
Loopfrog — loop summarization for

static analysis

Daniel Kroening
Oxford University Comp. Lab., UK

, Natasha Sharygina
University of Lugano, Switzerland

,
Stefano Tonetta

FBK, Trento, Italy
, Aliaksei Tsitovich

University of Lugano, Switzerland
and

Christoph M. Wintersteiger
Computer Systems Institute, ETH Zurich, Switzerland

Loopfrog is a scalable static analyzer for ANSI-C programs, that combines the precision
of model checking and the performance of abstract interpretation. In contrast to traditional
static analyzers, it does not calculate the abstract fix-point of a program by iterative application
of an abstract transformer. Instead, it calculates symbolic abstract transformers for program
fragments (e.g., loops) using a loop summarization algorithm presented in [2]. Loopfrog
computes abstract transformers starting from the inner-most loops, which results in linear (in
the number of the looping constructs) run-time of the summarization procedure and which is
often considerably smaller than the traditional saturation procedure of abstract interpetation.
It also provides “leaping” counterexamples to aid in the diagnosis of errors.

An example for a very coarse over-approximation is the following: replace the loop by a
piece of code that “havocs” the program state by setting all variables written by the loop to
non-deterministic values. A way to obtain better summaries for loops is by strengthening them
with loop invariants. Loopfrog does not aim at invariant discovery itself; we draw the loop
invariants from a library of abstract domains. The concretization γ(ŝ) of any abstract state ŝ
corresponds to a predicate over concrete states, and is a candidate for some loop invariant. We
heuristically traverse the lattice of abstract states in search of invariants that are preserved by
the loop; the set of these abstract states then serves as the summary.

Candidate states ŝ are checked as follows: as we start from an innermost loop, the body
of the loop is itself loop-free. It is thus straight-forward to build the transition relation of the
loop body by transforming the code fragment into a static single assignment (SSA) form1. Let
φb denote the resulting expression, which is a precise predicate transformer of the loop body.
We then form the conjunction of the concretization of ŝ in the pre-state, the loop guard φg, the
loop body φb, and the negation of the concretization in the post-state (denoted by the prime):
γ(ŝ) ∧ φg ∧ φb ∧ ¬γ(ŝ′). If the loop body has any post-states that do not obey the constraints,
the decision procedure will find this formula to be satisfiable. If the formula is unsatisfiable,
the constraints are indeed an invariant. We consequently add γ(ŝ) → (¬φ′g ∧ γ(ŝ′)) to the loop
summary.

The overall result of a loop summarization is a symbolic expression over pre- and post-states
that encodes (in an over-approximating manner) those invariants preserved by the loop that
can be expressed by the abstract domain. Our experimental results show that execution times
of the decision procedure are usually very small, even if complex abstract domains are used,
owing to the relative shortness of the program fragments2.

1This step is performed by the symbolic execution engine of CBMC [1].
2The results of experiments and the Loopfrog binary are available at www.verify.inf.usi.ch/loopfrog

130 A. Voronkov, L. Kovacs, N. Bjorner (eds.), WING 2010 (EPiC Series, vol. 1), pp. 130–131

www.verify.inf.usi.ch/loopfrog


Loopfrog — loop summarization for static analysisKroening, Sharygina, Tonetta, Tsitovich and Wintersteiger

Once all loops have been summarized, the resulting program is a loop-free over-approximation
of the input program. This program is again handed to a symbolic execution engine to check
for violations of any assertions. The major advantage of using symbolic execution at this final
stage is that Loopfrog is able to obtain a counterexample trace in case an assertion is violated.
Since the loops are over-approximated, the trace contains information only about the entry and
exit state of each loop, and therefore is called a leaping counterexample.

[1] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In TACAS’04, LNCS.
Springer.

[2] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and C. M. Wintersteiger. Loop summarization
using abstract transformers. In ATVA’08, LNCS. Springer.

131


