
EPiC Series in Computing
Volume 40, 2016, Pages 15–20

IWIL-2015. 11th International Work-
shop on the Implementation of Logics

Implementing Polymorphism in Zenon ∗

Guillaume Bury, Raphaël Cauderlier, and Pierre Halmagrand

Cedric/Cnam/Inria, Paris, France,
Guillaume.Bury@inria.fr Raphael.Cauderlier@inria.fr Pierre.Halmagrand@inria.fr

Abstract

Extending first-order logic with ML-style polymorphism allows to define generic axioms dealing
with several sorts. Until recently, most automated theorem provers relied on preprocess encodings into
mono/many-sorted logic to reason within such theories. In this paper, we discuss the implementation
of polymorphism into the first-order tableau-based automated theorem prover Zenon. This implemen-
tation led us to modify some basic parts of the code, from the representation of expressions to the
proof-search algorithm.

1 Introduction
Formal verification tends to be a common milestone in the development of software for safety-
critical systems. Among the family of verification techniques, those using automated deductive
tools raised confidence to a high level during last decades and are now used in a wide range
of fields. These achievements were made possible thanks to the ability of such automated
deductive tools to reason on specific theories, like set theory or arithmetic for instance, helped
by an efficient decision procedure for each theory. When reasoning in several theories combining
different sorts, it is often necessary to express some general axioms regarding all different
sorts. One solution is to postulate one axiom per sort, leading to a multiplication of axioms.
Another solution is to express axioms in a generic way. First-order logic extended with ML-style
polymorphism (FOL-ML) is a good candidate to address this issue.

Until recently, most automated deductive tools, like automated theorem provers (ATP) or
SMT solvers, were not handling polymorphism. Whenever someone wanted to use such an ATP
or SMT solver to prove statements coming from a FOL-ML theory, he relied on a preprocessing
phase to encode into a mono/many-sorted logic [1]. Such encodings generally modify theories
by deconstructing the shape of formulas and adding some new axioms, leading to less efficient
proof search. A solution to keep the original form of the input theory and the statement
is to develop some deductive tools which natively understand polymorphism. As far as the
authors know, implementation of polymorphism into an automated deductive tool began with
the development of the SMT solver Alt-Ergo [3]. Two other projects have since been released,
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Expressions

a, b, . . . ::= v (typed variable)
| A (metavariable)
| ε(e) (Hilbert’s operator)
| f(a1, . . . , an) (function/predicate application)
| a1 → . . .→ an → b (arrow type)
| > | ⊥ (true and false)
| a = b (equality)
| ¬a | a ∧ b | a ∨ b | a⇒ b | a⇔ b (logical connectives)
| ∀v : a. b (universal quantification on variables)
| ∃v : a. b (existential quantification on variables)

Figure 1: AST for types, terms and formulas

both based on superposition. The first one is a prototype based on the prover SPASS [8], and
the other one is the new ATP Zipperposition [7].

Zenon [4] is a first-order monosorted tableau-based ATP. We present in this paper some
insights about the implementation of polymorphism into Zenon. This extension has required to
properly adapt a large part of the existing code, from the representation of expressions to the
proof-search algorithm.

This paper is organized as follows: in Sec. 2, we describe the new syntax for typed ex-
pressions, in Sec. 3, we give the type-checking algorithm, and finally in Sec. 4, we discuss
modifications in the proof-search algorithm and give the results of a benchmark.

2 Syntax of typed expressions
In Zenon, both terms and formulas are represented using a single abstract syntax tree, presented
in Figure 1. This decision follows from the use of Hilbert’s operator to handle existentially
quantified formulas, which introduces terms that depend on formulas. When we implemented
typed expressions in Zenon, we chose to extend that single abstract syntax tree (AST) with the
arrow type constructor, so that it could also represent types, rather than introduce another AST
for types. This allowed us to minimize modifications to the code base, as well as reuse existing
code and benefit from features already implemented such as hashconsing and substitutions.

In our implementation, each function/predicate and node of the AST is tagged with an
optional type (itself built using the same AST). We then have four distinct classes of expressions
built using the AST :

• A constant Type, with an empty tag

• Types are built using variables, meta-variables, and ε-terms with tag Type, universal quan-
tification1, the arrow type constructor, and application of type constructors, i.e functions
whose type is of the form: Type→ . . .→ Type→ Type. Types are tagged with Type.

• Terms are built using variables, meta-variables, ε-terms and application of functions.
Terms are tagged with a type.

• Formulas are built using >, ⊥, equality of terms, application of predicates, logical con-
nectives, universal quantification and existential quantification of formulas. Formulas are

1Universal quantification in types is used to represent the type of polymorphic functions and predicates.
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(v : τ) ∈ Γ

Σ,Γ ` v ⇒ τ

(f : ∀α1. . . . ∀αn. τ
′
1 → . . .→ τ ′m → τ) ∈ Σ

Σ,Γ ` f(τ1, . . . , τn, a1, . . . , am) ⇒ τ{α1 := τ1, . . . , αn := τn}

(v : τ) ∈ Γ

Σ,Γ ` v ⇐ τ

Σ,Γ ` a⇒ τ Σ,Γ ` a⇐ τ Σ,Γ ` b⇐ τ

Σ,Γ ` a = b⇐ Prop
c ∈ {>,⊥}

Σ,Γ ` c⇐ Prop
Σ,Γ ` a⇐ Prop

Σ,Γ ` ¬a⇐ Prop
� ∈ {∧,∨,⇒,⇔} Σ,Γ ` a⇐ Prop Σ,Γ ` b⇐ Prop

Σ,Γ ` a�b⇐ Prop
Q ∈ {∀, ∃} τ = Type or Σ,Γ ` τ ⇐ Type Σ,Γ, v : τ ` a⇐ Prop

Σ,Γ ` Qv : τ. a⇐ Prop
Σ,Γ, v : Type ` a⇐ Type

Σ,Γ ` ∀v : Type. a⇐ Type
Σ,Γ ` τi ⇐ Type for i ∈ [0, n]

Σ,Γ ` τ1 → . . .→ τn → τ0 ⇐ Type

(f : ∀α1. . . . ∀αn. τ
′
1 → . . .→ τ ′m → τ ′0) ∈ Σ

σ := {α1 := τ1, . . . , αn := τn}
σ(τ ′0) = τ0

Σ,Γ ` τi ⇐ Type
Σ,Γ ` ai ⇐ σ(τ ′i)

for all i ∈ [1, n]

Σ,Γ ` f(τ1, . . . , τn, a1, . . . , am) ⇐ τ0

Figure 2: Zenon’s type-checking algorithm

tagged with a type constant Prop.

We then have access to the type of expressions through the get_type function, which returns
either Type, or a type.

3 Type checking

For efficiency reasons, the type-checking phase in Zenon occurs before the beginning of proof
search so that expressions are checked once and for all. Since the equality relation uses implicit
polymorphic typing, we require each quantifier in the input problem to specify the type of
the variables it binds (otherwise, formulas such as ∀x. x = x would be ambiguous) and each
function, type constructor, and predicate symbol to be declared with its type (this is required to
type formulas such as f(0) = f(1)). Since equality is the only implicitly polymorphic symbol,
we do not really need to infer types for all expressions but only for terms. We denote by
Σ,Γ ` t ⇒ τ the functional relation mapping a term to its inferred type and by Σ,Γ ` a ⇐ τ
the type-checking relation. These relations are defined in Figure 2 using a syntax-directed set
of typing rules.

We do not need to give rules for expressions which are not present in the input problem such
as meta variables and Hilbert’s epsilons. Moreover, we only need to define inference for terms.
Therefore it can be done by a single look-up in Σ or Γ. However, inference can return a type
for an ill-typed term because it does not take subterms into account; this is the reason why
in the rule for checking equality, we check back that a has the type returned by the inference
machinery.

3.1 Typing substitutions

During proof search, the only way to generate ill-typed expressions is by applying substitutions,
for example in the rules instantiating quantifiers and unfolding definitions. To avoid this issue,
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we check that substitutions are well-typed. However, there are at least two ways to define the
notion of well-typed substitution:

• Strongly well-typed substitution:
The substitution σ = {x1 := t1, . . . , xn := tn} is strongly well-typed if each xi has the
same type as ti

• Weakly well-typed substitution:
The substitution σ = {x1 := t1, . . . , xn := tn} is weakly well-typed if each xi{x1 :=
t1, . . . , xi−1 := ti−1} has the same type as ti{x1 := t1, . . . , xi−1 := ti−1}

The function performing substitutions in Zenon does not preserve strong well-typedness in
its recursive calls but only weak well-typedness which is, fortunately, enough to guarantee that
applying the substitution on a well-typed expression will result in a well-typed expression.

Strong well-typedness is faster to check because we only need to traverse the list
[(x1, t1); . . . ; (xn, tn)] once, leading to linear complexity. Checking that two terms have the same
type is performed in essentially constant time thanks to the type annotations of all expression
nodes (hence obtaining the types is fast) and hashconsing (hence comparing expressions is most
of the time as fast as comparing their hashes). On the other hand, checking weak well-typedness
is of quadratic complexity.

As a compromise between safety and efficiency we distinguish two substitution functions:
the old one, substitute_unsafe, preserving weak well-typedness in its recursive calls but not
performing any typing check; and a wrapper function substitute_safe checking2 that the
substitution it gets as argument is strongly well-typed and then calling substitute_unsafe.

In new version of Zenon extended with typing, only substitute_safe is used during proof
search and other parts of the new Zenon which need to substitute in well-typed expressions.

4 Proof Search

4.1 Dealing with Type Metavariables
Extension of Zenon to polymorphism slightly modifies the implementation of the proof-search
algorithm. The main modification deals with universal quantification over type variables. When
Zenon encounters a universally quantified formula ϕ, it generates a so-called metavariable linking
to ϕ by applying the δ∀M rule [5]. The original formula ϕ is kept in the context for later
instantiation.

For metavariables linked to quantified formulas over terms, the behavior of Zenon has not
changed: such metavariables are only used as tricks to find, by unification, some possible
instantiations for the original formulas that allow to close the local branches. After finding a
relevant value, Zenon instantiates the original formula by applying the δ∀inst rule and continues
its proof search.

For type metavariables, we have to instantiate original formulas as soon as possible, when
it makes possible the application of a further rule. Actually, only the relational rules of Zenon
(those dealing with the equality symbol) are concerned, because the possibility to apply them
depend on side conditions over the type of their parameters [5]. So, if we have some type
metavariables in a formula and if there are some possible instantiations that allow to apply one
of these rules, we instantiate the original formulas linked to the metavariables. In such a way,
we ensure to capture all the possible instantiations needed for the proof search.

2these checks can also be disabled
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337 Problems Zenon Old Zenon Typed Zipperposition Alt-Ergo
Proved 96 106 150 221

Mean Time (sec.) 1.9 0.95 3.3 0.64

Table 1: Experimental Results over the TPTP TFF1 Benchmark

4.2 Experimental Results
To assess our extension of Zenon to polymorphism, we performed an experiment using a bench-
mark made of all the 337 problems with a theorem status coming from the TFF1 [2] category
of the TPTP library, run on an Intel Xeon E5-2660 v2 2.20 GHz computer, with a timeout of
30 s and a memory limit of 1 GiB. We compare the new typed version of Zenon3 presented in
this paper with the previous monosorted one (using the encoding of types into pure first-order
logic [1] implemented into the Why3 platform) and the other automated deductive tools dealing
with polymorphism, Zipperposition v0.6.1 and Alt-Ergo v0.99.1, except the prototype based on
SPASS which does not yet read TFF1 syntax. The results are summarized in Tab. 1 and, for each
prover, they give the number of proved problems and the mean time needed to prove a problem.
This experiment shows that the polymorphic version of Zenon proves 10 more problems than
the monosorted one while being twice as fast. On the other side, the superposition-based ATP
Zipperposition proves 44 more problems than Zenon with a larger mean time and the SMT solver
Alt-Ergo proves 115 more problems with a lower mean time.

5 Conclusion
We have extended the automated theorem prover Zenon to polymorphism. Since we were adapt-
ing an existing code, we chose to minimize the impact of this extension to the original structure
of Zenon. The experimental results, presented in this paper, show that the polymorphic version
of Zenon is more efficient than the monosorted one on polymorphic problems.

Considering the significance of polymorphism in program verification, we hope that more
provers will integrate expressive typing systems in the future, especially since it does not af-
fect the generation of proof certificates [6] because proof checkers usually provide rich typing
systems.
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