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Abstract

Neural networks have become critical components of reactive systems in various do-
mains within computer science. Despite their excellent performance, using neural networks
entails numerous risks that stem from our lack of ability to understand and reason about
their behavior. Due to these risks, various formal methods have been proposed for verify-
ing neural networks; but unfortunately, these typically struggle with scalability barriers.
Recent attempts have demonstrated that abstraction-refinement approaches could play a
significant role in mitigating these limitations; but these approaches can often produce net-
works that are so abstract, that they become unsuitable for verification. To deal with this
issue, we present CEGARETTE, a novel verification mechanism where both the system and the
property are abstracted and refined simultaneously. We observe that this approach allows
us to produce abstract networks which are both small and sufficiently accurate, allowing for
quick verification times while avoiding a large number of refinement steps. For evaluation
purposes, we implemented CEGARETTE as an extension to the recently proposed CEGAR-NN

framework. Our results are highly promising, and demonstrate a significant improvement
in performance over multiple benchmarks.

1 Introduction

Deep neural networks (DNNs) have become state-of-the-art technology in many fields [58],
including image processing [37], computational photography [13], speech recognition [1, 35],
natural language processing [23], video processing [10,45], autonomous driving [16], and many
others. Nowadays, they are even increasingly being used as critical components in various
systems [55,60,74,79], and society’s reliance on them is constantly increasing.

Despite these remarkable achievements, neural networks suffer from multiple limitations,
which undermine their reliability: the training process of DNNs is based on assumptions re-
garding the data, which may fail to hold later on [36, 43]; the training process might cause
over-fitting of the DNN to specific data [77, 91]; and, independently of the above, there are
various attacks that can fool a DNN into performing unwanted actions [72,87].
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In order to overcome these difficulties and ensure the correctness and safety of DNNs, the
formal methods community has been devising techniques for verifying them [26, 46, 48, 62, 83].
Techniques for neural network verification (NNV) receive as input a neural network and a set
of constraints over its input and output, and check whether there exists an input/output pair
that satisfies these constraints. Typically, the constraints encode the negation of some desirable
property, and so such a pair constitutes a counter-example (the SAT case); whereas if no such
pair exists, the desired property holds (the UNSAT case). NNV has been studied extensively in
recent years, and many different verifiers have been proposed [24–26,46,48,62,67,83]. However,
scalability remains a fundamental barrier, both theoretical and practical, which limits the use
of NNV engines: generally, increasing the number of neurons of the verified neural network
implies an exponential increase in the complexity of the verification problem [40,46].

In order to alleviate this scalability limitation, recently there have been attempts to apply
abstraction techniques within NNV [11,27,28,57,69,76], often focusing on the counter-example
guided abstraction refinement (CEGAR) framework [21]. CEGAR is a well-known approach,
aimed at expediting the solving of complex verification queries, by abstracting the model being
verified into a simpler one — in such a way that if the simpler model is safe, i.e. the query
is UNSAT, then so is the original model. In case of a SAT answer from the verifier, we check
whether the satisfying assignment of the abstract model is also a satisfying assignment of the
original. If so, the original query is declared SAT, the satisfying assignment is returned, and the
process ends. Otherwise, the satisfying assignment is called spurious (or erroneous), indicating
that the abstract query is too coarse, and should be refined into a slightly “less abstract” query,
which is a bit closer to the original model (but is hopefully still smaller). CEGAR has been
successfully used in various formal method applications [9,15,42,65,73], and also in the context
of NNV [27, 28, 57]. Typically, these approaches generate an abstract neural network, which is
smaller than the original, and is created by the merging of neurons of the original network. The
refinement, accordingly, is performed by splitting previously merged neurons. Other related
approaches have also considered abstracting the ranges of values obtained by neurons in the
network [11,69,70,76].

The general motivation for abstraction schemes is that smaller, abstract networks are easier
to verify. While this is often true, smaller networks tend to be far less precise, and verifying them
often requires multiple refinement steps [28, 70]. In extreme cases, these multiple refinement
steps can render the verification process slower than directly verifying the original network [28].
Here, we seek to tackle this problem, by improving the abstract verification queries. We propose
a novel verification scheme for DNNs, wherein abstraction and refinement operations include
altering not only the network (as in [21, 27, 28, 57, 70]), but also the property being verified.
The motivation is to render the abstract properties more restrictive, in a way that will reduce
the number of spurious counter-examples encountered during the verification process; but at
the same time, ensure that the abstract queries still maintain the over-approximation property:
if the abstract query is UNSAT, the original query is UNSAT too. The key idea on which our
approach is based is to compute a minimal difference between the outputs of the abstract
network and the original network, and then use this minimal difference to tighten the property
being verified, in a sound manner.

Our approach is not coupled to any specific DNN verification method, and can use multiple
DNN verifiers as black-box backends. For evaluation purposes, we implemented it on top of the
Marabou DNN verifier [48]. We then tested our approach on the ACAS-Xu benchmarks [44]
for airborne collision avoidance, and also on MNIST benchmarks for digit recognition [54].
Our results indicate that property abstraction affords a significant increase in the number of
queries that can be verified within a given timeout, as well as a sharp decrease in the number
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of refinement steps performed.
To summarize, our contributions are as follows: (i) we present CEGARETTE, a novel CEGAR

framework for DNN verification, that abstracts not only the network but also the property being
verified; (ii) we provide a publicly available implementation of our approach, CEGARETTE-NN;
and (iii) we use our implementation to demonstrate the practical usefulness of our approach.

The rest of this paper is organized as follows. In Section 2, we provide a brief background
on neural networks and their verification, followed by an explanation of the CEGAR framework
and its implementation for neural network verification. In Section 3, we describe our novel
verification framework CEGARETTE. In Section 4, we discuss how to apply this framework for
abstracting and refining DNNs, followed by an evaluation in Section 5. Related work is discussed
in Section 6, and we conclude in Section 7.

2 Background

2.1 Neural Networks

A neural network [33] is a directed graph, comprised of a sequence of layers: an input layer,
followed by one or more consecutive hidden layers, and finally an output layer. A layer is a
collection of nodes, also referred to as neurons. Here we focus on feed-forward neural networks,
where the values of neurons are computed based on values of neurons in preceding layers. Thus,
when the network is evaluated, values are assigned to neurons in its input layer; and they are
then propagated, layer after layer, through to the output layer.

We use ni,j to denote the j’th neuron of layer i. Typically, the value of neuron ni,j , denoted
as vi,j , is given by the following formula:

vi,j = acti,j(bi,j +

li−1∑
k=1

wi
k,j · vi−1,k)

where li−1 is the number of neurons in the i−1’th layer, acti,j is a pre-defined (neuron-specific)
activation function, wi

k,j is the weight of the outgoing edge from ni−1,k to ni,j , vi−1,k is the
value of the k’th neuron in the i − 1’th layer, and bi,j is the bias value of the j’th neuron in
the i’th layer. For simplicity, we assume here that the only activation function in use is the
Rectified Linear Unit (ReLU) function [63], which is defined by ReLU(x) = max(0, x), and is
very common in practice.

Fig. 1 depicts a small neural network. The network has 3 layers, of sizes l1 = 1, l2 = 2 and
l3 = 1. Its weights are w2

1,1 = 10, w2
1,2 = 1, w3

1,1 = 3 and w3
2,1 = 4, and its biases are all zeros.

For input v1,1 = 21, node n2,1 evaluates to 210 and node n2,2 evaluates to 21 (both are positive,
and hence not changed by the ReLU activation function). The output node n3,1 then evaluates
to 3 · 210 + 4 · 20 = 714.

2.2 Neural Network Verification

The goal of neural network verification (NNV) is to determine the satisfiability of a verification
query. A query is typically defined to be a triple ⟨N,P,Q⟩, where: (i) N is a neural network;
(ii) P is an input property, which is a conjunction of constraints on the input neurons; and
(iii) Q is an output property, which is a conjunction of constraints on the output neurons [56].
The query is SAT if and only if there exists an input vector x0 to N , such that P (x0) and
Q(N(x0)) both hold; in which case the verifier returns x0 as the counter-example. As we
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Figure 1: A simple, feed-forward neural network.

previously mentioned, Q typically represents some undesirable behavior of N on inputs from
P , and so the goal is to obtain an UNSAT result.

Most existing verifiers focus primarily on ReLU activation functions, and we follow this line
here. In addition, most existing verifiers assume that P is a conjunction of linear constraints
on the input values, and we again take the same path. Finally, we make the simplifying
assumption that N has a single output neuron y, and that the property Q is of the form y > c.
This assumption may seem restrictive, but in fact, it does not incur any loss of generality [28],
and is sufficient for expressing many properties of interest with arbitrary Boolean structure, via
a simple reduction.

In recent years, various methods have been proposed for solving the verification problem
(for a brief overview, see Section 6). Our abstraction-refinement mechanism is designed to be
compatible with many of these techniques, as we later describe.

2.3 Counter-Example Guided Abstraction Refinement (CEGAR)

Counter-example guided abstraction refinement (CEGAR) [21] is frequently used as part of
model-checking frameworks, and it has recently been applied to neural network verification,
as well. The general framework, borrowed from [28], is presented in Algorithm 1. Given a
verification query ⟨N,P,Q⟩, we begin by generating an abstract network N ′. Then, the CEGAR
loop starts, where in each iteration, we verify a query with the current abstract network,
⟨N ′, P,Q⟩. The abstract network N ′ is constructed in a way that makes ⟨N ′, P,Q⟩ an over-
approximation of ⟨N,P,Q⟩: if the former is UNSAT, then so is the latter. Thus, if the underlying
verifier returns UNSAT on the current query, we can stop and return UNSAT. Otherwise, the verifier
returns a satisfying assignment x0 for ⟨N ′, P,Q⟩, and we check whether this x0 constitutes a
satisfying assignment for ⟨N,P,Q⟩ as well. If so, we return SAT and x0 as the satisfying
assignment, and stop. Otherwise, we say that x0 is a spurious counter-example, indicating
that N ′ is too coarse; in which case, we refine N ′ into a new “tighter” network, N ′′, whose
verification is more likely to produce accurate results. This refinement process is guided by
the spurious counter-example x0. This general framework can be instantiated in many ways,
depending on the implementation of the abstract and refine operations.

There have been a few recent attempts to apply CEGAR in the context of NNV [27,28,57],
all following a similar approach. At first, a preprocessing phase is performed, and every hidden
neuron in the network is classified according to its effect on the network’s output. Then,
abstraction is carried out by repeatedly merging pairs of neurons with the same type, usually
making the network significantly smaller than the original.

We focus here on one of these approaches, called CEGAR-NN [28]. There, the preprocessing
phase initially splits each hidden neuron into 4 neurons, each belonging to one of 4 categories
based on the effect of the neuron on values of both the next layer’s neurons and the output:
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Algorithm 1 Abstraction-based DNN Verification(⟨N,P,Q⟩)
1: N ′ ← abstract(N)
2: if Verify(⟨N ′, P,Q⟩) is UNSAT then
3: return UNSAT

4: else
5: Extract satisfying assignment x0

6: if x0 is a satisfying assignment for N then
7: return SAT, x0

8: else
9: N ′′ ← refine(N ′, N, x0)

10: N ′ ← N ′′

11: Goto step 2
12: end if
13: end if

the output edges can be all positive (pos) or all negative (neg), and the value of a neuron can
increase the output when being increased (inc), or increase the output when being decreased
(dec). The splitting process changes the network’s architecture but does not change its output
— i.e., the preprocessed network is completely equivalent to the original. After splitting the
neurons and categorizing the new neurons, pairs of neurons from the same layer that share
a category can be merged into a single neuron. The weights and biases of the new, merged
neuron are determined by aggregating the weights and biases of its constituent neurons, in a
way that depends on the category of these neurons, and which guarantees that the abstract
network’s (single) output is always greater than or equal to that of the original network when
the two networks are evaluated on the same input. This, combined with our assumption that
the output property is always of the form y > c, guarantees that the verification query on the
abstract network constitutes an over-approximation of the original query. Finally, this pair-wise
merging is then repeated, resulting in a much smaller network.

An example showing the result of applying this abstraction to the network from Fig. 1
appears in Fig. 2: n2,1 and n2,2 both already belong to the same category (in this tiny network,
all other categories are empty). We merge them into a single abstract neuron, n2,1+2. The
output weights are aggregated by a sum operation, so we get an output weight of 3 + 4 = 7.
For the input weight aggregation, we take the maximal value of the two, so we get an input
weight of max(10, 1) = 10. The key property here is that for every input x, N ′(x) ≥ N(x).
For additional details, as well as a discussion of various heuristics for selecting which neurons
should be merged and in what order, see [28,57].

n1,1 n2,1+2 n3,1
10 7

Hidden
layer

Input
layer

Output
layer

Figure 2: An abstract network, generated from the network from Fig. 1.

The refinement operation is then carried out by splitting an abstract neuron, which repre-
sents a set of original neurons, into two or more new neurons. In the example, the refinement
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step would be to split the abstract neuron n2,1+2 into the original neurons n2,1 and n2,2, and
to restore their original weights.

Empirical evaluations of CEGAR-NN demonstrated its great potential to enhance the scalabil-
ity of NNV engines, but as many experiments show [28], there is much room for improvement.

3 CEGARETTE: Tighter Abstract Queries

3.1 Motivation

Although CEGAR-NN is quite useful in many cases, it is also prone to producing spurious counter-
examples, which in turn triggers multiple refinement steps that slow the process down. For
example, observe again the network N from Fig. 1, and consider the verification query

v1 = ⟨N,n1,1 ∈ [20, 21], n3,1 > 800⟩

Here, a sound verifier will declare that v1 is UNSAT, because for inputs in the range [20, 21],
network N can only produce outputs that are upper-bounded by N(21) = 714. If we attempt
to verify this query using CEGAR-NN, we would generate the abstract query

⟨N ′, n1,1 ∈ [20, 21], n3,1 > 800⟩,

where N ′ is the network in Fig. 2. For this query, a sound verifier will return a satisfying assign-
ment, such as n1,1 = 20. Of course, this assignment is spurious: although N ′(20) = 1400 ≥ 800,
we get that N(20) = 680 < 800. Thus, refinement would be carried out, transforming N ′ back
into the original network N , and the overall process would be slower than just verifying N
directly. More broadly, we recognize the following issue with CEGAR-NN and related techniques:

Performance vs Accuracy. Neuron-merging-based abstraction techniques, such as CEGAR-NN,
have an intrinsic trade-off between performance and accuracy. In order to avoid coarse model
abstractions and the ensuing spurious counter-examples, it is desirable to look for accurate
model abstractions. On one hand, a common approach in CEGAR-based verification is to
heuristically guess an accurate initial abstract model, so that future satisfying assignments will
not be spurious; and if a spurious assignment is discovered nonetheless, to try and heuristically
select a refinement operation that will restore as much accuracy as possible. On the other
hand, a model with a higher accuracy is almost always larger and hence verifying it is slower.
Thus, these two requirements conflict with each other: generating an accurate abstract model
restricts our ability to generate small abstractions, and results instead in larger models that
take longer to verify.

3.2 Introducing Property Abstractions

In order to overcome the aforementioned issue, we introduce an extension to CEGAR, which
we term CEGARETTE: CEGAR Enhanced by TighTEning. In CEGARETTE, when we are given a
verification query ⟨N,P,Q⟩, instead of abstracting and refining only the network N , we may
also alter the output property Q in order to produce an over-approximate query ⟨N ′, P,Q′⟩.

To set the stage, we introduce the following definitions:

Definition 1. A verification query ⟨N ′, P,Q′⟩ is an over-approximation of another verification
query ⟨N,P,Q⟩, if and only if the unsatisfiability of ⟨N ′, P,Q′⟩ implies the unsatisfiability of
⟨N,P,Q⟩.
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We refer to the process in which ⟨N ′, P,Q′⟩ is created from ⟨N,P,Q⟩ as query abstraction.

Definition 2. Let ⟨N,P,Q⟩ be some base verification query. A query ⟨N ′′, P,Q′′⟩ is called a
refinement of a query ⟨N ′, P,Q′⟩, if (i) ⟨N ′′, P,Q′′⟩ is an over-approximation of ⟨N,P,Q⟩; and
(ii) ⟨N ′, P,Q′⟩ is an over-approximation of ⟨N ′′, P,Q′′⟩.

To illustrate the effect of changing the property, we consider again the verification query
from our running example: v1 = ⟨N,n1,1 ∈ [20, 21], n3,1 > 800⟩. Let us consider what happens
to this query if we change its output property. Decreasing the constant 800, for example by
setting n3,1 > 400, renders the property easier to satisfy (e.g., the output 600 satisfies the latter
output property, but not the former). Therefore, if ⟨N,n1,1 ∈ [20, 21], n3,1 > 400⟩ is UNSAT,
then v1 is also UNSAT. Consequently, we claim that decreasing the constant that appears in an
output property Q results in an over-approximation.

While the aforementioned process is sound, it goes against the grain of our desired approach:
decreasing the constant in the output property could potentially result in additional, not fewer,
spurious counter-examples. Thus, what we would like to do is to increase the constant that
appears in the output property, in order to rule out spurious counter-examples. More formally,
there is a set of spurious inputs S, whose outputs satisfy the property in the abstract network:
∀x ∈ S : (N ′(x) > c), but not in the original network, where their outputs are smaller:
∀x ∈ S : (N(x) ≤ c). By increasing the constant in the output property, we seek to avoid these
spurious examples.

As it turns out, there are cases in which we can increase the output bound, and still obtain
an over-approximate query. Consider the query

v2 = ⟨N ′, n1,1 ∈ [20, 21], n3,1 > 1486⟩

In v2, there are changes (with respect to v1) in both the model N and the output property Q.
By applying changes to the model N and generating N ′, the output increases: for every input
x, N(x) ≤ N ′(x). In other words, there is a minimal (non-negative) difference between the
outputs:

∃d ≥ 0 : ∀x : N(x) + d ≤ N ′(x) (1)

Given that the input property P := x ∈ [20, 21] was not changed, and assuming that we can
calculate d, we can increase the output constant by any number in [0, d], and still get an over-
approximate query; if the value in the abstract network is smaller than c+ d, the output of the
original network is bounded from above by (c+ d)− d = c (by Eq. 1).

Going back to our running example, we need to calculate the minimal difference between the
respective outputs of the networks, for any input vector in the range specified by property P . For
P = [20, 21], it can be shown that the minimal difference is bounded by d ≥ N ′(20)−N(21) =
1400− 714 = 686. Consequently, we can increase the constant in the output property from 800
(in v1) to 800 + 686 = 1486 (in v2), and still get an over-approximate query: if ∀x ∈ [20, 21] :
N ′(x) ≤ 1486, then (by difference of bounds) ∀x ∈ [20, 21] : N(x) ≤ 1486− 686 = 800. Making
this adjustment rules out the spurious counter-example we saw before, namely N ′(20) = 1400.

More broadly, the basic idea underlying CEGARETTE is that in order to produce a small
but accurate abstraction, the output property (Q) should be tightened as much as possible in
parallel to reducing the size of the neural network (N). The abstraction became more refined,
and as a consequence, the counter example is more relevant, and the number of refinement steps
should decrease. Naturally, the abstraction and tightening processes are linked, as the network
determines the possible output properties.
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The example shows how changing N enables tightening Q, but CEGARETTE is not limited to
a specific order; it is also possible to first increase the constant of Q and only then change N ,
as long as the over-approximation property is maintained.

Algorithm 2 shows the general outline of the CEGARETTE framework. First, we generate
an initial abstract verification query using queryAbstract. Then a loop starts, where in each
iteration we verify the current abstract query. If the answer is UNSAT, we are guaranteed that
the original query is also UNSAT (by the over-approximation property), and can stop and return
UNSAT. Otherwise, the satisfying assignment x0 is examined in the original model, and if it is
also a satisfying assignment there, we return SAT and x0. In the case where x0 is not a satisfying
assignment for ⟨N,P,Q⟩, the current abstract query is apparently too coarse and is thus refined
using queryRefine — producing a more precise abstract query, for the next iteration.

Algorithm 2 CEGARETTE-based Verification(N,P,Q)

1: ⟨N ′, P,Q′⟩ ← queryAbstract(⟨N,P,Q⟩)
2: if Verify⟨N ′, P,Q′⟩ is UNSAT then
3: return UNSAT

4: else
5: Extract counterexample x0

6: if x0 is a counterexample for ⟨N,P,Q⟩ then
7: return SAT, x0

8: else
9: ⟨N ′′, P,Q′′⟩ ← queryRefine(⟨N ′, P,Q′⟩, N, x0)

10: ⟨N ′, P,Q′⟩ ← ⟨N ′′, P,Q′′⟩
11: Goto step 2
12: end if
13: end if

The structure of CEGARETTE is similar to that of CEGAR-NN, but instead of invoking the
abstract and refine operations as in Algorithm 1, which only abstract and refine the net-
work, CEGARETTE invokes queryAbstract and queryRefine, which abstract and refine both the
network and the output property. Therefore, Algorithm 1 is a special case of Algorithm 2, and
CEGARETTE extends CEGAR.

4 DNN Verification Using CEGARETTE

In this section, we describe CEGARETTE-NN, which is our implementation of CEGARETTE for NNV.
Specifically, we propose a particular implementation of the queryAbstract and queryRefine

operators, which modify the model and the output property in a way that soundly produces
over-approximations of the original query.

Given a verification query ⟨N,P,Q⟩, our proposed implementation of queryAbstract is
shown as Algorithm 3. It begins by generating N ′, an abstract neural network, using the same
abstract from the CEGAR-NN framework; and then proceeds to tighten the output property, by
adding to the output constant a scalar d, which lower-bounds the minimal difference in outputs
between N ′ and N .

In Algorithm 4 we describe how to compute the constant d. This is performed by calculating
the lower bound of the abstract network’s output, and the upper bound of the original network’s
output, and then subtracting the latter from the former. If the result is positive, it can be used
in order to update the output property in the over-approximate verification query. The output

131



Tighter Abstract Queries in Neural Networks Verification Cohen, Elboher, Barrett and Katz

Algorithm 3 AbstractQueryGeneration(N,P,Q)

1: N ′ ← abstract(N)
2: Q′ ← TightenProperty(N ′, N, P,Q)
3: return ⟨N ′, P,Q′⟩

property is of the form Q := y < c for some constant c (denoted by Qc in Algorithm 4), and so
the update is performed by setting Q′ := y < c+ d.

Algorithm 4 TightenProperty(N ′, N, P,Q)

1: Compute lN ′ , a lower bound on the output of N ′

2: Compute uN an upper bound on the output of N
3: d = max(0, lN ′ − uN )
4: Q′ := y > Qc + d
5: return Q′

Computing the lower and upper bounds of the abstract and the original networks with
respect to a given input range in Algorithm 4 is based on bound propagation methods, which
maintain and propagate tractable and sound bounds through neural networks. Bound prop-
agation has been studied extensively, and there are many scalable methods intended for this
purpose [30,34,50,51,75,82,83,88,92]. We give a simple example later on.

Lemma 1. Algorithm 3 returns an over-approximation of the verification query passed to it as
input.

Proof. Algorithm 3 begins by generating N ′, an abstract network, from N . Then it invokes
TightenProperty, described in Algorithm 4, which sets Q′ := y′ ≤ c+max(0, lN ′ − uN ), where
uN is an upper bound for the output of N and lN ′ is a lower bound for the output of N ′. We
now wish to prove that if ⟨N ′, P,Q′⟩ is UNSAT, then ⟨N,P,Q⟩ is also UNSAT. Differently put, we
need to show that

∀x ∈ P : N ′(x) ≤ c+max(0, lN ′ − uN )⇒ ∀x ∈ P : N(x) ≤ c

This is equivalent, modus tollens, to proving that

∃x ∈ P : N(x) > c⇒ ∃x ∈ P : N ′(x) > c+max(0, lN ′ − uN )

The last implication holds since we know that for every input x, the output increases after
abstracting N to N ′ by at least lN ′ − uN ; and we know also that the output cannot decrease.
Overall, model abstraction increases x’s output by at least max(0, lN ′ − uN ), and hence the
implication holds.

Next, queryRefine is implemented in Algorithm 5. First, we refine the previous abstraction
of the network (by splitting neurons that had previously been merged), and then computing a
new output property, from scratch, with respect to this new network.

Lemma 2. Algorithm 5 returns an over-approximation of the verification query ⟨N,P,Q⟩.

Proof. N ′′ is an abstract network generated from N . The remainder of the proof is the same
as in the proof of Lemma 1.
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Algorithm 5 RefinedQueryGeneration(⟨N ′, P,Q′⟩, N, x0)

1: N ′′ ← refine(N ′, N, x0)
2: Q′′ = TightenProperty(N ′′, N, P,Q)
3: return ⟨N ′′, P,Q′′⟩

Now that we have established the soundness of our approach via Lemmas 1 and 2, we
proceed to prove that it always terminates.

Lemma 3. For any verification query ⟨N,P,Q⟩, CEGARETTE-NN converges.

Proof. CEGARETTE-NN implements Algorithm 2, using queryAbstract from Algorithm 3 and
queryRefine from Algorithm 5. We show that with these implementations, Algorithm 2 con-
verges.

Assume that Algorithm 2 does not converges, then Line 11 takes place infinite number of
times. In that case, Lines 9-10 takes place infinite number of times too. Notice that after the
abstraction in Line 1, the network N ′ only changes in Line 10. After finite number of calls to
queryRefine which is implemented by Algorithm 5, the query ⟨N ′, P,Q′⟩ will be equal to the
original query ⟨N,P,Q⟩; Algorithm 4 refine the network and then tighten the query. When
N ′ is fully refined (N ′ == N), the difference between the lower bound of N ′ and the upper
bound of N can’t be positive and d = 0 which implies that Q′ == Q. In the next iteration,
both getting UNSAT or SAT will terminate the verification, since the current query is equal to
the original query. In contradiction to our assumption.

Returning to our running example, given the verification query v1 above, applying Algo-
rithm 2 triggers Algorithm 3, which generates N ′ from N ; and then, in turn, triggers Algo-
rithm 4, which calculates d, which bounds the minimal difference between N and N ′. For
simplicity, we use a näıve method for calculating the lower and upper bounds of a network,
called interval bound propagation, or IBP [34].

In IBP, bounds are propagated forward in the network, starting from the input layer, layer
by layer, to the output layer. The method assumes that lower and upper bounds for the input
neurons are provided a priori, and then uses a linear combination of the bounds of neurons from
one layer to compute lower and upper bounds for neurons in the following layer. The linear
combination is decided according to the weights of the edges that connect the two layers.

As an example, we show how to compute the bounds for neuron n3,1 in the original network
N . The range of the input neuron n1,1 is [20, 21]. The range of the possible values of n2,1

is [20, 21] · 10 = [200, 210], since its only input edge comes from n1,1 and its weight is 10.
Similarly, the possible values of n2,2 are [20, 21] since its only input edge comes from n1,1 and
its weight is 1. Moving to the output layer, the range of possible values of n3,1 is calculated
using the weighted sum of the ranges of n2,1 and n2,2: the lower bound is 200 · 3+ 20 · 4 = 680,
and the upper bound is 210 · 3 + 21 · 4 = 714. Similarly, by propagating the input range to
the output range in N ′ we get that the output range of n3,1 in N ′ is [1400, 1470]. Therefore,
the minimal difference is bounded by d = N ′(20) − N(21) = 1400 − 714 = 686. Now, d
can be used in updating the verification query into the over-approximate verification query
⟨N ′, n1,1 ∈ [20, 21], n3,1 < 800 + 686 = 1486⟩, which is exactly v2 above.
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5 Implementation and Evaluation

Implementation. For evaluation purposes, we created a proof-of-concept implementation of
CEGARETTE, referred to as CEGARETTE-NN, where the queryAbstract and queryRefine opera-
tions are implemented according to Algorithms 3 and 5, respectively. The neuron merging and
splitting operations, abstract and refine, were taken from the publicly released code of [27],
which implements the methods proposed in [28].

As our tool’s underlying verification engine, we used the Marabou framework [48] (al-
though other tools could be used, instead). Marabou is a sound and complete verifier [48, 84]
that runs a Simplex solver at its core [46, 47], combined with abstract-interpretation enhance-
ments [28, 66, 75, 82, 90], proof-production capabilities [39], advanced splitting heuristics [85],
optimization techniques [78], and support for various activation functions [6]. The framework
has previously been applied to perform various tasks, such as DNN repair [32,71], explainabil-
ity [14], reinforcement learning verification [2, 4, 5, 29], DNN simplification [31, 53], and DNN
ensemble selection [7] and industrial needs [3].

For the lower and upper bound computation performed in Algorithm 4, we implemented the
interval bound propagation (IBP) method proposed in [34]; and also used the symbolic bound
tightening (SBT) method [82] and the DeepPoly method [75], both of which were already
implemented as part of the Marabou engine [48]. Our tool is implemented in Python and is
publicly available online, along with all benchmarks used in our evaluation.1 All experiments
reported below were conducted on x86-64 Gnu/Linux-based machines, using a single Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10GHz core.

Benchmarks. We conducted extensive experiments using two sets of benchmarks: ACAS-
Xu [44] and MNIST [54].

ACAS-Xu is a set of 45 DNNs intended to operate as an airborne collision avoidance sys-
tem. Each of these networks receives sensor information regarding the aircraft’s trajectory and
velocity, as well as those of other aircraft nearby; and produces a horizontal turning advisory,
intended to reduce the chance of airborne collision. Each of these networks consists of an input
layer with 5 neurons, followed by 6 hidden layers with 50 neurons each, and a final output layer
with 5 additional neurons — yielding a total of 310 neurons.

For specifications, we used adversarial robustness queries, which are the de facto standard
for DNN verification [12]. Each such query specifies an input point x0 and a radius δ and states
that any point within the δ-ball around x0 must produce the same classification as x0. Here, we
used 20 previously proposed adversarial robustness properties [28], each with a 2-hour timeout.

For the second family of benchmarks, we used the MNIST dataset of grayscale images of
hand-written digits between 0 and 9. We used 60000 images to train 3 different networks, whose
topologies are listed in Table 1. These networks achieved high accuracy rates (although not
as high as the state of the art [61]) on 10000 test images, as detailed in the “Accuracy” row
in Table 1. For these networks, we again used adversarial robustness queries. Specifically, we
selected 30 input points that were sampled uniformly at random. For δ, we used the values
δ ∈ {1e−3, 1e−2, 2e−2, 5e−2, 7e−2, 9e−2, 1e−1}. For each candidate query, i.e., a pair of input
point x0 and a radius δ, we sampled 10000 random inputs in the δ-ball around x0, and ensured
that they were all correctly classified. If any random sample was misclassified, we discarded
the query without verification (this was done in order to filter out very simple queries, where
formal verification is not needed). After this filtering, the total number of queries remaining
for each of the networks was 653, 797, and 560. Because these networks were more complex

1https://github.com/yizhake/cegarette_nn
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Table 1: Network sizes and properties.

Acas Xu MNIST 1 MNIST 2 MNIST 3

Inputs 5 784 784 784
Outputs 5 10 10 10
Hidden layers 6 5 6 15
Total hidden neurons 300 144 320 224
Accuracy 96.94 97.13 95.43

Table 2: Comparing Bound propagation methods on the ACAS-Xu benchmarks.

IBP SBT DeepPoly

#Finished 397 851 833
#Timeouts 463 49 67

than the ACAS Xu case, we set an arbitrary timeout value of 3 days for each query. The actual
encoding as a Marabou query was performed according to the definition of standard robustness
(Definition 2, [20]).

Evaluation. Recall that our approach depends on our ability to compute tight lower and upper
output bounds as part of Algorithm 4. Multiple methods have been proposed for computing
such bounds, with varying degrees of accuracy — and with the more accurate ones typically
taking longer to run. Thus, in our first experiment, we set out to compare the different bound
propagation approaches, namely IBP, SBT, and DeepPoly, and measure their usefulness as part
of our framework.

Table 2 depicts the results obtained using the three approaches when applied to the ACAS-
Xu benchmarks. IBP, which is the most lightweight but also the least precise among the
approaches, performed the worst — leading to the highest number of timeouts. This indicates
that the bounds it computed were fairly loose, triggering large sequences of spurious examples
and refinement steps, eventually leading to the timeouts. DeepPoly, which is the most precise
among the three but also the most computationally expensive, achieved better bounds, and
consequently fewer timeouts. SBT, which is not as precise as DeepPoly but which is quicker to
run, obtained the best results. Thus, we selected SBT as the best configuration for our tool and
used it in the remaining experiments.

In our second experiment, we set out to measure the overall improvement afforded by our
approach. Since it has already been established that abstraction-refinement often improves over
direct verification [11,27,28,69], and because our approach extends the CEGAR-NN approach [28],
we used CEGAR-NN as our baseline.

The results of comparing the two tools on all benchmark sets are displayed in Table 3. Most
importantly, the results in the Timeouts and Finished columns confirm that CEGARETTE-NN

significantly improves over CEGAR-NN in terms of finished experiments: a total of 2674 for
CEGARETTE-NN, versus 1618 for CEGAR-NN — a 65% improvement. Because both tools use the
same underlying verifier, and apply the same basic abstraction and refinement operators, this
improvement stems directly from the property abstraction mechanism, and its ability to reduce
the number of spurious counter-examples.

The next column, Faster Verification Time, counts the number of instances in which one
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Table 3: Comparing CEGARETTE-NN and CEGAR-NN.

Timeout Finished
Faster

Verification
Time

Fewer
Refinement

Steps

ACAS-Xu CEGAR-NN

CEGARETTE-NN

501
49

397
851

272
115

73
2

MNIST-1 CEGAR-NN

CEGARETTE-NN

268
88

396
576

127
252

1
283

MNIST-2 CEGAR-NN

CEGARETTE-NN

716
228

230
718

83
134

0
133

MNIST-3 CEGAR-NN

CEGARETTE-NN

101
167

595
529

195
263

6
51

TOTAL CEGAR-NN

CEGARETTE-NN

1506
532

1618
2674

677
764

80
469

tool outperformed the other. It shows that CEGARETTE-NN achieves an improvement of 12.85%
over CEGAR-NN. Finally, the Fewer Refinement Steps column counts the number of experiments
in which the total number of refinement steps was smaller, and shows that CEGARETTE-NN

achieves an improvement of 586.25%. We note that all comparison metrics that we used (except
Timeouts) consider only those benchmarks that both tools successfully solved. We also mention
that, as with all SMT solvers, slight changes to the input can result in widely different search
paths and runtimes, as demonstrated, e.g., in the case of the MNIST-3 network.

The graphs in Figure 3 show how many experiments were completed by each method at
different time points. ACAS-Xu/MNIST (MNIST-1, MNIST-2 and MNIST-3 together) results
are represented in the left/right graph respectively, and indicate that CEGARETTE-NN is close in
performance to CEGAR-NN at short time constants, while achieving a significant advantage when
the threshold time is extended.

6 Related Work

There are two main approaches to validating the robustness of deep neural networks. The
first combines methods of dynamic analysis and heuristic search to find violations and test
the system (e.g. [19, 68, 72, 80]). The second, which we follow in this work, is that of formal
verification, where correctness is established using a rigorous, automated procedure [56].

Several DNN verification techniques have been studied in recent years, based on multiple
approaches: SMT-based techniques, such as Marabou [48], Reluplex [46], and others [38, 49];
techniques based on mixed integer programming, including Planet [26], MIPVerify [81] and
others [17, 18, 24, 25]; symbolic interval propagation techniques [82]; abstract interpretation
techniques [30]; and many others (e.g., [8, 41, 52, 59, 64, 84, 86]). Our approach can be used to
extend various abstraction and refinement mechanisms, and be integrated with many sound
and complete DNN verifiers as backends. Incomplete verification techniques could also be used
as part of our approach, potentially improving performance but at the cost of incompleteness;
we leave this for future work.
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Figure 3: Comparing the numbers of finished experiments over time between CEGARETTE-NN

and CEGAR-NN on ACAS-Xu (left) and MNIST (right) datasets.

There have been multiple attempts to utilize abstract interpretation [22] to decrease the
complexity of DNN verification, and expedite the verification process [30,75,89]. These methods
capture the behavior of propagated values in the network using abstract domains such as boxes,
zonotopes, or polyhedra. Often, these methods rely on coarse over-approximations, and are
incomplete; although various refinement methods, as well as integration with complete verifiers,
have been proposed to mitigate this.

Apart from the DNN abstraction technique that we leveraged here [28], other incomplete
abstraction techniques have been proposed [11]. These manipulate the neurons and the edges
of the network, using semantic similarity; utilize clustering methods in order to merge similar
neurons; or merge neurons and compute ranges of weights and biases that the merged neurons
can take. Integrating our framework with these additional approaches should be possible, and
is left for future work.

A few recent papers proposed to instrument CEGAR-based approaches for DNN verifica-
tion [28, 57]. The network is preprocessed such that, later on, multiple neurons can be merged
while causing a strict increase in the output values, hence over-approximating the original
network. Refinement is done by splitting past-merged neurons. Both are oblivious to the
underlying verification engine as long as it is sound and complete.

The work in [27] uses residual reasoning to optimize CEGAR-based approaches, given that
the backend applies case splitting. Another independent optimization for the CEGAR-based
approach for neural network verification was recently proposed in [93], where testing methods
are embedded during the formal verification process in order to quickly expose violations using
adversarial attacks.

As far as we know, our work is the first formal verification scheme which extends the basic
mechanism of CEGAR [21] by applying abstraction and refinement not only to the checked
system but also to the (output) property. Therefore, it should be compatible with any of the
aforementioned techniques.
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7 Conclusion

Neural networks are gaining momentum in many areas, but using them entails various risks.
Neural network verification tools seek to help overcome this issue, but are computationally
expensive — and afford only limited scalability. Abstraction-based approaches hold great po-
tential for expediting the verification process and allowing verifiers to scale to much larger
networks. Here, we took a step in this direction, by applying abstraction and refinement not
only to neural networks themselves but also to the properties being checked as part of the
verification query. We demonstrated that our method dramatically improves performance, by
reducing the number of spurious counter-examples encountered. The result is a significant boost
to the scalability of existing verification technology.

Moving forward, we plan to pursue several research directions. First, we plan to explore ad-
ditional techniques for property tightening given an abstract neural network. Second, we intend
to develop novel abstraction and refinement heuristics, which are optimized for CEGARETTE-NN
— i.e., which will allow better property tightening. Third, we plan to integrate our method
with additional, recently-proposed CEGAR-based approaches [11,69].
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[65] J. Nellen, E. Ábrahám, and B. Wolters. A CEGAR Tool for the Reachability Analysis of PLC-
Controlled Plants Using Hybrid Automata. In Proc. 3rd IEEE Int. Workshop on Formal Methods
Integration (FMi), pages 55–78, 2015.

[66] M. Ostrovsky, C. Barrett, and G. Katz. An Abstraction-Refinement Approach to Verifying Convo-
lutional Neural Networks. In Proc. 20th. Int. Symposium on Automated Technology for Verification
and Analysis (ATVA), 2022.

[67] C. Paterson, H. Wu, J. Grese, R. Calinescu, C. Pasareanu, and C. Barrett. DeepCert: Verification
of Contextually Relevant Robustness for Neural Network Image Classifiers. In Proc. 40th Int.
Comf. on Computer Safety, Reliability, and Security (SAFECOMP), pages 3–17, 2021.

[68] K. Pei, Y. Cao, J. Yang, and S. Jana. DeepXplore: Automated Whitebox Testing of Deep Learning
Systems. Communications of the ACM (CACM), pages 137–145, 2019.

[69] P. Prabhakar and Z. Afzal. Abstraction based Output Range Analysis for Neural Networks, 2020.
Technical Report. http://arxiv.org/abs/2007.09527.

[70] L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to Verification of Artificial
Neural Networks. In Proc. 22nd Int. Conf. on Computer Aided Verification (CAV), pages 243–
257, 2010.

[71] I. Refaeli and G. Katz. Minimal Multi-Layer Modifications of Deep Neural Networks. In Proc. 5th
Workshop on Formal Methods for ML-Enabled Autonomous Systems (FoMLAS), 2022.

[72] K. Ren, T. Zheng, Z. Qin, and X. Liu. Adversarial Attacks and Defenses in Deep Learning.
Engineering, 6(3):346–360, 2020.

[73] H. Riener, R. Ehlers, and G. Fey. CEGAR-Based EF Synthesis of Boolean Functions with an
Application to Circuit Rectification. In Proc. 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 251–256, 2017.

[74] S. Shamshirband, M. Fathi, A. Dehzangi, A. Chronopoulos, and H. Alinejad-Rokny. A Review
on Deep Learning Approaches in Healthcare Systems: Taxonomies, Challenges, and Open Issues.
Journal of Biomedical Informatics, 113, 2021.

[75] G. Singh, T. Gehr, M. Puschel, and M. Vechev. An Abstract Domain for Certifying Neural
Networks. In Proc. 46th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL), 2019.

[76] M. Sotoudeh and A. Thakur. Abstract Neural Networks, 2020. Technical Report. http://arxiv.
org/abs/2009.05660.

[77] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A Sim-

142

https://arxiv.org/abs/2207.00759
https://arxiv.org/abs/2207.00759
https://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1712.09213
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/2007.09527
http://arxiv.org/abs/2009.05660
http://arxiv.org/abs/2009.05660


Tighter Abstract Queries in Neural Networks Verification Cohen, Elboher, Barrett and Katz

ple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research,
15(56):1929–1958, 2014.
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