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Abstract 
The paraclique algorithm provides an effective means for biological data clustering. 

It satisfies the mathematical quest for density, while fulfilling the pragmatic need for 
noise abatement on real data. Given a finite, simple, edge-weighted and thresholded 
graph, the paraclique method first finds a maximum clique, then incorporates additional 
vertices in a controlled manner, and finally extracts the subgraph thereby defined. When 
more than one maximum clique is present, however, deciding which to employ is usually 
left unspecified. In practice, this frequently and quite naturally reduces to using the first 
maximum clique found. In this paper, maximum clique selection is studied in the context 
of well-annotated transcriptomic data, with ontological classification used as a proxy for 
cluster quality. Enrichment p-values are compared using maximum cliques chosen in a 
variety of ways. The most appealing and intuitive option is almost surely to start with the 
maximum clique having the highest average edge weight. Although there is of course no 
guarantee that such a strategy is any better than random choice, results derived from a 
large collection of experiments indicate that, in general, this approach produces a small 
but statistically significant improvement in overall cluster quality. Such an improvement, 
though modest, may be well worth pursuing in light of the time, expense and expertise 
often required to generate timely, high quality, high throughput biological data. 

1 Introduction 
Clustering is a core task in biological network analysis, whereby a cluster is typically defined as a 

dense subgraph extracted from high throughput omics data using some measure of pairwise similarity 
between genes, proteins, metabolites or other biological entities. Popular similarity metrics include 
Pearson’s product-moment correlation, Spearman's and Kendall’s rank correlations, and methods better 
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suited for handling nonlinear relationships such as mutual information. The highest possible density 
occurs when every vertex is connected to every other vertex. A subgraph with this property is called a 
clique. Although challenging to compute, clique is thus the gold standard of clustering. 

An oft-used example is based on DNA microarray and gene co-expression analysis [1-3] in the 
context of the relevance network framework [4, 5]. In this classic setting, we begin with a complete 
graph whose vertices denote probe sets (gene surrogates), each of whose edges is assigned a weight 
equal to the similarity across all samples of the expression levels of its endpoints. Via thresholding [6] 
we next retain an edge if and only if its weight satisfies some predetermined lower bound, thereby 
producing an incomplete, unweighted graph on which advanced, scalable, clique-centric algorithms [7] 
can then be applied. 

The biological fidelity provided by these powerful algorithms has previously been studied [8] and 
shown to be superior to that provided by wide assortments of well-known and popular but less 
computationally-intensive methods, including K-means Clustering, NNN (Nearest Neighbor 
Networks), SOM (Self-Organizing Maps) and WGCNA (Weighted Gene Co-expression Network 
Analysis). This has further motivated the use of clique-based techniques, as exemplified by the bottom-
up approach originally called k-clique communities [9] (subsequently renamed clique percolation), and 
the more efficient top-down strategy known as paraclique first introduced in [10]. The paraclique 
algorithm in particular has found utility in numerous application domains, ranging from network 
science [11] to transportation planning [12] to anomaly detection [13]. In the health sciences alone, it 
has been employed in the study of lung cancer [14] and the exposome [15], as well as in transcriptomics 
[16], proteomics [17], epigenetics [18, 19], diabetes [20], allergic rhinitis [21], obesity [22], community-
acquired pneumonia [23] and even in studying the impact of low dose ionizing radiation on living 
organisms [24]. 

2 The Paraclique Algorithm 
A primary aim of the paraclique algorithm is to ameliorate the effects of noise, primarily by reducing 

type II errors (false negatives). It accomplishes this by expanding a maximum clique in a tightly 
controlled manner with non-clique vertices that are adjacent to most, but not necessarily all, elements 
of the clique. More precisely, let G denote a finite, simple, undirected, edge-weighted graph. A 
maximum clique M in G is a clique of largest size. A paraclique P consists of M augmented with non-
clique vertices via a user-defined parameter, g. Any non-clique vertex missing no more than g edges to 
M is added to P. Once computed, P is removed from G, the next paraclique is sought in G-P, and the 
process is iterated until G is decomposed into a series of paracliques. We refer the reader to [25] for 
density analyses and a more formal description of the paraclique method. A major motivation for 
paraclique’s augmentation strategy rests in the fact that clique-centric methods are highly sensitive to 
these missing edges, which may be lost due to noise, experimental data capture, the effects of 
thresholding, and a multitude of other factors dependent on the problem at hand.  

The main feature of interest here is the selection criteria by which a maximum clique M is chosen 
for augmentation. This question may at first seem moot given the computational recalcitrance of finding 
even one maximum clique, a classic NP-complete problem [26]. But modern, practical algorithms now 
make it feasible not only to find a single maximum clique, but to enumerate all of them [27]. With such 
capability now at hand, we created a test suite of graphs to measure the significance and consistency of 
maximum clique selection on cluster quality. For these we retained original edge weights, employed 
the well-known Gene Ontology (GO) [28, 29] as a proxy for a ground truth, and performed enrichment 
analysis [30] to determine how likely a cluster’s contents are to occur by mere chance alone. For each 
graph thus constructed, we compared paracliques expanded from a maximum clique with the highest 
average edge weight, from another with the lowest average edge weight, and from one chosen at 
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random. We note that, for a given graph, all maximum cliques have the same size, and thus a maximum 
clique with the highest (lowest) average edge weight will naturally also have the highest (lowest) total 
edge weight. 

3 Source Data 
We employed 28 Saccharomyces cerevisiae microarray expression datasets obtained from the Gene 

Expression Omnibus (GEO) [31-33]. S. cerevisiae is a sound choice [8], since it is one of the simplest 
and best-studied eukaryotic organisms, possessing numerous essential cellular processes analogous to 
those found in humans. The first column of Table 1, to follow, contains the GEO accession numbers 
for datasets used in this study. For each, we constructed 21 weighted graphs using Pearson’s product-
moment correlations, with thresholds set at uniform increments of 0.01 over the interval 0.70 to 0.90, 
which is a common range for threshold preference. This produced a total of 588 graphs ranging in size 
from 1893 to 9335 vertices. Densities ranged from roughly 0.09% to 25%, where we define density in 
the usual way as the number of edges present divided by the maximum number of edges possible. 

4 Computational Milieu 
On each graph we tested the three aforementioned maximum clique selection strategies. Because 

high performance computing was required for a study of this magnitude, we ran the paraclique 
algorithm using the ORNL CADES platform [34], and halted a run only if it failed to complete its task 
within 48 hours. All but 20 graphs were solved in this fashion, and these 20 were of course excluded 
from the analysis. Over the remaining 568 graphs, we then performed GO functional enrichment using 
the tools at DAVID [35] on the first paraclique produced in each of the 1704 resultant paraclique 
listings. To produce a single score for each paraclique, we extracted the enrichment p-value of its most 
significant GO term. 

5 Experimental Results 
In Table 1, we list results obtained for graphs constructed at a sample threshold 0.80. Often the 

choice between a highest, a lowest, and a randomly chosen maximum clique makes little difference in 
p-value. On the other hand, this difference can sometimes be quite large, as is seen for example in the 
case of GDS2267. Of these 28 graphs, 11 had a better p-value in the paraclique constructed using a 
highest weight maximum clique versus a lowest weight maximum clique, nine exhibited no difference, 
and in eight a maximum clique of lowest weight produced a paraclique with a better p-value than did a 
maximum clique of highest weight. Thus, the ratio 11/8=1.375 denotes a measure of how often a better 
p-value was obtained by choosing a highest versus a lowest weight maximum clique. If this ratio across 
all tests tends to be consistently greater than 1, then it may be viewed as a reliable indication that 
selecting a highest weight maximum clique generally produces more highly enriched paracliques, which 
may then result in improved average cluster quality. 
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Table 1: Experimental results obtained at a threshold of 0.80. 

Dataset Maximum 
Clique 

Average Paraclique Edge Weights and Enrichment Scores 

 Size Number Highest P-value Lowest P-value Random P-value 

GDS344 87 6 0.9111 1.10E-49 0.9099 5.30E-50 0.9105 5.30E-50 

GDS362 304 75184 0.9267 2.60E-09 0.9259 1.90E-10 0.9267 1.90E-10 

GDS600 1736 40 0.9584 1.50E-06 0.9584 1.40E-06 0.9584 1.50E-06 

GDS772 78 6 0.9134 2.70E-26 0.9118 2.70E-26 0.9118 2.70E-26 

GDS777 87 15 0.9101 2.00E-08 0.9096 2.00E-08 0.9096 2.00E-08 

GDS922 450 2160 0.9235 5.20E-11 0.9230 5.80E-11 0.9232 6.50E-11 

GDS991 317 2468 0.9245 1.10E-95 0.9224 1.70E-85 0.9243 6.90E-97 

GDS1013 269 19152 0.9127 3.30E-127 0.9112 6.90E-123 0.9123 3.30E-127 

GDS1103 312 672 0.9293 8.10E-20 0.9283 8.10E-20 0.9290 9.40E-20 

GDS1534 154 180 0.9140 3.40E-08 0.9133 1.20E-06 0.9137 3.40E-08 

GDS1550 361 240 0.9469 2.60E-05 0.9459 2.50E-05 0.9464 2.60E-05 

GDS1551 453 48 0.9408 5.30E-06 0.9405 4.80E-06 0.9405 4.80E-06 

GDS1611 182 258 0.8847 3.90E-05 0.8839 3.70E-05 0.8845 3.70E-05 

GDS1674 93 160 0.9102 8.00E-14 0.9078 1.40E-13 0.9090 1.40E-13 

GDS2050 617 1152 0.9365 2.10E-32 0.9363 2.10E-32 0.9364 2.80E-32 

GDS2079 1611 16 0.9563 8.30E-07 0.9563 8.30E-07 0.9563 4.50E-07 

GDS2267 168 312 0.9058 7.50E-103 0.9035 3.00E-98 0.9058 2.60E-101 

GDS2462 1351 13 0.9538 3.10E-46 0.9535 1.30E-43 0.9537 3.10E-46 

GDS2508 49 11 0.9036 1.40E-03 0.8980 1.50E-03 0.9002 1.50E-03 

GDS2522 428 13724 0.9321 1.40E-03 0.9313 1.50E-03 0.9318 2.10E-04 

GDS2625 309 80 0.9191 3.00E-06 0.9187 2.80E-06 0.9189 2.80E-06 

GDS2663 282 600 0.9283 5.80E-18 0.9269 4.40E-16 0.9273 4.40E-16 

GDS2925 89 60 0.8940 1.10E-03 0.8930 3.80E-03 0.8934 4.40E-03 

GDS2969 119 24 0.9161 1.80E-12 0.9143 1.80E-12 0.9148 1.80E-12 

GDS3061 181 152 0.9218 2.80E-25 0.9198 2.80E-25 0.9208 2.80E-25 

GDS3137 562 1088 0.9354 1.00E-04 0.9350 1.00E-04 0.9353 1.50E-04 

GDS3198 383 2184 0.9333 3.50E-06 0.9327 1.70E-06 0.9331 2.80E-06 

GDS3438 3424 2 0.9898 8.50E-11 0.9898 8.50E-11 0.9898 8.50E-11 
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5.1 Highest versus Lowest Weight Maximum Cliques 
In Table 2, we summarize results comparing a highest weight paraclique to a lowest weight 

paraclique for all 21 thresholds under study. For each threshold, we list the number of graphs in which 
a highest weight maximum clique produced a lower p-value paraclique than did a lowest weight 
maximum clique, the number of graphs in which the reverse was true, the number of graphs in which 
the p-values were no different, and a ratio denoting the number of times highest weight was better to 
the number of times lowest weight was better. Overall, highest weight was better in 234 graphs, there 
was no difference in 177 graphs, and lowest weight was better in 157 graphs. Interestingly, the ratio 
was greater than one at all 21 thresholds, suggesting that it is generally beneficial to select a maximum 
clique of highest weight over one of lowest weight.  Over the 1136 graphs tested, choosing a highest 
versus a lowest weight maximum clique resulted in improved cluster quality 1.490 times more often 
than it resulted in worse cluster quality. 

To estimate statistical significance, we employed two binomial tests. The only difference between 
them was the probability of success. For the first test, shown in the last column of Table 2, we assumed 
an equal likelihood for each of three possible outcomes: a better, a worse , or an unchanged enrichment 
score. Because 234 outcomes were actually better, 157 were actually worse, and 177 turned out to be 
unchanged, this test produced a significant result, with p = 0.0000163. For the second test, we used the 
observed proportion of graphs for which there was no difference as an estimate of the proportion of “no 
difference” graphs in the population. This assumed that, for all other graphs, a paraclique constructed 
using a highest versus a lowest weight maximum clique had equal likelihood of producing a better p-
value. This test also yielded a significant result, with p = 0.000122. 

Table 2: Paraclique with highest weight maximum clique vs paraclique with lowest weight maximum 
clique. 

Threshold Highest 
Better 

No Difference Lowest 
Better 

Highest Better / 
Lowest Better 

Binomial 
P-value 

0.70 16 6 4 4 2.14E-03 
0.71 10 7 6 1.667 9.96E-02 
0.72 10 4 8 1.25 8.44E-02 
0.73 11 6 9 1.222 9.96E-02 
0.74 13 8 6 2.167 4.31E-02 
0.75 14 5 8 1.75 2.15E-02 
0.76 11 8 8 1.375 1.12E-01 
0.77 13 8 7 1.857 5.36E-02 
0.78 15 7 6 2.5 1.34E-02 
0.79 9 10 8 1.125 1.61E-01 
0.80 11 9 8 1.375 1.23E-01 
0.81 12 7 8 1.5 7.47E-02 
0.82 12 8 8 1.5 8.72E-02 
0.83 9 12 7 1.286 1.58E-01 
0.84 10 9 9 1.111 1.50E-01 
0.85 11 8 9 1.222 1.23E-01 
0.86 11 8 9 1.222 1.23E-01 
0.87 8 13 7 1.143 1.42E-01 
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0.88 10 10 8 1.25 1.50E-01 
0.89 10 10 8 1.25 1.50E-01 
0.90 8 14 6 1.333 1.42E-01 
Total 234 177 157 1.490 1.63E-05 

 

5.2 Highest versus Random Weight Maximum Cliques 
In Table 3, we list the results of testing whether choosing a highest weight maximum clique may be 

superior to choosing an arbitrary maximum clique, a process we simulated by selecting a maximum 
clique at random from among all maximum cliques enumerated. Once again, all ratios in the penultimate 
column are greater than or equal to one, and so we conclude that choosing a highest weight maximum 
clique tends to be wiser than merely making an arbitrary choice. Overall, the highest weight was better 
in 216 graphs, there was no difference in 225 graphs, and a random choice was better in 127 graphs. At 
first these differences may not appear as striking as did the differences between using a highest versus 
a lowest maximum clique. For example, the number of graphs for which there was no difference is 
noticeably larger in Table 3 than it was in Table 2. On the other hand, choosing a highest weight 
maximum clique resulted in improved cluster quality 1.701 times more often than it resulted in worse 
cluster quality, which is a slightly higher ratio than that computed from Table 2. Moreover, repeating 
the two binomial tests just described, we obtained significant results for both, with p = 0.00219 and p 
= 0.0000124, respectively. 

Table 3: Paraclique with highest weight maximum clique vs paraclique with random maximum 
clique. 

Threshold Highest 
Better 

No Difference Random 
Better 

Highest Better / 
Random Better 

Binomial P-
value 

0.70 17 3 6 2.833 6.29E-04 
0.71 9 12 2 4.5 1.42E-01 
0.72 8 6 8 1 1.67E-01 
0.73 10 8 8 1.25 1.37E-01 
0.74 11 12 4 2.75 1.12E-01 
0.75 11 6 10 1.1 1.12E-01 
0.76 13 9 5 2.6 4.31E-02 
0.77 15 11 2 7.5 1.34E-02 
0.78 11 10 7 1.571 1.23E-01 
0.79 11 11 5 2.2 1.12E-01 
0.80 9 10 9 1 1.58E-01 
0.81 9 11 7 1.286 1.61E-01 
0.82 10 11 7 1.429 1.50E-01 
0.83 8 14 6 1.333 1.42E-01 
0.84 12 12 4 3 8.72E-02 
0.85 9 12 7 1.286 1.58E-01 
0.86 7 14 7 1 1.09E-01 
0.87 11 12 5 2.2 1.23E-01 
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0.88 9 13 6 1.5 1.58E-01 
0.89 9 13 6 1.5 1.58E-01 
0.90 7 15 6 1.167 1.09E-01 

Total 216 225 127 1.701 2.19E-03 

 

5.3 Random versus Lowest Weight Maximum Cliques 
Lastly, we used the same approach to compare paracliques constructed using random versus lowest 

weight maximum cliques. A random choice was better in 191 graphs, there was no difference in 215 
graphs, and a lowest choice was better in 162 graphs. Although the aforementioned ratio was still above 
one (at 1.179), neither binomial test reached the level of significance, with p = 0.035 and p = 0.015, 
respectively. 

6 Discussion 
As can be seen in Table 1, there is sometimes little difference in enrichment p-values. And indeed, 

as can be seen in Tables 2 and 3, there are instances for which the choice makes no difference at all. 
Close scrutiny reveals that this is usually due to significant overlap between maximum cliques. In 
GDS344, for example, it turns out that 84 (of 87) vertices appear in all maximum cliques at a threshold 
of 0.8. We also note that the number of maximum cliques can vary greatly between datasets, and even 
between graphs constructed at different thresholds from the same dataset. In Table 1, for instance, we 
witnessed from 2 to 75184 maximum cliques at a single threshold. And GDS2925 had but one 
maximum clique when thresholded at 0.89, but 95044 when thresholded at 0.74. 

These issues are relevant because large numbers of maximum cliques can dramatically increase 
computational costs. Thus, we tested only the first paraclique produced under each criterion, else time 
requirements quickly become prohibitive. To see this, note that not only is clique extraction an 
expensive operation in its own right, but a sample graph with, say, 100 different maximum cliques will 
yield 100 different first paracliques that, once deleted, leave a set of 100 new graphs, each of which 
may again have 100 different maximum cliques, paracliques and so on ad infinitum. 

7 Conclusions and Directions for Future Research 
In summary, these comprehensive tests provide convincing evidence that selecting a highest weight 

maximum clique tends to produce more functionally enriched paracliques than does choosing either a 
lowest weight or an arbitrary maximum clique. While this seems rather intuitive and to be expected, the 
effect size has been small, and so a large number of graphs has been required to confirm this 
relationship. Across Tables 2 and 3, for example, only two thresholds are significant at p = 0.01. Every 
other result, when analyzed alone, is non-significant. It is therefore only when results at many thresholds 
are combined that we reach a large enough sample size for the maximum clique choice to meet the 
standards of statistical significance. 

Future research directions beckon, motivated in no small part by the significance of incremental 
improvements in solution quality given the enormous costs and staggering delays frequently 
encountered in producing high quality data. This general line of work could be applied, for example, to 
proteomic, metabolomic, epigenetic and other sorts of high throughput biological data to which the 
paraclique algorithm has already shown utility. This study might also be extended to more than just the 
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first paraclique distilled from each graph. Similarly, a variety of alternatives to Pearson product-moment 
correlation could be tested. 
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