EPiC Series in Computing Sl
omputing

Volume 92, 2023, Pages 72-81
Proceedings of International Conference on Bioinfor- m
matics and Computational Biology (BICOB-2023) (‘\

The Velvet Assembler Using OpenACC Directives

Evaldo B. Costa! and Gabriel P. Silval

Computer Institute, UFRJ, Rio de Janeiro, Brazil
{ebcosta,gabriel}@ic.ufrj.br

Abstract

There are several programs available in bioinformatics for DNA sequence assembly. This
is typically an extremely time-consuming endeavor, as DNA sequences can be extensive
and intricate. Velvet was created to combine short and long read sequencing data into
larger genomic sequences. Using OpenMP parallel programming, the last version of Velvet
was created to support multiple threads. Through OpenACC directives, we present a new
version of Velvet that takes advantage of multiprocessing using graphical processing units
(GPU). Our tests demonstrate that this extension of Velvet allows for faster performance
and efficient memory use.

1 Introduction

The amount of time and computational resources necessary for this procedure is one of the
primary obstacles associated with DNA sequence assembly. Recent advancements in comput-
ing systems have led to an increase in processing power, memory, and data storage capacity,
necessitating a more efficient application of assembly programs [2].

This is a highly computational task that typically necessitates the use of parallel programs
and algorithms in order to be completed with the desired precision and within acceptable
time constraints. Through OpenACC directives, we present a new version of Velvet that takes
advantage of multiprocessing and graphical processing units (GPU).

The Velvet de novo assembler [7] is used to construct large continuous sequences, or contigs,
and gapped assemblies of contigs, or scaffolds, from short-read genomic sequencing datasets,
often utilizing next-generation ”short-read” sequencing. It consists of a collection of algorithms
that store genomic sequencing data in de Bruijn graphs in order to effectively reduce errors and
assemble the data into larger sequences. The velveth hashing method merges sequences that
belong together, and then the velvetg assembler generates a graph, resolves ambiguous repeats,
and separates pathways with local overlaps. Velvet was designed to function within a 64-bit
Linux system using the gcc compiler.

The previous version of Velvet, 1.2.0, was designed to operate in multithreaded mode uti-
lizing OpenMP parallel programming.

Here, we introduce a new version of Velvet that utilizes OpenACC directives. OpenACC
is a paradigm for parallel programming designed to simplify parallel programming and provide
excellent performance and portability across multiple architecture types, including multicore,
manycore, and GPUs [1].

H. Al-Mubaid, T. Aldwairi and O. Eulenstein (eds.), BICOB-2023 (EPiC Series in Computing, vol. 92),
pp. 72-81

The Velvet Assembler Using OpenACC Directives Costa and Silva

OpenACC enables programmers to specify which portions of code to accelerate using simple
compiler instructions, without modifying the underlying code. OpenACC directives enable the
compiler to move the calculation onto an accelerator by detecting parallel code parts [5].

2 Related Work

The increasing amount of data provided by DNA sequencing necessitated the development of
programs to assemble these sequences. There are currently a large number of assemblers used
to simplify and speed up the assembly process for consumers.

Different programming languages and paradigms are utilized by these assemblers, as well
as distinct techniques. Overlap-Layout-Consensus (OLC) and De Bruijn graph are employed.
The OLC method involves establishing alignments and finding overlaps between the reads,
combining them into contigs, and finally producing a consensus sequence. In the De Bruijn
graph approach, the readings are divided into smaller sequences of fixed length k (or k-mers)
known as seeds (Tabela 1).

Table 1: Bioinformatics sequence assembler comparison

Assembler Program | Paradigm Algorithm License
ABySS C++ MPI De Bruijn graph | open code
ALLPATHS-LG C++ OpenMP | De Bruijn graph | open code
Edna C++ Pthreads OLC open code
SOAPdenovo C++ Pthreads | De Bruijn graph | open code
Velvet C OpenMP | De Bruijn graph | open code
CABOG C OpenMP OLC open code
SPAdes C++ Pthreads | De Bruijn graph | open code

To choose which DNA sequencing assembler will be utilized, comparative and evaluative
studies of de novo genome assemblers were analyzed. These research examined the criteria
for the utilization of computational resources, assembly time, and the quality of the results
achieved.

The evaluation of the de novo sequence assemblers ABySS, Velvet, Edena, SGA, Ray,
SSAKE, and Perga revealed that, despite their ability to process prokaryotic or eukaryotic
entire genomes, only Velvet and ABySS demonstrated good efficiency in terms of assembly
time and use of computational resources. Despite the fact that the ABySS and Velvet assem-
blers provide comparable outputs, Velvet has superior scalability to manage vast amounts of
data compared to other assemblers [4].

Another significant study conducted was the GAGE (Gnome Assembly Gold-standard Eval-
uations). Several de novo genome assemblers, including ABySS, ALLPATHS-LG, Bambus2,
CABOG, MSR-CA, SGA, SOAPdenovo, and Velvet, were evaluated in this study. Some as-
semblers, including Velvet, obtained superior outcomes after genome assembly [6].

On the basis of the results reported in these investigations, it was chosen to employ the
Velvet assembler in this study since, in addition to its good performance in genome assembly, it
is a free program whose code permits implementation using an accelerator programming model.

Here, we introduce a new version of the Velvet assembler that utilizes graphics processing
units (GPU) through OpenACC directives. The purpose of developing this version of the

73

The Velvet Assembler Using OpenACC Directives Costa and Silva

assembler is to give the bioinformatics community with an additional data processing tool
alternative.

3 Implementation

For the implementation of the new OpenACC assembler version, directives were utilized to
parallelize loops and transfer data between the server and GPU. With this, all data is transferred
to the GPU, which performs processing in its local memory. After processing, the data is
transferred back to the server.

During the execution of the velveth program, in which the hashing method combines se-
quences, the GPU device was insufficient. In velvetg, the GPU device was utilized more fre-
quently since it resolves ambiguous repeats and isolates pathways with local overlaps during
this stage of graph construction.

The program Velvet has multiple codes. We only modified the routines that required the
most computing resources. The pgprof tool was used to generate the Velvet profile in order to
determine the regions that utilize the most processing resources (Figure 1).

velveth velvetg

inputSequencelintoSplayTable
87.94%
(20.01%)
2=

importPreGre
10.12

Figure 1: The outcome of the pgprof command used to generate the Velvet profile

During velveth run, the inputSequencelntroSplayTable operation consumes about 87% of
time and processing resources. In this instance, only the process’s codes are modified. Similar
to how the instructions referencing to this process were modified, the findReferenceMapping
process takes around 65% of velvetg’s total execution time. The majority of these modifications
involved directives such as parallel loop, vector length, and acc data copy.

The Velvet assembler consists of multiple files that are used to generate velveth and velvetg
executables. Some files employ the OpemMP programming paradigm to execute the Velvet
assembler in parallel. We have modified these files to use the OpenACC programming paradigm.

Parallel directive was utilized to support OpenACC. With the Parallel directive, it is possible
to achieve improved performance through the use of clauses and precise parameterizations in

74

The Velvet Assembler Using OpenACC Directives Costa and Silva

order to maximize GPU utilization. Following is a list of OpenACC pragmas utilized in the
files.

e Fpragma acc parallel loop
e F#pragma acc parallel loop vector length
e F#pragma acc data copy

acc set device num(device num, acc device nvidia)

e int num devices = acc get num devices(acc device nvidia)

This is an example of code compilation utilizing the scaffold.c file.

pgcc -acc -ta=tesla -Minfo=acc,par -mp -fast -¢ src/scaffold.c -o obj/scaffold.o

countCoOccurences:

565, Generating copyout(coOccurencesCount|:5])
566, Generating Tesla code

567, #pragma acc loop gang, vector(256)
measureCoOccurences:

629, Generating copyout(coOccurencesIndex|:])
630, Generating Tesla code

631, #pragma acc loop gang, vector(256)
estimateLibraryInsertLength:

700, Generating copy (counter,variance,coOccurences[:coOccurencesCount|)
701, Generating Tesla code

702, #pragma acc loop gang, vector(128)
Generating reduction(+:variance,counter)

The velveth and velvetg executables were compiled on a 64-bit Linux server utilizing the
PGI compiler and NVIDIA GPU device. The latest version is accessible for download at
https://github.com/evaldocosta/velveacc.

4 Experimental Setup

The tests were conducted on a server equipped with two Intel Xeon E5-2609 processors (1.7
GHz, 8 cores each, 20 MB cache), 128 GB of shared memory, and an NVIDIA GPU Tesla K80.
The NVIDIA Tesla K80 is a dual-GPU system that employs two GK210B chipsets. This card
features a total of 4992 CUDA cores clocked at 560 MHz, along with 24GB of GDDR5 vRAM,
a 384-bit memory interface, and a 480 GB/s bandwidth.

All versions of Velvet were compiled with the PGI Compiler 19.10 for optimal performance.
Local, high-speed SSD (Solid-State Drive) drives were utilized to store the experiment’s files.
The 64-bit Centos Linux distribution version 7.8 was utilized as the operating system. In
both OpenMP and OpenACC implementations, the assembly was executed using the following
commands.

There were three sorts of data utilized to evaluate the essays. All the raw data sets are avail-
able for download from the European Nucleotide Archive (ENA) and the National Center for

(6]

The Velvet Assembler Using OpenACC Directives Costa and Silva

Staphylococcus aureus:
velveth . 31 -fastq -shortPaired frag.fastq -shortPaired2 shortjump.fastq
velvetg .

Rhodobacter sphaeroides:
velveth . 31 -fastq -shortPaired frag.fastq -shortPaired2 shortjump.fastq
velvetg .

Homo sapiens (Chromosome 21):
velveth . 31 -fastq -shortPaired DRR000546_1.fastq -shortPaired2 DRR000546_2.fastq
velvetg .

Biotechnology Information (NCBI) servers. Simulations were performed on the following organ-
isms: Staphylococcus aureus: NCBI SRA (SRR022868, SRR022865), Rhodobacter sphaeroides:
NCBI SRA (SRR081522, SRR034528), and Homo sapiens (Chromosome (DRR000546). The
summary is presented in Table 2. Using the Linux time command, the total assembly time
in seconds was computed for each assembly. Memory and CPU use were measured using the
Linux commands smem and mpstat.

Table 2: The size of file data

Species Genome size (Mbp) Files
Staphylococcus aureus 2.9 NCBI SRA (SRR022868, SRR022865)
Rhodobacter sphaeroides 4.6 NCBI SRA (SRR081522, SRR034528)
Homo sapiens (chr21) 46.7 ENA (DRR000546)
5 Results

Three sets of tests were performed for the results provided in this study. After each run, the
average time of the sets was determined to determine the rate of acceleration achieved in each
instance.

5.1 A Reduced Total Runtime

The OpenACC version of Velvet has shorter runtimes than the OpenMP version. Using the
genomes of Staphylococcus aureus and Rhodobacter sphaeroides, the average speedup was five
times greater, while the average speedup for the human genome was three times greater. The
overall gain acquired through genome processing can be seen in the table 3.

5.2 Improved Memory and CPU usage

When utilizing the assembler version of velveth with OpenMP support, memory utilization was
less than when using the OpenACC version. This behavior was consistent across all tested
genomes (Figure 2).

In addition to reducing total assembly time, OpenACC also improved memory and CPU re-
source use in comparison to OpenMP, indicating that local computer resources are utilized more

76

The Velvet Assembler Using OpenACC Directives Costa and Silva

Table 3: The genomic timing outcomes

. Time (s)
Species OpenMP | OpenACC Speedup
Staphylococcus aureus 358 65 5,51
Rhodobacter sphaeroides 568 113 5,04
Homo sapiens (chr21) 7713 2279 3,38
60000
m OpenMP m OpenACC
o 50000
=
» 40000
=]
30000
a
£ 20000
()
= 10000
0 s S
Staphylococcus Rhodobacter Homo sapiens

aureus sphaeroides (Chromosome 21)

Figure 2: Memory used

efficiently when OpenACC is employed (Table 4). Obviously, this only applies to the genomes
of Staphylococcus aureus and Rhodobacter sphaeroides, as the amount of data transferred to
the GPU device is minimal.

Table 4: CPU use results

Species OpenMP | OpenACC
Staphylococcus aureus 52% 86%
Rhodobacter sphaeroides 68% 85%
Homo sapiens (chr21) 2% 44%

5.3 GPU usage

The examination of GPU usage is divided into two sections: the utilization of GPU processing
cores and the memory footprint.

The mean use values of the Staphylococcus aureus and Rhodobacter sphaeroides genomes
were around 60% lower than those of the Homo sapiens genome (chr2l) (Figure 3). This
occurred because the analysis of bigger genomes required a greater number of GPU CUDA
cores.

Similarly to the average use of GPU cores, the average utilization of GPU memory exhibits
the similar pattern, as seen in Figure 4. In other words, larger genomes utilize more GPU
memory resources, yet in no instance was the overall memory usage greater than the available
GPU memory resources.

7

The Velvet Assembler Using OpenACC Directives Costa and Silva

B Staphylococcus aureus B Rhodobacter sphaeroides

[
e
Q@ O
(@)

Memory use MB
wn
o
S

0

® Homo sapiens (Chromosome 21)

Figure 3: GPU Memory usage throughout assembly

B Staphylococcus aureus B Rhodobacter sphaeroides

100
75
50
25

GPU use %

0

@ Homo sapiens (Chromosome 21)

Figure 4: GPU usage throughout assembly

5.4 Data Move

During the assembly of the genome, data transfer between the server and GPU device was
also considered as an important factor. This data transfer occurs in both directions, from the
server to the GPU as well as from the GPU to the server. During velveth operation, there is
little data transfer between the server and GPU device. As this procedure reads genomic files,
GPU utilization is minimal. However, the data transfer rate during the execution of velvetg is
exceptionally high. This arises because the De Brujn graph is generated during this procedure.

The results of data flow between the server and GPU device are depicted in Figure 5.

Figure 6 demonstrates that the average quantity of data transferred between the GPU and
the server is bigger because, in this procedure, information is first executed on the GPU and
then all data is transferred to the server.

6 Assembly Quality

After assembling the genomes, the Quast program [3] was used to verify the assembly’s quality.
The objective of this section is not to compare the assembly quality of the two methods, but
rather to demonstrate that both methods are accurate. As demonstrated in Table 5.

78

The Velvet Assembler Using OpenACC Directives Costa and Silva

m Staphylococcus aureus m Rhodobacter sphaeroides

10

.

Data move GB

Fed

o

B Homo sapiens (chr21)

Figure 5: Average usage of data transport between the server and GPU device
15

12

9
6
3
0

W Staphylococcus aureus W Rhodobacter sphaeroides

Data move GB

W Homo sapiens (chr21)

Figure 6: Average utilization of data transport between the GPU device and server

7 Conclusion

Comparing the previous version of Velvet, which utilized the OpenMP programming paradigm,
to the new version in OpenACC reveals that the total gain during the entire genome as-
sembly process was up to five times faster for Staphylococcus aureus and Rhodobacter
sphaeroides genomes, and the average gain for Homo sapiens chromosome 21 was three
times. The updated version of Velvet in OpenACC’s source code is available on GitHub at
https://github.com/evaldocosta/velvetacc.

The experiments conducted to evaluate the new OpenACC version revealed that the velveth
program did not benefit significantly from the OpenACC version over the OpenMP version,
necessitating additional research into optimizing its parallelization. During the execution of
the velvetg program, both CPU utilization and total execution time decreased significantly,

79

The Velvet Assembler Using OpenACC Directives Costa and Silva

Table 5: Staphylococcus aureus genome assembly results using the Quast program

OpenMP Results OpenACC Results
Assembly contigs | Assembly contigs
contigs (>= 0 bp) 713 # contigs (>= 0 bp) 710
contigs (>= 1000 bp) 171 # contigs (>= 1000 bp) 170
contigs (>= 5000 bp) 119 # contigs (>= 5000 bp) 118
contigs (>= 10000 bp) 78 # contigs (>= 10000 bp) 77
contigs (>= 25000 bp) 40 # contigs (>= 25000 bp) 41
contigs (>= 50000 bp) 9 # contigs (>= 50000 bp) 9

Total length (>= 0 bp) 2863724 | Total length (>= 0 bp) 2863603
Total length (>= 1000 bp) 2760566 | Total length (>= 1000 bp) 2760567
Total length (>= 5000 bp) 2629876 | Total length (>= 5000 bp) 2629877
Total length (>= 10000 bp) 2346511 | Total length (>= 10000 bp) 2346512
Total length (>= 25000 bp) 1744129 | Total length (>= 25000 bp) 1771272
Total length (>= 50000 bp) 651405 | Total length (>= 50000 bp) 651405

contigs 220 # contigs 219

Largest contig 95737 Largest contig 95737

Total length 2796223 | Total length 2796224
C (%) 32.57 GC (%) 32.57

N50 31818 N50 31818

N75 15853 N75 15853

L50 29 L50 29

L75 58 L75 58

N’s per 100 kbp 0.00 # N’s per 100 kbp 0.00

demonstrating the efficiency of the transfer of computing from the CPU to the GPU.

Due to the building of the Bruijn graph that the velvetg program does, the data transfer be-
tween the server and the GPU during genome assembly was greater when executing the velvetg
program. In velveth execution, this data flow is modest, as this program focuses primarily on
reading the files. Regarding memory usage and GPU core occupancy, both programs exhibited
the same tendency, i.e., the larger the genome, the more resources are utilized.

The final results of the evaluations indicate that the use of OpenACC directives in the
new version of the Velvet assembler was effective in reducing the execution time of genome
assembly by up to fivefold compared to the original version written in OpenMP, demonstrating
an efficient use of GPU resources (memory and processing cores).

Acknowledgments

The authors are grateful to the Computer Institute of Rio de Janeiro Federal University for pro-
viding the computing resources utilized to conduct the experiments described in this research.
Daniel R. Zerbino deserves special thanks for her assistance and suggestions.

80

The Velvet Assembler Using OpenACC Directives Costa and Silva

References

1]
2]

Shaohao Chen. Introduction to openacc. Research Computing Services Information Services and
Technology Boston University, 2017.

Evaldo B Costa, Gabriel P Silva, and Marcello G Teixeira. Performance evaluation of parallel
genome assemblers. In Proc. of the 7th Int. Conf. on Bioinformatics and Computational Biology
(BICOB 2015), volume 1, pages 31-38, 2015.

Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. QUAST: quality assessment
tool for genome assemblies. Bioinformatics, 29(8):1072-1075, 02 2013.

Abdul Rafay Khan, Muhammad Tariq Pervez, Masroor Ellahi Babar, Nasir Naveed, and Muham-
mad Shoaib. A comprehensive study of de novo genome assemblers: current challenges and future
prospective. Fvolutionary Bioinformatics, 14:1176934318758650, 2018.

Jeff Larkin. Introduction to openacc. NVIDIA, 2018.

Steven L Salzberg, Adam M Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc, Sergey Koren,
Todd J Treangen, Michael C Schatz, Arthur L. Delcher, Michael Roberts, et al. Gage: A critical
evaluation of genome assemblies and assembly algorithms. Genome research, 22(3):557-567, 2012.

Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read assembly using de
bruijn graphs. Genome research, 18(5):821-829, 2008.

81

	1 Introduction
	2 Related Work
	3 Implementation
	4 Experimental Setup
	5 Results
	5.1 A Reduced Total Runtime
	5.2 Improved Memory and CPU usage
	5.3 GPU usage
	5.4 Data Move

	6 Assembly Quality
	7 Conclusion
	References

