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Abstract 
Gene co-expression networks based on gene expression data are usually used to 

capture biologically significant patterns, enabling the discovery of biomarkers and 
interpretation of regulatory relationships. However, the coordination of numerous 
splicing changes within and across genes can exert a substantial impact on the function 
of these genes. This is particularly impactful in studies of the properties of the nervous 
system, which can be masked in the networks that only assess the correlation between 
gene expression levels. A bioinformatics approach was developed to uncover the role of 
alternative splicing and associated transcriptional networks using RNA-seq profiles. Data 
from 40 samples, including control and two treatments associated with sensitivity to 
stimuli across two central nervous system regions that can present differential splicing, 
were explored. The gene expression and relative isoform levels were integrated into a 
transcriptome-wide matrix, and then Graphical Lasso was applied to capture the 
interactions between genes and isoforms. Next, functional enrichment analysis enabled 
the discovery of pathways dysregulated at the isoform or gene levels and the 
interpretation of these interactions within a central nervous region. In addition, a Bayesian 
biclustering strategy was used to reconstruct treatment-specific networks from gene 
expression profile, allowing the identification of hub molecules and visualization of 
highly connected modules of isoforms and genes in specific conditions. Our 
bioinformatics approach can offer comparable insights into the discovery of biomarkers 
and therapeutic targets for a wide range of diseases and conditions.   
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1 Introduction 
Gene co-expression networks are widely used to uncover the functionality of genes and interaction 

between genes at a system level. The constructed networks can enhance the understanding of the role 
and coordination of genes in diseases, treatments, environmental and physiological conditions, therefore 
advancing the understanding of molecular mechanisms underlying these conditions [1]. Most 
approaches used to reconstruct co-expression networks target gene relationships and use gene-level 
information. In these networks, nodes represent genes and  edges reflect a high correlation between two 
genes based on the expression profile [2]. These approaches exclude information from alternative 
precursor-mRNA splicing, a critical post-transcriptional modification that can produce transcriptomes 
with distinct biological functions across tissues, brain regions, or other conditions [3]. Moreover, the 
disruption of splicing processes can play a significant role in the severity of diseases or impact of 
treatment, especially in processes that encompass the central nervous system.    

Multiple studies have identified splicing variants involved in the incidence and severity of 
neuropathic pain [4-6]. However, the role on pain sensitivity of the transcript isoforms that result from 
alternative splicing events remain poorly understood [6, 7]. Moreover, the typical study of transcript 
isoforms on an individual basis has the potential to hinder the detection of additional splicing variants 
and understanding of the interaction between these molecules and sensitivity to pain.  RNA-seq 
profiling enables the study of the association between disorders such as sensitivity to pain both at the 
gene and transcript isoform levels. Bioinformatics approaches that mine the information available on 
the same samples at the gene and isoform levels can offer additional insights into the roles of both types 
of molecules on conditions such as sensitivity to pain. Furthermore, network inference approaches 
enhance the insights gained from the information available and could increase the power to detect novel 
alternative splicing isoforms and genes underlying diseases and disorders.  

In the present work, a bioinformatics approach based on a network inference framework was used 
to integrate information at the isoform- and gene-levels on a transcriptome-wide basis. This strategy 
enabled us to systematically capture the relationships between splicing events on a set of genes and the 
expression of the remaining genes in the genome [8]. We demonstrate the capacity of this approach to 
uncover molecular relationships and build transcriptome-wide networks on multiple conditions and 
central nervous system regions. Next, Bayesian biclustering was used to identify condition-dependent 
relationships between genes [9]. We demonstrate the capacity of the proposed combination approaches 
to uncover relationships between transcript isoforms and genes that are unique or shared across 
conditions. The output from this study is an innovative bioinformatics strategy that could discover 
biomarkers and therapy targets for diseases and conditions. 

2 Methods 

2.1 Expression data preparation 
The data used to demonstrate the capabilities of the bioinformatics approach proposed encompasses 

RNA-seq profiles from 40 samples from three conditions. These conditions include samples from two 
treatments associated with sensitivity to pain and corresponding control samples. One treatment 
influences pain sensation through the regulation of blood flow (G) whereas the other treatment 
influences pain sensation through the receptors (O). Furthermore, the samples represent central nervous 
system regions with known association to signaling and pain. One region is associated with sensing and 
processing of stimuli and pain (T) and the other region is associated with processing of rewarding 
stimuli (N). The RNA-seq profiles are available at the National Center for Biotechnology Information 
Gene Expression Omnibus (GEO) database, accession identifiers GSE126662 and GSE110194 [10, 11]. 
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The raw sequencing data were aligned to the mouse reference genome (version GRCm38) using the 
STAR aligner (V2.5.3a) software [12]. The recorded expression levels were mapped to protein-coding 
genes and transcript isoforms using the GENCODE VM18 annotation [13]. Genes that were annotated 
to multiple Ensembl gene ID were removed. The levels of isoform and gene expression were quantified 
as raw reads count and Transcripts Per Kilobase Million (TPM) using RSEM (V1.3.1) [14].   

2.2 Gene-isoform networks based on Graphical Lasso 
A transcriptome-wide covariance matrix was estimated based on information on gene and transcript 

isoform expression levels. Recognizing the limitations of the absolute expression of a transcript, the 
transcript isoform information was analyzed on a relative expression level [8].  The genes and transcript 
isoforms that had more than 5 reads and with more than 1 TPM per treatment-region were further 
considered for the construction of the transcriptome-wide matrix. Gene and transcript isoform levels 
were log-transformed and normalized across samples. The dependency among isoform ratio patterns 
within a gene was resolved by excluding the isoform with the lowest ratio. The potential for an ill-
conditioned expression matrix was minimized by using the top 3000 genes and top 4000 isoforms that 
had the highest variation to construct a transcriptome-wide matrix. 

The relationships between genes and transcript isoforms were estimated using a scalable Graphical 
Lasso approach. The relationship among molecules was compiled into a sparse precision matrix (Θ) 
that is a function of the empirical covariance matrix (S) and of a matrix of penalties (λ) including entries 
specific to edge types [15]: 

 
Ѳ = argmin

Ѳ
	{𝑡𝑟	 SѲ − log	det	Ѳ +	 Λ°	Θ 1} 

 
where Λ is a matrix that has the same dimensions as Θ, containing penalties for the interaction between 
modules. The glasso R package was used to obtain the network with a transcriptome-wide covariance 
matrix S and penalties matrix Λ as input  [16].  For the i th row and j th column of Λ, 
 
if  i = j,                                                                                               λd;  
if  i ≠ j, gene (i) = gene (j),                                                                λs; 
if  gene (i) ≠ gene (j), type (i) = type (j) = gene,                              λgg; 
if  gene (i) ≠ gene (j), {type (i), type (j)}  = {gene, isoform},          λgi;     
if  gene (i) ≠ gene (j), type (i) = type (j) = isoform,                          λii; 
 
where gene (x) denotes the gene corresponding to x th molecule, and type (x) denotes the type of the x 
th molecule (gene or isoform). The penalty assigned to the diagonal entries (λd) of the precision matrix 
was set to 0, and a penalty low in relation to the precision (0.05) was used for the off-diagonal elements 
representing different isoforms belonging to the same gene [17]. Other penalties were selected to 
achieve a scale-free network. The equation that describes the scale free property is equation P(k) ~ k -r, 
2 <r <3, where P(k) is the fraction of nodes in a network that have k connections to other nodes, for 
large values of k. The scale-free property was assessed  using the correlation coefficient (cc) between 
log(P(k)) and log(k) [18]. Networks that had a |cc| > 0.9 were considered scale-free.  

In the reconstructed precision matrix, non-zero entries represent an edge between two molecules 
(genes and isoforms). Edges that are not contribute to the biological interpretation of the relationships 
between genes, such as edges between two isoforms from the same gene, were removed.  

2.3 Treatment-specific gene networks based on Bayesian Biclustering  
Treatment-specific networks were inferred using an unsupervised Bayesian biclustering approach 

implemented using the software BicMix [14, 19].  The specification of the parameters for BicMix was 
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based on results from simulation reports [20], for example, starting number of components is set as 100. 
Genes that had less than 1 TPM or 6 reads in more than one treatment-region group were removed. 
Next, the TPM values within each gene were standardized and these normalized measurements were 
used as BicMix input. Normalized expression levels of 12492 genes from both nervous system regions 
were used within each treatment. BicMix was run 40 times with 300 iterations of the Expectation-
Maximization algorithm within a run. For each run, co-expression network edges were extracted 
separately. Covariates matrices including condition information and other related effects were invented 
in order to identify the specific network type. The matrix is filled in with the corresponding value of the 
covariate for each sample. Edges supported by a probability higher than 80% within a run [9, 21], and 
edges detected in at least 10 runs (25%) were depicted in the final treatment-specific networks. In this 
way, a specific network corresponding to a specific covariate with two different covariate types will be 
recovered. The software GeneNet was used to visualize the condition-specific networks [22].  

2.4 Functional enrichment analysis 
The identification of biological functions enriched among the highly connected nodes (hubs) from 

the transcriptome-wide networks and among the nodes of the condition-specific networks employed the 
web-service Database for Annotation, Visualization and Integrated Discovery, DAVID 6.8 [23]. The 
enrichment of Gene ontology (GO) categories and KEGG pathways in the DAVID database was 
evaluated using the Mus musculus genome as the background for enrichment testing. The enrichment 
was quantified using the Expression Analysis Systematic Explorer (EASE) score that is computed using 
a one-tailed jackknifed Fisher hypergeometric exact test. The enriched categories were clustered to 
facilitate interpretation, and the statistical significance of each cluster is evaluated as the geometric 
mean of the -log10EASE scores of all the categories within the cluster [23].   
 

3 Results 

3.1 Gene-isoform Graphical Lasso networks  
The output from the process that started with the estimation of a transcriptome-wide covariance 

matrix, application of scalable Graphical Lasso to obtain a precision matrix, and removal of edges with 
no biological support, were two transcriptome-wide networks. A scale-free network topology was 
achieved using penalty combinations λgg = 0.8, λgi =0.6, λii = 0.65 for N and T networks including genes 
and isoforms. The correlation coefficient between log(P(k)) and log(k) is -0.915 and -0.916 for N and 
T network respectively (Fig. 1).   

The network for the N central nervous system region encompassed 6581 Gene-Gene edges, 9160 
Gene-Isoform edges, and 3629 Isoform-Isoform edges, while in the network for the T central nervous 
system region included 3786 Gene-Gene edges, 9477 Gene-Isoform edges, and 3943 Isoform-Isoform 
edges. Four types of hubs corresponding to three edge types were identified: Gene-Gene hub, Gene-
Isoform hub, Isoform-Gene hub and Isoform-Isoform hub.  
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Fig. 1 Scale-free topology of the N (left) and T (right) transcriptome-wide networks 

3.2 Functional enrichments among hubs of Gene-Isoform networks 
     The enrichment of Gene Ontology (GO) categories and KEGG pathways among the hubs of the 
final transcriptome-wide networks was assessed. The gene-isoform hub could assist with the 
identification of splicing regulators or modulators. Therefore, the gene-isoform hubs with a minimum 
of ten edges across the two transcriptome-wide networks were investigated using DAVID analysis. 

Two clusters of RNA splicing-related categories with high DAVID enrichment scores (enrichment 
score > 1.2) among 467 Gene-Isoform hubs of the transcriptome-wide network in the N region are 
presented in Table 1. Notable is the enrichment of Ribosome (KEGG mmu03010), structural molecule 
activity (GO:0005198), structural constituent of ribosome (GO:0003735), RNA binding (GO:0044822). 
Besides, GO term regulation of RNA splicing (GO:0043484) is significantly enriched with p value < 
0.05 and the involved genes are Serine/arginine-rich splicing factor 5 (Srsf5), Metastasis associated 
lung adenocarcinoma transcript 1 (Malat1), Nucleolysin TIA-1(Tia1), Heterogeneous nuclear 
ribonucleoproteins A2/B1(Hnrnpa2b1), Dual specificity protein kinase CLK4 (Clk4), Dual specificity 
protein kinase CLK1 (Clk1), Heat shock cognate 71 kDa protein (Hspa8).  

 
Table 1. Clusters of enriched functional categories (enrichment score ES > 1.2) related with RNA 
splicing among the Gene-Isoform hub in the N transcriptome-wide network using DAVID  
 

Category Category identifier and name P value FDR P value 

 Cluster 1 ES =  2.34   
KEGG mmu03010:Ribosome 8.5E-07 5.1E-05 
MF GO:0005198~structural molecule activity 6.7E-04 1.6E-02 
MF GO:0003735~structural constituent of ribosome 6.8E-04 1.5E-02 
 Cluster 2 ES =  1.28   
MF GO:0044822~poly(A) RNA binding 4.6E-05 2.0E-03 
MF GO:0003723~RNA binding 9.9E-04 2.0E-02 
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The most significant DAVID clusters of functional categories enriched among the 373 
Gene-Isoform hubs of the T transcriptome-wide network are listed in Table 2. Informative 
clusters of enriched categories include the terms: Ribosome and structural molecule activity 
(KEGG mmu03010 and GO:0005198); poly(A) RNA binding and RNA binding 
(GO:0048255 and GO:0003723); mRNA stabilization and RNA stabilization (GO:0048255 
and GO:0043489); regulation of RNA splicing, mRNA binding, RNA processing and RNA 
splicing (GO:0043484, GO:0003729, GO:0006396 and GO:0008380). Genes Short stature 
homeobox protein 2 (Shox2), KH domain-containing, RNA-binding, signal transduction-
associated protein 1 (Khdrbs1), Serine/arginine-rich splicing factor 2 (Srsf2), Heterogeneous 
nuclear ribonucleoprotein H (Hnrnph1), AHNAK nucleoprotein (Ahnak), 
Phosphatidylinositol 3-kinase regulatory subunit alpha (Pik3r1), DNA-directed RNA 
polymerase II subunit RPB1 (Polr2a) along with Srsf5, malat1, Hnrnp2b1 and Clk1 contribute 
to the enrichment of regulation of RNA splicing. 

Apart from the RNA splicing related enrichments, KEGG pathways Glutamatergic synapse 
(mmu04724), GABAergic synapse (mmu04727), Retrograde endocannabinoid signaling 
(mmu04723) and GO term regulation of sensory perception of pain (GO:0051930) are also 
enriched among Gene-Isoform hubs of the N transcriptome-wide network. And among Gene-
Isoform hubs of the T transcriptome-wide network, response to pain (GO:0048265), sensory 
perception of pain (GO:0019233). 
 
Table 2. Clusters of enriched functional categories (enrichment score ES > 1.5) related with RNA 
splicing among the Gene-Isoform hub in the T transcriptome-wide network using DAVID 
 

Category Category identifier and name P value FDR P value 

Cluster 1 ES =  4.69  
MF GO:0005198~structural molecule activity 6.80E-09 2.90E-06 
KEGG mmu03010:Ribosome 4.80E-06 4.60E-04 
MF GO:0003735~structural constituent of ribosome 6.00E-04 1.80E-02 
Cluster 2 ES =  3.74  
MF GO:0044822~poly(A) RNA binding 2.40E-09 2.00E-06 
MF GO:0003723~RNA binding 1.80E-07 3.90E-05 
Cluster 3 ES =  1.96  
BP GO:0048255~mRNA stabilization 3.00E-03 4.30E-02 
Cluster 4 ES =  1.64  
BP GO:0043484~regulation of RNA splicing 1.60E-05 7.90E-04 
MF GO:0003729~mRNA binding 1.90E-03 4.30E-02 

 

3.3 Biclustering networks 
     Further exploration of treatment-specific co-expression relationships on pain-sensitivity treatments 
was gained from the Bayesian biclustering analysis. For the O treatment network, 43 edges among 23 
genes are uniquely identified in this treatment condition and the genes in the network are highly 
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connected (Fig. 2). Among these genes, solute carrier family 1 member 6 (Slc1a6), Sodium Voltage-
Gated Channel Alpha Subunit 5 (Scn5a), Protein NYNRIN (Nynrin), Coiled-coil domain-containing 
protein 184 (Ccdc184) and Glutamate receptor ionotropic, NMDA 2D (Grin2d) have the highest degree. 
Results from the DAVID analysis identified the enrichment of the Glutamatergic synapse pathway, 
regulation of membrane potential, and nitrogen compound metabolic process.  
 

 
Fig. 2 Biclustering network of the receptor-based treatment O. Node size reflects betweenness centrality 
of the nodes. Node color: genes enriched in Glutamatergic synapse pathway are depicted in red; genes 
enriched in regulation of membrane potential BP GO term are depicted in purple; genes in nitrogen 
compound metabolic process are depicted in yellow. 

4 Discussion 
The bioinformatics approach used in this study enabled the reconstruction of co-expression 

networks among genes and transcript isoforms and the discovery of molecular mechanisms associated 
with sensitivity to stimuli. Multiple studies reported that alternative splicing is a fundamental approach 
for a neuronal cell to regulate specific biological functions [24]. The transcriptome-wide framework 
that includes gene expression and isoform relative abundance enabled the detection of splicing 
regulation and interplay between genes and isoforms, which is supported by the enriched regulation of 
RNA splicing (GO:0043484) and RNA splicing (GO:0008380) categories. An interesting finding from 
the gene-isoform Graphical Lasso analysis is the enrichment of the Ribosome (KEGG mmu03010), 
structural constituent of ribosome (GO:0003735), structural molecule activity (GO:0005198) and RNA 
binding (GO:0003723) categories among the Gene-Isoform hubs in both regions associated with 
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response to pain and to reward stimuli. That is in agreement with the reports that the ribosome and RNA 
binding is engaged in alternative splicing events [25-27]. Also, the enriched categories such as 
Glutamatergic synapse, GABAergic synapse and Retrograde endocannabinoid signaling are consistent 
with reports of the association of these pathways and neuropathic pain [11, 28]. In addition, the 
enrichment of response to pain, regulation of sensory perception of pain and sensory perception of pain 
are in accordance with two sensitivity to stimuli associated treatments.  

Among the results from the treatment-specific co-expression networks identified using the Bayesian 
biclustering approach, relationships unique to the treatments studied were detected. For the receptor 
treatment O, genes in the network are annotated to the Glutamatergic synapse pathway, and it is in 
accordance with previous reports [10, 29]. Among the genes that exhibited a high degree treatment 
specificity, the function of Nav1.5 channel gene SCN5A in neuropathic pain and migraine has been 
reported [30, 31]. Further exploration of the networks of additional pain sensitivity-related treatments 
will advancing the understanding of the molecular mechanism underlying these conditions.  

In summary, the reconstruction of transcriptome wide networks together with treatment-, condition- 
or disease-specific network inference can provide a comprehensive map of splicing regulation, gene 
interaction, and co-expression corresponding to the status. This approach can offer novel insights into 
the discovery of biomarkers and therapeutic targets for a wide range of diseases and conditions. 

5 Acknowledgements 
This study was funded by the National Institute of Health (grant numbers P30 DA018310-14, and 

DA031243 (AP)), the Department of Defense (grant number PR100085), and China Scholarship 
Council, CSC NO. 201606140027.  

We are grateful to Dr. A. Pradhan and J. Sweedler for conceptualization of the study, sample 
collection, and provision of resources. 

6 Reference 
[1] Yang, Y., et al., Gene co-expression network analysis reveals common system-level properties 

of prognostic genes across cancer types. Nat Commun, 2014. 5: p. 3231. 
[2] Zhang, B. and S. Horvath, A general framework for weighted gene co-expression network 

analysis. Stat Appl Genet Mol Biol, 2005. 4: p. Article17. 
[3] Matlin, A.J., F. Clark, and C.W. Smith, Understanding alternative splicing: towards a cellular 

code. Nat Rev Mol Cell Biol, 2005. 6(5): p. 386-98. 
[4] Warner, S.C., et al., Genome-wide association scan of neuropathic pain symptoms post total 

joint replacement highlights a variant in the protein-kinase C gene. Eur J Hum Genet, 2017. 
25(4): p. 446-451. 

[5] Marchi, M., et al., A novel SCN9A splicing mutation in a compound heterozygous girl with 
congenital insensitivity to pain, hyposmia and hypogeusia. J Peripher Nerv Syst, 2018. 23(3): 
p. 202-206. 

[6] Hulse, R.P., et al., The control of alternative splicing by SRSF1 in myelinated afferents 
contributes to the development of neuropathic pain. Neurobiol Dis, 2016. 96: p. 186-200. 

[7] Ahmed, M.M., et al., Pathogenesis of spinal cord injury induced edema and neuropathic pain: 
expression of multiple isoforms of wnk1. Ann Neurosci, 2014. 21(3): p. 97-103. 

[8] Saha, A., et al., Co-expression networks reveal the tissue-specific regulation of transcription 
and splicing. Genome Res, 2017. 27(11): p. 1843-1858. 

Co-expression networks uncover regulation of splicing and transcription markers ... P. Zhang et al.

126



[9] Gao, C., et al., Context Specific and Differential Gene Co-expression Networks via Bayesian 
Biclustering. PLoS Comput Biol, 2016. 12(7): p. e1004791. 

[10] Zhang, P., et al., Opioid-Induced Hyperalgesia Is Associated with Dysregulation of Circadian 
Rhythm and Adaptive Immune Pathways in the Mouse Trigeminal Ganglia and Nucleus 
Accumbens. Mol Neurobiol, 2019. 

[11] Jeong, H., et al., Gene Network Dysregulation in the Trigeminal Ganglia and Nucleus 
Accumbens of a Model of Chronic Migraine-Associated Hyperalgesia. Front Syst Neurosci, 
2018. 12: p. 63. 

[12] Dobin, A., et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013. 29(1): p. 
15-21. 

[13] Frankish, A., et al., GENCODE reference annotation for the human and mouse genomes. 
Nucleic Acids Res, 2019. 47(D1): p. D766-D773. 

[14] Li, B. and C.N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or 
without a reference genome. BMC Bioinformatics, 2011. 12: p. 323. 

[15] Friedman, J., T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the 
graphical lasso. Biostatistics, 2008. 9(3): p. 432-41. 

[16] Hsieh, C.J., et al., QUIC: Quadratic Approximation for Sparse Inverse Covariance Estimation. 
Journal of Machine Learning Research, 2014. 15: p. 2911-2947. 

[17] Saha, A., et al., Co-expression networks reveal the tissue-specific regulation of transcription 
and splicing. Genome Research, 2017. 27(11): p. 1843-1858. 

[18] Zhang, B. and S. Horvath, A general framework for weighted gene co-expression network 
analysis. Statistical Applications in Genetics and Molecular Biology, 2005. 4. 

[19] Gao, C., et al., Context Specific and Differential Gene Co-expression Networks via Bayesian 
Biclustering. Plos Computational Biology, 2016. 12(7). 

[20] Saengtrakul, K., S. Kanjanawasee, and N. Wiratchai, Student factors affecting latent transition 
of mathematics achievement measuring from latent transition analysis with a mixture item 
response theory measurement model. Future Academy Multidisciplinary Conference Iceepsy 
& Cpsyc & Icpsirs & Be-Ci, 2016. 217: p. 729-737. 

[21] Schafer, J. and K. Strimmer, An empirical Bayes approach to inferring large-scale gene 
association networks. Bioinformatics, 2005. 21(6): p. 754-64. 

[22] Ananko, E.A., et al., GeneNet: a database on structure and functional organisation of gene 
networks. Nucleic Acids Res, 2002. 30(1): p. 398-401. 

[23] Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large 
gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57. 

[24] Saito, Y., et al., Differential NOVA2-Mediated Splicing in Excitatory and Inhibitory Neurons 
Regulates Cortical Development and Cerebellar Function. Neuron, 2019. 101(4): p. 707-720 
e5. 

[25] Weatheritt, R.J., T. Sterne-Weiler, and B.J. Blencowe, The ribosome-engaged landscape of 
alternative splicing. Nat Struct Mol Biol, 2016. 23(12): p. 1117-1123. 

[26] Furlanis, E., et al., Landscape of ribosome-engaged transcript isoforms reveals extensive 
neuronal-cell-class-specific alternative splicing programs. Nat Neurosci, 2019. 22(10): p. 
1709-1717. 

[27] Lee, Y. and D.C. Rio, Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu 
Rev Biochem, 2015. 84: p. 291-323. 

[28] Du, X., et al., Local GABAergic signaling within sensory ganglia controls peripheral 
nociceptive transmission. J Clin Invest, 2017. 127(5): p. 1741-1756. 

[29] Bie, B. and Z.Z. Pan, Presynaptic mechanism for anti-analgesic and anti-hyperalgesic actions 
of kappa-opioid receptors. J Neurosci, 2003. 23(19): p. 7262-8. 

Co-expression networks uncover regulation of splicing and transcription markers ... P. Zhang et al.

127



[30] Aromolaran, A.S., M. Chahine, and M. Boutjdir, Regulation of Cardiac Voltage-Gated Sodium 
Channel by Kinases: Roles of Protein Kinases A and C. Handb Exp Pharmacol, 2018. 246: p. 
161-184. 

[31] Wang, J., et al., Downregulation of adult and neonatal Nav1.5 in the dorsal root ganglia and 
axon of peripheral sensory neurons of rats with spared nerve injury. Int J Mol Med, 2018. 
41(4): p. 2225-2232. 

 

Co-expression networks uncover regulation of splicing and transcription markers ... P. Zhang et al.

128


