
A New Method of Calculating Squared

Euclidean Distance (SED) Using pTree

Technology and Its Performance Analysis

Mohammad K. Hossain, Sameer Abufardeh
Department of Math, Science and Technology

University of Minnesota Crookston, Crookston, MN 56716, USA

hossain@crk.umn.edu, sabufard@crk.umn.edu

Abstract

One of the advantages of Euclidean distance is that it measures the regular distance

between two points in space. For this reason, it is widely used in the applications where

the distance between data points are needed to be calculated to measure similarities.

However, this method is costly as there involve expensive square and square root

operations. One useful observation is that in many data mining applications absolute

distance measures are not necessary as long as the distances are used to compare the

closeness between various data points. For example, in classification and clustering, we

often measure the distances of multiple data points to compare their distances from

known classes or from centroids to assign those points in a class or in a cluster. In this

regards, an alternative approach known as Squared Euclidean Distance (SED) can be used

to avoid the computation of square root to get the squared distance between the data

points. SED has been used in classification, clustering, image processing, and other areas

to save the computational expenses. In this paper, we show how SED can be calculated

for the vertical data represented in pTrees. We also analyze its performance and compared

it with traditional horizontal data representation.

1 Introduction

The general distance between any two points in an n-dimensional space is measured by weighted

Minkowski distance. Considering two points, X and Y, in n-dimensional space as a vector <x1, x2, x3,

…, xn> and <y1, y2, y3, …, yn>, the weighted Minkowski distance between the points is,

(1)

EPiC Series in Computing

Volume 58, 2019, Pages 45–54

Proceedings of 34th International Confer-
ence on Computers and Their Applications

G. Lee and Y. Jin (eds.), CATA 2019 (EPiC Series in Computing, vol. 58), pp. 45–54

where p is a positive integer, xi and yi are the ith components of X and Y, respectively, wi ( 0) is the

weight associated with the ith dimension or ith feature.

When the weights wi’s are equal to 1 and p is 2, the Minkowski distance is known as the Euclidian

distance or L2 distance [1], which is:

   



n

i

ii yxYXd
1

2

2 ,

 (2)

From (2) Squared Euclidean Distance (or SED) is calculated by taking the square of the right-hand side

and is defined as:

(3)

In this paper, we assume that the data are represented in a vertical form using a special data structure

called predicate tree or pTree, which is a lossless, compressed, and data-mining-ready data structure

[6]. In [2] Manhattan distance was calculated using pTrees. In [3, 4], the summation of SED’s of a set

of values is calculated rather than the individual SED’s. However, in many classification, clustering

and other data mining algorithms we need to compute SED values themselves, not just their sum [7, 8].

In [5], authors attempted to calculate SED’s but the detail performance analysis was missing in that

paper. In addition, the algorithm in [5] uses complex stack operations in to calculate SED, which will

make the calculation very slow comparing with our proposed method. In this proposed method, we are

able to calculate SED values without any horizontal scanning of the data points, which makes the

method suitable for many data mining algorithms.

In section 2, we reviewed the pTree technology to give the readers necessary background knowledge

regarding pTree technology. In section 3, we described the algorithms that are used to calculate SED.

Then in section 4, we discussed the experiments we carried out and analyzed the results.

2 Review of pTree Technology

The predicate tree or pTree is a vertical data technology, which records the truth-value of a given

predicate on a given data set. For each value of the data set, it stores 1 if the given predicate is true and

stores 0 if the predicate is false. Thus with these 1’s and 0’s, we get a bit vector which forms the leaf of

the tree. Next, we group the bits of the leaf with a fixed number of bits and apply some other predicate

to each group to represent them by 1 or 0 (based on the truth value of the predicate) to form the parent

node of that group. In a similar fashion, we group the bits the parent nodes to form upper-level parent

nodes. This process continues until we form the root node containing a single bit. Next, we examine the

tree to see if all the bits in a group is all 1’s (called pure-1 node) or all 0’s (called pure-0 node). In that

case, we remove all its child nodes.

To illustrate the construction of a pTree, consider the example in Figure 1 (a) where the temperature

of a city is recorded for 8 days and a predicate P chosen as “the weather is freezing” (i.e. below 32).

Therefore, for the first four data value P is true, for the next one it is false and so on. Thus, we get a bit

vector “11110100” which becomes the leaf of the pTree as shown in Figure 1 (b). As we see in Figure

1 (b), the bits of the leaf node are grouped with two bits and the parent nodes are formed with a predicate

“the group contains all 1”. The process goes on until we form the root of the tree. Finally, we discard

the children nodes that are pure-1 or pure-0 nodes. Figure 1(c) shows the final pTree.

A New Method of Calculating Squared Euclidean Distance (SED) ... M. Hossain and S. Abufardeh

46

2.1 Boolean Algebra for pTrees

Boolean algebra for a set of two elements B = {0, 1} is generally defined with 1 being the TRUE

state and 0 being the FALSE state. The three basic operations i.e. AND, OR and NOT are explained

with two sets X and Y  {0, 1}. [9]

2.2 Important Definitions

Definition 1 (Level-0 pTree): In the process of creating a pTree, the bit slice that is created by

representing the truth-value of a predicate by 1 or 0 is known as level-0 pTree. The number of bits (0

or 1) in a level-0 pTree is known as the length of pTree. A level-0 pTree is sometimes mentioned only

by pTree. The leaf of pTree in Figure 1 (b) is an example of a level-0 pTree.

Definition 2 (pTree set): A pTree set P of size N is a collection of N pTrees where each pTree in

the collection is accessed by P[i] where 0 ≤ i ≤ (N − 1). The number of pTrees in a pTree set is known

as the size of the pTree set.

Figure 2 (b) shows three pTree sets P1, P2 and P3 constructed from the data set of Figure 2 (a). Size

of each pTree set is 3.

2.3 pTree Representation of Dataset

The task of generating pTree’s typically starts by converting a relational table of horizontal records

to a set of vertical bit vectors by decomposing each attribute in the table into separate bit slices. If an

attribute has numeric values, we convert the data into binary and then consider the predicates to be “20

position is 1”, “21 position is 1”, “22 position is 1” and so on. Then each bit position of the binary value

generates a bit slice. But if an attribute has categorical value then first we need to create a bitmap for

the attribute and then generate bit vectors for each category. Such vertical partitioning guarantees that

the information is not lost.

Figure 1: Construction of pTree: (a) Predicate for temperature (b) Conversion to tree (c) Final pTree

Figure 2: pTree representation of Data Set: (a) Data Set of 3 attributes (b) Corresponding pTree Sets

A New Method of Calculating Squared Euclidean Distance (SED) ... M. Hossain and S. Abufardeh

47

Consider a dataset D with n attributes as D = (A1, A2, . . . ,An). In order to represent it by pTree we

will require a pTree set of size n as {P1, P2. . . Pn} such that attribute Ai will be represented by pTree set

Pi. Suppose each value of Ai is represented by an N-bit binary number ai,N−1, ai,N−2 . . . , ai,j , . . . , ai,0.

Then pTree Pi,[j] will represent the bit slice of ai,j. Pi[0] pTree which represent the Least significant bit

slice of Ai is called the lest significant pTree or LSP of pTree set Pi. Similarly, Pi[N − 1] is known as

the most significant pTree or MSP. Figure 2 shows the representation of data set into pTree where we

see that the dataset had three attributes. Hence, we need three pTree sets to represent the dataset.

Observing the values of the attributes, we see that we need 3-bit numbers to convert them to binary.

Therefore, the size of each pTree set is 3.

2.4 Operations on pTrees

Suppose p and q are two level-0 pTrees of length L. Assume a binary operator OPb that we apply

on these two pTrees. Then p OPb q is calculated as:

p[i] OPb q[i] ∀i|i ∋ (0 : L − 1) where p[i]and q[i] are the ith bit of p and q pTrees.

Similarly, if OPu is a unary operator then OPu(p) is calculated as OPu(p[i]).

Let p = 10110110 and q = 11010010 are two level-0 pTrees. Figure 3 shows the results of different

operations on these pTrees.

3 Necessary Algorithms for SED

In various steps of SED calculation, we will require to perform many operations on pTree sets. For

instance, we will need to subtract a constant value from a pTree set. Then we will need to calculate the

absolute value of that resultant pTree set. Then we will compute the square of that pTree set by

multiplying it with itself. Finally, we will add these pTree sets to get the SED. In the following

subsections, we describe these algorithms.

3.1 Finding Absolute pTree set

When we subtract an integer from another, the result can be positive or negative depending on the

value of the integers. The negative results are shown in 2’s complement form. In order to get the value

of a negative result, we need to get the absolute value of that negative result. The algorithm in Figure 4

first examines the rightmost pTree of the input pTree set that is considered as sign pTree. When the

value of that pTree is 0 the number represented is positive and otherwise negative. When it is a positive

value, nothing is done. However, when it is 1 it indicates that the number is negative and then the

number is complemented to get the absolute value.

Figure 3: Truth table showing different pTree

operations.

A New Method of Calculating Squared Euclidean Distance (SED) ... M. Hossain and S. Abufardeh

48

3.2 Adding Two pTree sets

When adding two pTree sets we add them and store the result in a third pTree set. Figure 5 shows

the addition of two pTree sets. In the algorithm, we consider two pTree sets of unequal sizes N and M

where N > M. The summation is stored in the pTree set S that has N + 1 pTrees. Line 2 shows the

looping through LSP to MSP of pTree set of size N. While adding two pTree sets we deal with two

pTrees to calculate sum and carry (line 4 and 5) up to Mth pTree. For the rest of the pTrees we add only

the carry c (in line 7 and 8). Finally, the carry c is assigned to S[N] in line 11.

Figure 4: Algorithm to compute the absolute value of a pTree set operations.

Figure 5: Algorithm to add two pTree sets operations.

A New Method of Calculating Squared Euclidean Distance (SED) ... M. Hossain and S. Abufardeh

49

3.3 Subtracting a Constant from a pTree set

Subtraction is very much similar to addition with few differences in the equation used. Figure 6

shows the subtraction of a constant from a pTree set. The subtraction result is stored in the pTree set S

which has N + 1 pTrees. The result will be a signed integer in 2’s complement form. That is the S[N]

pTree is a sign pTree (similar to a sign bit in a signed integer). A 0 value in this pTree indicates the row

in that S is a positive integer and a 1 indicates the same as a negative integer.

3.4 Multiplying Two pTree sets

The multiplication algorithm in Figure 7 multiplies pTree set A of size N by pTree set B of size M

and the result is stored in pTree set S of size M + N. In line 1, the algorithm loops through all the pTrees

of B from LSP to MSP. In each iteration, it loops through the pTrees of A (as in line 3), multiplies the

pTrees of A by a single pTree of B namely B[j] (line 4). Then the algorithm adds this product with S

(line 5, 6 and 7). In the next iteration, the algorithm multiplies each pTree of A by the next pTree of B.

Then it adds this product with S after shifting the result one place to the left. The shifting is done by the

assignment of the variable i in the loop in line 3.

3.5 Computing SED

Suppose a data set S has n attributes. An attribute Ai is represented by a pTree set Pi containing N

pTrees. That is S = {P1, P2, . . . , Pn}. Assume we need to find the SED of all the points of the data set

S from a fixed point C = (c1, c2, . . . , cn). Suppose the distance will be calculated in pTree set D. This

will be done by the following steps for all the values of i from 1 to n.

Step 1: Subtract ci from pTree set Pi using the algorithm in Figure 6. Assume the resultant pTree

set is Ri.

Figure 6: Algorithm to subtract a constant from a pTree set

A New Method of Calculating Squared Euclidean Distance (SED) ... M. Hossain and S. Abufardeh

50

Step 2: Get the absolute value pTree of Ri using the algorithm in Figure 4. Assume the absolute

value pTree is Ti

Step 3: Get the squared value of Ti by multiplying it with itself using the algorithm in Figure 7.

Assume the squared value pTree is Si

Step 4: Add Si with pTree set D using the algorithm in Figure 5.

The algorithm in Figure 8 shows these steps.

Figure 7: Algorithm to multiply two pTree sets

Figure 8: Algorithm to calculate SED

A New Method of Calculating Squared Euclidean Distance (SED) ... M. Hossain and S. Abufardeh

51

4 Experimental Result and Analysis

In order to prove the effectiveness of our method of calculating squared Euclidean distance (SED)

over traditional horizontal method, we ran a series of experiment using a comprehensive experimental

framework based on formal design methodology [10, 11].

In our experiment, we calculated the SED of a set of points from a random point. We assumed the

points are in three-dimensional space. Therefore, we have three attributes in the data set, which are

represented by three pTree sets. Using the algorithm as shown in Figure 8 (SED_P), we calculated SED.

Then we calculated the SED of the same dataset using the traditional horizontal algorithm (SED_H).

We ran these algorithms for each data set cardinality of 0.5 billion to 5.0 billion with 0.5 billion

increments.

We also changed the bit width of the data starting from 4 bits up to 32bits with 4 bits increment.

Thus, we got 160 design points, which we ran 10 times each and got their average.

We represent the results of our experiment in histograms. For each of the bit width, we have one

histogram. Each histogram shows the size of the data set in x-axis and the response time in millisecond

Figure 9: Result of the experiment for data width from 4 to 16 bit.

A New Method of Calculating Squared Euclidean Distance (SED) ... M. Hossain and S. Abufardeh

52

in y-axis. We also showed the speed gain (or speed loss) of pTree processing over horizontal processing

for each bit width. To measure the speed gain we use the following formula

𝑆𝑝𝑒𝑒𝑑 𝑔𝑎𝑖𝑛 = (1 −
𝑇𝑃

𝑇𝐻

)

Where TP is the time taken for pTree processing and TH is the time taken for horizontal processing.

The Figure 9 and 10 shows the result of experiment. Table 1 shows the speed gain of SED

calculation algorithm. As we can see from the table, we get a 96% of speed gain over horizontal

processing for bit width of 4. We get 24% of speed gain for bit width of 20. However, after that we get

negative speed gain of 5% for bit width of 24. Therefore, we can say up to bit width of 20 pTree

processing is faster than horizontal processing.

Bit Width Speed Gain (%)

4 96

8 86

12 71

16 50

20 24

24 -5
Table 1: Speed gain of pTree based SED calculation algorithm

Figure 10: Result of the experiment for data width from 20 to 32 bit.

A New Method of Calculating Squared Euclidean Distance (SED) ... M. Hossain and S. Abufardeh

53

5 Conclusion

In this paper, we have demonstrated an effective method to calculate SED using pTrees. Our

experimental results exhibit that up to 20-bit numbers, the proposed method has significant speed gain

over traditional horizontal method. For the 4-bit numbers, we got most speed gains of 96%, which

decreased to 24% for 20-bit numbers. In the case of 24-bit numbers, the method becomes a little bit

slower than the traditional method (-5%). Hence, we may use this method up to 20-bit numbers. Using

20-bit numbers, we can represent integer number as large as 1,048,575, which would be sufficient for

most data mining algorithms. Our experiment shows similar speed gain for different cardinality of the

datasets ranging from 0.5 billion to 5 billion. The speed gain makes our method scalable to large

datasets, which is a critical issue for big-data processing. Therefore, we can conclude that the proposed

method will be applicable in the “Big Data” processing algorithms where distance or similarity between

data points are computed using Squared Euclidean Distance (SED).

References

[1] Maleq Khan, Master thesis on Fast Distance Metric Based Data Mining Techniques Using P-trees, Department

of Computer Science, NDSU, 2001.

[2] Mohammad K Hossain, Arjun Roy, Arijit Chatterjee, William Perrizo, “Algorithms to Calculate the Manhattan

(L1) Distance for Vertical Data Represented in pTrees”, published in the Conference Proceedings at the ISCA 27th

International Conference on Computers and Their Applications (CATA-2012), held on March 12-14, 2012, at Las

Vegas, Nevada, USA.

[3] A Denton, Q. Ding, W. Pernzo and Q. Ding, Efficient hierarchical clustering of large data sets using P-trees, In

Proceedings of the 15th International Conference on Computer Applications in Industry and Engineering

(CAINE'02), San Diego, CA, November 2002, pp. 138-141.

[4] T. Abidin, A. Perera, M. Serazi, W. Perrizo, Vertical Set Square Distance: A Fast and Scalable Technique to

Compute Total Variation in Large Datasets, CATA-2005 New Orleans, 2005.

[5] Mohammad K Hossain, Arijit Chatterjee, Arjun Roy, William Perrizo, “Calculating the Squared Euclidean

Distance for Vertical Data Represented in pTrees”, in the Conference Proceedings of Software Engineering and

Data Engineering (SEDE-2012), held on June 2012, Los Angeles, California, USA.

[6] M. Khan, Q. Ding, and W. Perrizo, K-Nearest Neighbor Classification of Spatial Data Streams using P-trees,

Proceedings of the PAKDD, pp. 517-528, 2002.

[7] A. Perera, A. Denton, P. Kotala, W. Jockhec, W.V. Granda, and W. Perrizo, P-tree Classification of Yeast Gene

Deletion Data. SIGKDD Explorations, 4(2), pp.108-109, 2002.

[8] I. Rahal and W. Perrizo, An Optimized Approach for KNN Text Categorization using pTrees. Proceedings of

ACM Symposium on Applied Computing, pp. 613- 617, 2004.

[9] Morris Mano, Digital Design,3rd Edition, Prentice Hall, 2001.

[10] A.M. Law andW.D. Kelton. Simulation modeling and analysis. McGraw-Hill series in industrial engineering

and management science.McGraw-Hill, 2000. ISBN 9780070592926.

[11] D.C. Montgomery. Design and analysis of experiments. Wiley, 1976. ISBN 9780471614210.

A New Method of Calculating Squared Euclidean Distance (SED) ... M. Hossain and S. Abufardeh

54

