
 
 
 
 
 
 
 
 
 

Building a Distributed System for Live Virtual 
Machine Introspection 

Steven Valle, 
Nagarajan Prabakar 

School of Computing and Information Sciences 
Florida International University 

Miami, USA 
{svall052, prabakar}@fiu.edu 

 

Himanshu Upadhyay 
Applied Research Center 

Florida International University 
Miami, USA 

upadhyay@fiu.edu 
 
 

Abstract 

The introspection of virtual machines is an important aspect of protecting against the 
threat of malware that can hide from traditional automated malware-detection systems. 
A distributed system for live virtual machine introspection is presented utilizing the Xen 
Project hypervisor and LibVMI for introspection. The system incorporates the importing 
of VMs through the OVF specification, VM management through libvirt, and the 
streaming of various kernel data structures and system calls into data stores with no delay 
between introspection and storage. 

 
 

1 Introduction 
The Cyber Threat Automation and Monitoring System (CTAM) is a project at the Applied Research 

Center funded by the Test Resource Management Center (TRMC) that provides a testbed environment 
for the live introspection of virtual machines for use in anomaly detection. As a project mainly 
implemented by undergraduate and graduate students (with several student transitions over the years), 
it was important for the system being built to have the ability to evolve over time and be modular to the 
point where new students to the team could have contributions. In this paper, we will be presenting the 
design and implementation of the backend system used to support the CTAM project. 

The main goal behind our introspection system is to package the full stack of tools needed to perform 
live virtual machine introspection. The following specifications were crucial in building it: 

EPiC Series in Computing

Volume 89, 2022, Pages 72–80

Proceedings of 35th International Conference on
Computer Applications in Industry and Engineering

Y. Shi, G. Hu, K. Kambhampaty and T. Goto (eds.), CAINE 2022 (EPiC Series in Computing, vol. 89),
pp. 72–80



 

• Agentless introspection support for x86 Windows and Linux virtual machines 
• Performance of VMs must be minimally affected under introspection 
• Virtual machine management support 
• Scalability for multiple hypervisors and virtual machines 
• API support for web front-end 

In the following sections, we will outline the decisions taken for building the infrastructure, 
programming languages, and libraries selected to enable management and streaming pipelines, and 
problems we encountered in scaling the system and our solutions to these problems. 

 
 

2 Designing the system 
The main objective of the CTAM project involved implementing machine learning and deep 

learning models to detect anomalous behavior in processes operating inside virtual machines. 
Therefore, the first step in building a testbed for the extraction of this data is picking an introspection 
library and hypervisor. The second step was deciding on how to store the extracted data and operate on 
it. The third step involved designing API endpoints for executing introspection jobs and managing 
hypervisors and VMs in the system. 

2.1 Introspection library and Hypervisor 
The decision of which introspection library and hypervisors to focus on was a decision made in 

tandem. As open-source projects, LibVMI and the Xen Project were the library and hypervisor chosen. 
LibVMI [12] is a project born out of the XenAccess Project [1] whose focus is on reading and writing 
memory from virtual machines, accessing CPU registers, pausing and unpausing VMs, and trapping on 
hardware events (cite), giving us the tools necessary to build introspection applications. With its 
integration into introspection tools like Volatility [7] and Rekall [8], we felt that it was the best choice 
to get started with. 

 
 

Figure 1 [5]: LibVMI and its supported platforms, supported OS, and application structure. 
 

As shown in Figure 1, LibVMI must reside on either the Host OS or a privileged VM of a 
Hypervisor. Our Hypervisor being Xen, the logical choice to place our introspection application is 
inside of its privileged VM, Domain 0. The structure of the Xen Hypervisor, as shown in Figure 2, 

Building a Distributed System for Live Virtual Machine Introspection S.Valle et al.

73



 

dictates that only this privileged VM has direct access to hardware resources and oversees 
communication with the unprivileged VMs. 

 

Figure 2 [2]: Xen architecture. 
 

2.2 Data Storage and Analytics 
The data we were set to extract from virtual machines was inherently very structured. As an 

example, for process monitoring on Windows and Linux, we were to extract the Executive Process 
Block and task_struct data structures for active processes on each respectively. Due to the nature of the 
data, a relational database system seemed to be the best choice at the time. 

Coincidentally, during the design phase of the project, MSSQL 2017 was released with a new 
service named Machine Learning Services that integrated a Python/R environment into the MSSQL 
databases. With machine learning being a big part of the project, MSSQL 2017 seemed to be the perfect 
choice for not only storing data but also performing analytics. The usage of stored procedures in 
MSSQL made the workflow of loading data, storing, building models from the data, and serving the 
models for prediction as effortless as possible. 

 

Figure 3 [3]: MSSQL Machine Learning Services workflow for executing Python scripts in-database. 
 

The uses for the MSSQL database then included the following: 
a) Tables describing Hypervisor and VM metadata for management 

Building a Distributed System for Live Virtual Machine Introspection S.Valle et al.

74



 

b) Tables describing extracted data structures for Windows and Linux 
c) Python scripts for building machine learning models and storing them 
d) Python scripts for serving machine learning models and storing predictions 

2.3 Overview 
There is one application for management and launching introspection jobs that is collocated with 

the hypervisor, exposing a SOAP endpoint. One application for introspecting VMs that is launched by 
the introspection manager, and python scripts coupled with the MSSQL database for building machine- 
learning models and ingesting data. This essentially creates two environments that can be scaled 
independently. 

 
 

Figure 4: CTAM introspection. 
 
 

3 Introspection and Management Server 
The Introspector application is a server application exposing a SOAP API that enables the 

management of virtual machines and the execution and coordination of introspection jobs on those 
virtual machines. The application is written in Go. 

Building a Distributed System for Live Virtual Machine Introspection S.Valle et al.

75



 

3.1 Virtual Machine Management 
The ability to manage virtual machines in the environment is an essential feature that helped the 

system to become operational. With this feature, we added the ability to perform the following 
operations through the SOAP API: 

a) Resume VM 
b) Start VM 
c) Pause VM 
d) Force Stop VM 
e) Restart VM 
f) Create VM 
g) VCPU Configuration 
h) RAM Configuration 
i) Import VM 
j) View VM 

Operations a - h were fully implemented through the libvirt [6] Go API. The Create VM operation 
worked through a templating system where previously allocated VMs were abstracted into having three 
sets of QCOW2 images. These images consisted of Master images, Template images, and Operational 
images. The master image is the original VM image unused, template images are copies of the master 
image, and operational images are template images renamed and designated to a new VM. Template 
images were configured to be self-replicating up to a specified amount so that the creation of a VM 
does not have to wait until a master image is finished being copied. The three types of VM images were 
stored on the hypervisor file system. 

The import operation brought additional file types besides the QCOW2 image of the VM. To give 
the ability for users to upload their exports and have the Introspector access them, we used a Samba 
share as an intermediary. Users could upload their files to the Samba share and using the SOAP API 
specify to the Introspector what to import. This essentially built a repository of OVA and OVF packages 
that the Introspector had access to. 

The View VM operation was implemented by utilizing the noVNC [10] server application. This 
VNC server provides the capability to view and use the VM through a browser with the addition of a 
Web Socket proxy that was implemented in the Introspector. 

3.2 Importing Virtual Machines 
When it came time to expand our capabilities and include support for introspecting arbitrary VMs, 

the import feature was implemented. To target the widest range of virtual machine managers and their 
exporting mechanisms, we decided to implement our import functionality by adhering to the Open 
Virtualization Format (OVF) [9]. 

The OVF specification lays out an industry standard packaging format for the distribution of virtual 
systems onto and between virtualization platforms. The structure of an OVF package includes the 
following files: 

• One OVF descriptor with extension .ovf 
• Zero or one OVF manifest with extension .mf 
• Zero or one OVF certificate with extension .cert 
• Zero or more disk image files 
• Zero or more additional resource files, such as ISO images 

An OVF package can be stored as a set of files or as a compressed file with the .ova extension. For 
our purposes, we focused on parsing OVF packages by analyzing the OVF descriptor in its entirety but 
only implementing the necessary fields needed to get a VM functional. These fields are: 

Building a Distributed System for Live Virtual Machine Introspection S.Valle et al.

76



 

• VirtualSystem for descriptive information of VMs 
• VirtualSystemCollection for allowing the import of multiple VMs form a single package 
• ResourceAllocationSection for identifying the resources needed to boot the VMs 
• References for linking file names to what they represent in virtual hardware 
• DiskSection for identifying disks attached to VMs 
• BootDeviceSection for identifying the virtual device to boot from 

Once the OVF descriptor has been parsed for creating the VMs, the next step is to convert the file 
references that link to virtual disks into QCOW2 disk images for use in Xen. The qemu-img utility was 
used for this purpose and supports conversions with the QCOW2, QED, RAW, VDI, VHD, and VMDK 
formats. After conversion, an XML following the libvirt specification is generated for importing the 
VM into Xen. 

3.3 Preparing Virtual Machines for Introspection 
One of the requirements needed for efficient and accurate introspection is the utilization of symbol 

files. Symbols files contain debugging information and are subsequently used by debugging 
applications. Kernels also have symbol files for debugging them. Through the parsing of these symbol 
files, profiles for specific kernels are created that inform introspection applications where data structures 
are located in memory. 

For virtual machines using Linux kernels, we kept a repository of Rekall and Volatility profiles that 
described it. For virtual machines using a Windows operating system, we built the profiles using the 
vmi_win_guid tool from LibVMI, the Windows symbol server, Rekall’s parse_pdb utility, and 
Volatility’s pdbconv utility. After generating these profiles, virtual machines and these profiles would 
be linked together in the MSSQL database for use later in introspection. 

 
 

4 Data extraction 
The LibVMI library gives unrestricted access to virtual machines and their memory through its 

usage of Xen management APIs. This library is accessible directly through C applications and indirectly 
through a Python interface. We chose to stick with Go for developing all applications in the 
introspection system and as such, the security agent process (introspection application) had to gain 
access to the C library. 

Besides our own introspection implementation using LibVMI, we also utilized the Drakvuf utility 
to monitor system calls in VMs. In the following subsections, we will explain how we interfaced Go 
with C using CGO, how we integrated Drakvuf into our solution, and how we developed a stream 
processing pipeline in Go. 

4.1 Interfacing with LibVMI through CGO 
CGO is a pseudo-package in Go that allows for calling C functions and variables from Go and vice- 

versa. The way to interface C with Go starts at the top of the file where the “C” package is imported. 
Any comment before this import, known as the preamble, defines the environment that C code will run 
in. 

Building a Distributed System for Live Virtual Machine Introspection S.Valle et al.

77



 

 
Figure 5: The #cgo directive in lines 1-3 is used to tweak the behavior of the compiler, line 4 imports a 

header file in C, line 5 is the “C” import in Go. 
 

When structuring the way in which we interact with the C portion of our code, aptly named ARC- 
VMI, it was essentially treated as the library to a normal C application with no dependencies on Go 
code. When it came to extracting data, a C function is called from Go that returns a C structure 
containing the information for different data structures, usually containing some integer values, 
character arrays, and dynamically allocated arrays of other C structures. For every C structure there will 
be an equivalent Go structure to wrap the data around once it is generated. 

4.2 Drakvuf 
The Drakvuf [11, 4] utility is an open-source project that provides a virtualization-based agentless 

black-box binary analysis system. Among its many plug-ins, we utilized its system call monitoring 
plugin for feeding into a machine-learning model. A model that learns the behavior based on the usage 
of system calls is created for each process of concern. Drakvuf is a shell application and as such, its 
output is printed to the standard output, in the normal case being the shell. For our purposes, we attach 
a pipe from Go into the Drakvuf applications standard output and consume the data in a stream. 

 

4.3 Stream processing with Go routines and Channels 
With our LibVMI implementation for extracting data (_EPROCESS and _ETHREAD blocks, VAD 

trees, Interrupt Descriptor Table, System Call Table) and the consuming of Drakvuf extracted system 
call data, we have two separate pipelines for introspection. Both pipelines are very different from each 
other and utilize a LibVMI instance tied to the VM so they cannot be run at the same time on the same 
VM. We will now go through the details of both workflows and how we implemented stream processing 
and insertion in Go. 

 
ARC-VMI workflow: 

• Create a SQL connection pool. 

• For each VM being introspected in the hypervisor: 

a. Initialize LibVMI instance. 
b. Parse through Rekall/Volatility offsets and store into C structure. 
c. Create a spout channel for each C data structure containing VM data. 
d. Run a goroutine to insert VM data into MSSQL DB. 
e. Start introspection. 

Drakvuf workflow: 

• Create a SQL connection pool. 

• For each VM being introspected in the hypervisor 
a. Declare Drakvuf command execution. 
b. Attach a pipe to Drakvuf standard output. 

Building a Distributed System for Live Virtual Machine Introspection S.Valle et al.

78



 

c. Feed pipe into an io.Reader interface for reading from a stream. 
d. Create a “spout” channel for Drakvuf strings. 
e. Create a “sequence” channel where all system calls get inserted into. 
f. Create generic “system call type” channels where specific system call types can be 

filtered for. 
g. Run a “stream splitter” goroutine that filters output from the “spout” channel based 

on the system call type and inputs into the appropriate “system call type” channel. 
h. Run a goroutine to insert VM data into MSSQL DB. 
i. Start Drakvuf command. 

 
Structuring the execution of Go code in this way essentially allows us to do two things. Firstly, to 

set up a pipeline for how data will be ingested, pre-processed, and outputted before any introspection 
starts. Once introspection does start, all operations will be executed concurrently as data is extracted. 
Secondly, once introspection is done, all the data will be residing in the database with no delay. 

 

4.4 Conclusion 
As we set out to research the viability of utilizing machine learning and deep learning techniques 

for monitoring the runtime state of virtual machines, an all-inclusive system for introspection was built. 
The problems of preparing virtual machines for introspection, interacting with virtual machines under 
introspection, and the building of efficient data pipelines were tackled. Alleviating these problems 
allowed the data science and penetration testing teams to iterate over new data and virtual machines 
seamlessly.

Building a Distributed System for Live Virtual Machine Introspection S.Valle et al.

79



 
 
 

References 
 

[1] B. Payne, M. Carbone and W. Lee, "Secure and Flexible Monitoring of Virtual Machines," in 
Twenty-Third Annual Computer Security Applications Conference, Miami Beach, FL, USA, 
2007. 

[2] "Xen project software overview," [Online]. Available: 
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview. 

[3] "What is SQL Server Machine Learning Services (Python and R)? | Microsoft Docs," 
Microsoft, [Online]. Available: https://docs.microsoft.com/en-us/sql/machine-learning/sql- 
server-machine-learning-services?view=sql-server-2017. 

[4] "DRAKVUF® Black-box Binary Analysis System," [Online]. Available: 
https://drakvuf.com/. 

[5] D. PAne, S. Maresca, L. K. Tamas and A. Saba, "LibVMI," [Online]. Available: 
https://libvmi.com/. 

[6] "Libvirt," [Online]. Available: https://libvirt.org/. 

[7] "Release v1.0.0 · volatilityfoundation/volatility3," Github, [Online]. Available: 
https://github.com/volatilityfoundation/volatility3/releases/tag/v1.0.0. 

[8] "Rekall Forensics," [Online]. Available: http://www.rekall-forensic.com/releases/release171. 

[9] "DMTF," 27 August 2015. [Online]. Available: 
https://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.1.pdf. 

[10] "noVNC," [Online]. Available: https://novnc.com/info.html. 

[11] S. Lengyel Tamasl Maresca, B. Payne, G. Webster, S. Vogl and A. Kiayias, "Scalability, 
fidelity, and stealth in the DRAKVUF dynamic malware analysis system," in Proceedings of 
the 30th Annual Computer Security Applications Conference, 2014-12-08,p.386-395, 2014. 

[12] H. Xiong, Z. Liu, W. Xu and S. Jiao, "Libvmi: A Library for Bridging the Semantic Gap 
between Guest OS and VMM," in 2012 IEEE 12th International Conference on Computer 
and Information Technology, 2012-10, p.549-556, 2012. 

Building a Distributed System for Live Virtual Machine Introspection S.Valle et al.

80


