving. By using this framework, 

constructed modular knowledge units can integrate product, process and organisation 

factors to address specific OSC problems. To evaluate the technical feasibility of the 

proposed framework, a prototype is developed and illustrated through a modular 

connection design. This illustrative case study demonstrates how knowledge is captured 

for product representation under manufacturing and assembly constraints, enabling its 

reuse in different projects. Moreover, the usefulness of GPT-4o for enhancing this 

process is also tested. 
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1 Introduction 

Offsite Construction (OSC) refers to the manufacturing of building components away from the site, 

followed by their transportation to and assembly at the final location. In recent years, OSC has gained 

significant attention as a solution to address inefficiencies in productivity, affordability, and 

sustainability within the traditional construction industry (Wuni & Shen, 2019). OSC offers numerous 

benefits, including reduced construction time, improved quality control, and minimised on-site 

disruptions (Razkenari et al., 2020). The adoption of OSC relies on an integrated design and delivery 

system, where clients, designers, manufacturers and contractors need to collaboratively work together 

at the early stage of a project to reach the goals (Hosseini et al., 2018). Therefore, the reuse of prior 

knowledge is crucial for the success of new projects. However, there remains a gap in effectively 

managing and reusing OSC knowledge across the broader industry. The challenge lies in the fragmented 

nature of project-based organisations with isolated knowledge systems, which often lack integration 

and advanced capabilities for knowledge-based collaboration (Z. Zhang et al., 2024). 

To address these challenges, effective Knowledge Management (KM) is essential for OSC. 

Managing OSC knowledge can facilitate the sharing of best practices, enhance process efficiency, and 

promote continuous improvement across projects. However, previous research on KM in OSC does not 

fully integrate technology, process, and people-related factors that are critical to successful knowledge 

capture and reuse (Z. Zhang et al., 2024). It is argued that this gap can be bridged by developing an 

integrated knowledge system for combining technological tools, process-oriented structures, and the 

necessary human factors so that OSC knowledge can be effectively captured, shared and reused. For 

this purpose, a novel approach leveraging the power of semantic web technology and artificial 

intelligence (AI) is proposed. 

Firstly, involving the semantic web technology increases the level of integration and flexibility of 

KM in a wide range of OSC project lifecycles. The semantic web has increasingly attracted interest in 

the construction industry (Pauwels et al., 2017). It includes technologies such as Resource Description 

Framework (RDF), Web Ontology Language (OWL), and SPARQL. RDF provides a framework for 

representing information in a graph format, enabling data interoperability. OWL is used for defining 

complex relationships between concepts and facilitating reasoning over the knowledge base. SPARQL 

is a query language used to retrieve and manipulate data stored in RDF format, allowing efficient 

knowledge querying and integration. More importantly, knowledge in the real-world construction 

project is usually used in multimodal formats, such as texts, 2D drawings, 3D-models, etc., with highly 

dynamic requirements in different scenarios (Bilal et al., 2016), whereas current knowledge approaches 

for OSC mainly focus on specific data format (Z. Zhang et al., 2024). To flexibly integrate the 

multimodal knowledge for specific usage, a container-based approach can be adopted according to the 

international standard series ISO 21597 to link various data and documents together using ontologies 

and links datasets (ISO, 2020a; 2020b). Though semantic web technology offers significant advantages 

for representing and linking knowledge in a structured manner, the application it in KM for OSC has 

not been widely adopted in the OSC industry, leaving a gap in understanding its full potential in this 

domain. The reasons can include high cost of ontology development, the complexity of SPARQL 

queries, and the need to develop rule sets. 

Additionally, large language model (LLM) is embedded in this framework to promote the 

management of OSC knowledge. The construction industry has witnessed the emergence of AI 

technologies, especially LLM, which show promising potential for enhancing KM in OSC. LLMs are 

AI models trained on vast amounts of text data, capable of understanding, generating, and translating 

human language. They leverage deep learning to comprehend complex patterns and semantics, making 

them powerful tools for a wide range of natural language tasks, such as automated construction 

reporting (Pu et al., 2024). However, challenges like ensuring accuracy, improving interpretability and 

maintaining context relevance in the construction domain persist (Abioye et al., 2021). This is where 

the synergy between LLMs and semantic web technology becomes crucial (Pan et al., 2024). For 
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example, ontologies, which can formally represent domain-specific knowledge, offer a solution to 

enhance the performance of LLMs, ensuring accurate and context-sensitive knowledge retrieval. 

Furthermore, the semantic web can serve as a foundation for creating interconnected knowledge 

containers, enabling LLMs to deliver more accurate and informed responses. These knowledge 

containers enable LLMs to understand relationships between different OSC elements, such as 

components, processes, and stakeholders. By leveraging these interconnected datasets, LLMs can 

generate more precise and insightful responses to user queries, supporting decision-making processes 

in OSC (Wu et al., 2023). In this way, the knowledge hidden in previous OSC cases can be derived into 

knowledge containers for effective reuse in new projects enhanced by LLMs. 

To explore the mechanism and feasibility of this approach, this study developed a theoretical 

framework of a container-based knowledge system and developed a system prototype that combines 

semantic web technology and LLM with effective human-computer interaction to facilitate knowledge 

capture, reuse, and management throughout the OSC lifecycle. The feasibility of this approach is 

illustrated through a case study, showcasing its potential to improve KM processes in OSC projects. In 

the next section, we introduce the method adopted in this study and outline the research questions. Next, 

this paper details the design and development of the proposed solution. After that, the system test is 

illustrated through a case study on modular building connections in Section 3. Finally, the discussion 

and conclusion sections evaluate and summarize the research findings. 

2  Design and Development of CBKS 

2.1 Research Method and Questions 

A design science research methodology has been applied for developing and evaluating the 

prototype of proposed framework (Peffers et al., 2007). Firstly, the research problems and motivation 

were identified through literature review and our previous study (Z. Zhang et al., 2024). It was found 

that the study of a container-based knowledge system (CBKS) has been ignored. In addition, no research 

has explored the collaboration between CBKS and LLM, particularly how LLM can improve KM for 

OSC. To narrow down the scope, this study mainly focuses on knowledge capture and reuse enhanced 

by information containers and LLM. The following research questions (RQs) are investigated: 

RQ1: How can a container-based knowledge system (CBKS) enhance knowledge capture and reuse 

for OSC? 

RQ2: What are the potential ways of the proposed CBKS collaborating with LLM to facilitate OSC 

knowledge querying, manipulating and retrieving? 

Therefore, the objectives were defined for developing the corresponding solution, namely, LLM-

augmented CBKS. Then, this study conducted an iterative design and development process followed 

by a case study to illustrate and test the feasibility of the proposed CBKS. Finally, the test outcomes 

were discussed for directing future research. 

2.2 The Theoretical Framework 

The theoretical framework of CBKS uses a problem-solving-oriented method to make sure each 

container is a best practice guide for achieving its value (Barak & Goffer, 2002). The OSC knowledge 

in this framework is modelled at two layers, namely, the universal layer and the project-specific layer. 

The rationality of this method comes from the modular nature of OSC as the knowledge that can be 

modularised and standardised should be stored at a universal layer for maximum reusability on the top, 

whereas the knowledge that can only be used in the specific project should be treated case by case at 

the bottom. There are more opportunities for leveraging the value of universal knowledge in OSC 

projects. Moreover, knowledge modelling based on the semantic web requires high expertise (Davies 

Knowledge Container for OSC Zhang et al.

531



et al., 2006). Therefore, KM professionals are necessary to maintain knowledge from the backend so 

that the CBKS can provide knowledge services to the frontend users. Meanwhile, embedded LLM is 

expected to promote this system by collaborating with the constructed knowledge container (Pan et al., 

2024). 

As shown in Figure 1, the knowledge container is configured by knowledge managers through a set 

of Terminology Box (T-Box), Assertion Box (A-box), and Rule Box (R-box). T-Box stands for the 

taxonomy of the concepts and their attributes and relations in the scope of the knowledge container. 

Based on the defined T-Box, instance facts can be asserted to form A-Box manually or through the 

execution of SPARQL code according to the specific cases and requirements. Then, classes and 

assertion facts can work with predefined rules in the R-Box to infer new facts, returning the expected 

outcomes to a knowledge user (L. Zhang & Lobov, 2024). The knowledge user can also interact with 

the CBKS through a user interface to assert case-specific facts that will be processed by the reasoning 

engines (R-Box) for knowledge reuse (Pérez et al., 2009). In addition, there is an opportunity to 

facilitate the transformation of required queries between natural language and SPARQL code by using 

GPT-4o as it is one of the most powerful LLMs developed by OpenAI (2024). This can potentially 

improve knowledge sharing and reuse because most of the industrial professionals (knowledge users) 

may not be familiar with semantic web technologies. 

 

Figure 1: The theoretical framework of LLM-augmented CBKS 

2.3 Semantic Modelling of Data and Rules 

The core of the proposed CBKS is the semantic modelling of data and rules. The processes of 

building the knowledge base (KB) include the construction of the OSC knowledge model, container 

model, and rules in T-Box, A-Box, and R-Box. 

There are three ontology resources in the T-Box: OSC knowledge ontology, container ontology and 

link set ontology. The OSC knowledge ontology aims to present domain knowledge for solving specific 

problems, such as OSC product design, quantity take-off, project scheduling, etc. The role of container 

ontology and link set ontology is to govern the actual data saved as document format and link these 

documents and their internal elements together (Hagedorn, Liu, et al., 2023). This is designed to present 

case-based experiential knowledge generated in previous OSC projects. 

The A-Box contains instantiated data models presenting templates that can be used universally in 

different scenarios and the cases that have occurred in previous projects. After defining the classes, 

attributes and relations in T-Box, knowledge managers can start the construction of A-Box. At this 
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stage, both the universal assertions in templates and case-specific facts can be input manually for 

debugging purposes. After the validation of semantic rules, some case-specific assertions can be derived 

by the reasoning engine embedding in the proposed CBKS. In addition, external documents can also be 

linked to the knowledge model through the link dataset asserted in the A-Box for providing case-

specific references, which has been proved in many other studies (Hagedorn, Liu, et al., 2023; Höltgen 

et al., 2021; Liu et al., 2023). 

In the R-Box, semantic rules are formed to provide a reasoning role that can conduct compliance 

checks and generate new facts according to assertions in the A-Box. Shap Constraint Language 

(SHACL) and Semantic Web Rule Language (SWRL) are two representative types of semantic rules. 

SHACL defines rules in the form of information availability requirements, while SWRL defines rules 

in the form of an implication between a set of antecedents and consequents (Nuyts et al., 2024). They 

stand for two different knowledge representation patterns, which will be described further in Section 

2.4. 

2.4 Mechanism of Knowledge Sharing and Reuse 

For knowledge sharing and reuse in OSC projects, there are opportunities to utilise reusable 

ontologies defined globally, for example, the standardised product representation defined in the 

international or national standards (L. Zhang & Lobov, 2024). In this approach, the container ontology 

and link set ontology resources are directly reused from the international standard ISO 21597 about 

information container for linked document delivery (ISO, 2020a; 2020b). For a specific knowledge 

domain, knowledge managers can develop customised local ontologies and combine them with global 

ones to form the basis of T-Box. When facing a specific problem, knowledge users can assess the 

reusability of the components in global and local ontologies and directly create an instance of them to 

reuse predefined concepts, attributes and relations. 

These reusable knowledge contents can be universally applied to different projects sharing the same 

scope. However, it is inevitable for projects to have their characters and unique environments, which 

means that project-specific data and rules must be taken into consideration. Hence, the proposed CBKS 

applies this kind of knowledge directly to the instances in A-Box rather than the classes in T-Box. In 

this way, universal knowledge and project-based knowledge can be modelled and stored in the template 

library and case library of the specially designed KB respectively. 

Theoretically, this CBKS framework can be driven by various reasoning engines with corresponding 

rule languages. These rule languages generally fall into two categories of knowledge-representing 

mechanisms: Closed-World Assumption (CWA) and Open-World Assumption (OWA). Under a CWA, 

all entities and relationships in the KB cannot be changed but discovered (Reiter, 1981), whereas unseen 

entities, relationships and their attributes can be predicted and reasoned in an OWA (Shi & Weninger, 

2018). As mentioned in Section 3.2, there are two representative rule languages in the semantic web 

world: SHACL and SWRL, in which SHACL naturally operates under a CWA while SWRL originally 

operates under an OWA. It is noticed that, however, the current research on SWRL in the construction 

field mainly applies it under the CWA patterns. In the present work, it is argued that utilising the OWA 

nature of SWRL can facilitate knowledge sharing and reuse in the OSC processes as universal 

knowledge and case-specific knowledge are used in hybrid in the real-world OSC projects. 

2.5 User Interactions with CBKS Using LLM 

There are two key roles: knowledge managers and knowledge users who are responsible for building 

and using this proposed CBKS. The overview of the general work processes and data flows for applying 

CBKS is shown in Figure 2 in the form of Business Process Model and Notation (BPMN) (Chinosi & 

Trombetta, 2012). The diagram contains three pools representing the key players responsible for 

knowledge use and management to interact with CBKS. 
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Figure 2: BPMN diagram of the application of CBKS 

The CBKS enables knowledge users to search for knowledge and manipulate case-specific facts 

using SPARQL code. However, most professionals from the construction industry may not be familiar 

with writing the SPARQL query and update (Pérez et al., 2009). To decrease this barrier, the proposed 

CBKS leverages the power of LLM to conduct a mutual transformation of the professional content 

between natural language and SPARQL code. By providing proper prompts and the context of 

knowledge models, effective knowledge query and manipulation and high-quality responses can be 

expected from the LLM-augmented CBKS. Then, the knowledge users can select useful knowledge 

responses to directly use in their problem-solving process or make any necessary modifications. After 

that, new lessons may be learned and shared with partners and retained in the KB. 

Universally applicable and case-based knowledge needs to be managed and integrated into the KB. 

In this process, knowledge managers first capture knowledge from a global knowledge base and a 

traditional database in CBKS. Then, the knowledge content will be analysed and formalised to construct 

knowledge units in the form of ontologies, assertions and rules. Subsequently, these knowledge units 

are uploaded to the CBKS for utilisation. 

3 Illustration of the CBKS Framework 

This section illustrates the development and test of the core functions provided by CBKS through a 

case study, including semantic-based knowledge inference and LLM-embedded knowledge 

manipulation and query. On the one hand, how OSC knowledge is modelled, stored, and inferred with 

restrictions of manufacturing and assembly to drive information delivery in project documents is 
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described in detail (RQ1). On the other hand, a series of tests are conducted to explore the potential 

ways of, and prove the feasibility of, embedding LLM into the proposed CBKS (RQ2). 

3.1 Semantic Web-based Knowledge Inference 

A design case of modular building connection is adopted for study because the connection is more 

likely to be universally standardised but still affected by case-based factors in OSC projects. Figure 3 

demonstrates the mechanism of CBKS performing knowledge representation and reasoning of the 

selected modular building connection design (Chen et al., 2017). This case consists of four main 

sections including a set of stay bolts, cover plates, intermediate plates, and a plug-in device, which are 

assembled with modular space modules. 

 

Figure 3: Case study for the CBKS 

The semantic definition of the modular connection is achieved through classes and relations in T-

Box, and its configuration is realised by asserting corresponding instances in A-Box. The first step, for 

example, is defining classes “Bolt”, “Plate”, “PluginDevice”, and relations “isAssembledWith” and 

“isClosedTo”. Then their instances are modelled in an object-oriented manner, presenting the actual 

solution of this modular connection. These instances can directly inherit the attributes defined in T-Box 

that are universally applicable for different projects, while the attributes depending on the actual project 

circumstances are derived from running of the predefined rules. 

By way of illustration, the tube of the plug-in device needs to be inserted into the steel columns of 

related module frameworks for building assembly. The width and thickness of the modular steel 

columns are determined case by case as there are many uncontrollable effects from different projects. 

Consequently, external documents and their internal elements can be linked to the related instances in 

A-Box through identifiers, such as Universal Resource Identifier (URI) and Globally Unique Identifier 

(GUID), in which the inferred outcomes can drive the generation and adaptation of the business objects 

in external documents like a plug-in device in BIM model. It should be noticed that this deep link 
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mechanism has been proved in (Hagedorn, Pauwels, et al., 2023), whereas the generation and adaptation 

process still need to be explored in the future. 

This paper only focuses on the test of knowledge inferring part as it is the semantic foundation of 

up-layer applications such as generative OSC product design. For validating this scenario, Protégé, an 

open-source ontology editor, is adopted to implement the test. As shown in Figure 4, when the classes 

of the test connection case are defined and enough facts have been asserted, the predefined rule can 

derive implicit facts from these universal restrictions and case-based assertions. 

 

Figure 4: Knowledge reasoning of the CBKS 

In this case, the tube width of the selected plug-in device is affected by the width and thickness of 

the modular columns directly assembled with it. The sizes of modular columns will inevitably change 

case by case in different projects. Under this CBKS framework with OWA, knowledge can be easily 

shared and reused by users asserting case-based facts from new conditions. However, for traditional 

industry professionals who are not familiar with semantic web technologies, it is hard to interact with 

this new knowledge base. Therefore, this study attempted to embed LLM to facilitate knowledge 

manipulation and query by transferring natural language to SPARQL code. 

3.2 LLM-embedded Knowledge Manipulation and Query 

This section demonstrates the potential opportunity to embed LLM for easier knowledge 

manipulation and query using GPT-4o. For knowledge manipulation, a prompt was formed as a 

template to insert a new instance for class “SpaceModuleColumn” named 

“spaceModduleColumn_case2” and adapt its “width” and “thickness” with two new values. Figure 5 

shows one of the test results. It can be noticed that GPT-4o can provide acceptable responses followed 

by a set of interpretations as the contextual information of the given ontology is provided in the template 

prompts. 
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Figure 5: LLM for easier knowledge manipulation and query using GPT-4o 

For knowledge query, the same method can also be used to generate the SPARQL code to retrieve 

target knowledge. However, for traditional industry users, it may still be inconvenient to use because 

the successful generation of SPARQL code needs a well-formed template, which leads to lower 

flexibility. Therefore, the LLM was tested further to directly parse and understand the knowledge 

content without using SPARQL. Firstly, the pre-developed knowledge model was fed into the 

conversation with GPT-4o. Then a task was assigned to GPT-4o to parse the given knowledge model 

stored in a .rdf-format file with RDF/XML syntax and let it list all classes, object properties, instances 

and restrictions in the file. As a result, the LLM successfully returned all ontology axioms, consistent 

with those in the original knowledge model. An example is shown in Figure 6. It was noticed that GPT-

4o implemented these tasks through the path of generating visible Python code to treat and process the 

given document rather than only showing the results, which increased the AI interpretability in this 

process. Nevertheless, this does not mean that GPT-4o can directly understand the meaning of content 

in the uploaded knowledge model. 

 

Figure 6: LLM for parsing of knowledge model 

The preliminary test results of the embedded LLM for knowledge query are listed in Table 1, which 

indicate a good reliability of the embedded GPT-4o in these tasks. It was noticed that though the GPT-

4o may fail in processing the provided data set, it can make self-checking automatically and finally 

return the correct answer. However, the tests were limited by using only one data set and specific 
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prompts, which may lead to arbitrary problems. Hence, more data sets and interaction scenarios will be 

tested in the future research. 

Measuring categories Actual values in the data set Retrieval/response results 

Class retrieval count 53 53 

Object property retrieval count 36 36 

Data property retrieval count 9 9 

Table 1: Reliability test results of the embedded LLM 

Moreover, the augmentation of LLM in a specific knowledge problem was also tested by asking 

questions like “What are key components of a type of modular connection according to the existing 

cases?”. In the given knowledge model, as mentioned in Section 4.1, an 

“EightColumnInterModuleConnection” was defined and has a configuration type assembled with four 

main components: “EightColumnPluginDevice”, “CoverPlate”, “IntermediatePlate” and “StayBolt”. 

This was asked to assess the response accuracy of GPT-4o. The tests were run ten times. Though GPT-

4o sometimes used different methods to parse the given knowledge at the backend, it could always 

return the same and accurate answer in each time (see Figure 7). 

 

Figure 7: Augmentation of LLM in a specific knowledge problem 

4 Discussion 

The contribution of this study lies in proposing an innovative knowledge system, CBKS, and 

proving its feasibility of leveraging the capability of semantic web-based containers and LLMs for 

enhancing the management of OSC knowledge. Through the proposed CBKS, the universal and case-

specific knowledge can be successfully captured and reused by modelling them into global and local 

ontologies and rules. The semantic web stack combining ontologies of OSC knowledge, information 

container and link set can provide linked multimodal data for satisfying dynamic knowledge demands 

ranging from documents such as a BIM model or a CAD drawing to their internal elements (e.g., beam, 

wall, connection, etc.). For the rule construction, the case study adopted SWRL to conduct the 
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knowledge inferring under an OWA instead of adopting it under CWA, which can facilitate knowledge 

reuse in dynamic project conditions. 

Additionally, LLM such as GPT-4o can facilitate the knowledge manipulation and query through 

transferring natural language to SPARQL code and parsing the ontology-based knowledge model to 

answer professional questions. In the test of understanding and answering questions, GPT-4o showed a 

stable performance for returning correct responses derived from the given knowledge model. However, 

more tests are needed for different scenarios and questions. It should also be noted that prompt templates 

are needed for better generation in the transformation from natural language to the SPARQL code, 

which leads to lower flexibility in the application. 

Considering this paper serves as a proof-of-concept to propose a knowledge system framework for 

enhancing knowledge capture and reuse for OSC, the knowledge model in the case study was simplified 

and a limited number of scenarios were tested. Moreover, the effectiveness of deploying the proposed 

framework was not evaluated, and this will be addressed by our future research. 

5 Conclusion 

This paper introduces a knowledge base framework called CBKS that utilises semantic web and 

LLM technologies to enhance the knowledge capture and reuse for OSC. This framework is illustrated 

through a case study involving the representation of an OSC product (eight-column modular building 

connection). The findings are summarised as follows: 1) The semantic web stack as a core can link 

external documents and elements to the OSC objects driven by knowledge in CBKS; 2) Compared to 

SHACL, SWRL can support more flexible knowledge use by capturing open-world rules rather than 

asserting all constraints in a fixed pattern; 3) LLM, especially GPT-4o, has significant potential to 

augment the knowledge manipulation and query based on the given ontology model. In future research, 

it is essential to apply the proposed CBKS to a well-defined OSC problem and connect it to the 

application layer to evaluate the knowledge-driven automation processes, such as the generative design 

of an OSC product. Furthermore, the completed system will be deployed to an open server for more 

widely and systematic evaluation by industry experts. 
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