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One of the authors introduced in [2] a calculus of circular proofs for studying the computability
arising from the following categorical operations: finite products and coproducts, initial algebras,
final coalgebras. The calculus of [2] is cut-free; yet, even if sound and complete for provability,
it lacks an important property for the semantics of proofs, namely fullness w.r.t. the class of
natural categorical models called µ-bicomplete category in [3].

We fix, with this work, this problem by adding the cut rule to the calculus. To this goal,
we need to modify the syntactical constraints on the cycles of proofs so to ensure soundness
of the calculus and at same time local termination of cut-elimination. The enhanced proof
system fully represents arrows of the intended model, a free µ-bicomplete category. We also
describe a cut-elimination procedure as a model of computation arising from the above mentioned
categorical operations. The procedure constructs a cut-free proof-tree with infinite branches out
of a finite circular proof with cuts.

The calculus of circular proofs. Terms are constructed from a fixed set of variables V using
the binary function symbols ×,+ and the constants 1, 0; the set of terms will be denoted by
TERMS. A directed system of equations is a tuple S = 〈X, τ, π〉, where X = BD(S) is a finite
subset of V, τ : X −→ TERMS, and π : X −→ N. FV(S) shall denote the set of free variables of S,
namely

⋃
x∈X VAR(τ(x)) \ BD(S).

Intuitively, we think of the tuple S as the system of equations {x =θ(π(x)) τ(x) | x ∈ X }
where θ(n) = µ (least solution) if n is odd and θ(n) = ν (greatest solution) otherwise. The
priority function π also specifies the order by which we solve this system of equations. Given
n ≥ 0 and a system S, let Xn = {x ∈ BD(S) | π(x) ≤ n } and let Sn be the restriction of S
to Xn, namely Sn = 〈Xn, τ�Xn

, π�Xn
〉. In particular, if M = max{π(x) | x ∈ BD(S) }, then we

define MAX(S) = {x ∈ BD(S) | π(x) = M }, LOW(S) = XM−1, and let P (S), the predecessor
system, be SM−1.

A sequent is a pair (s, t) of terms, written as usual s ` t; SEQ shall denote the set of sequents.
For a fixed directed system of equations S, the inference rules over S are (instances of) the
formal expressions appearing in Figure 1. Let Σ denote the set of justifications appearing on
the right of these formal expressions. For a deterministic transition system G over { 0, 1 } and
v ∈ G, ςiv shall denote the unique successor of v labelled by i.

Definition 1. A pre-proof over S is a tuple Π = 〈G, ρ, σ〉 where G is a deterministic labelled
digraph over the alphabet {0, 1}, ρ : G→ Σ, and σ = (σL, σR) : G→ SEQ; moreover, for each
v ∈ G, outdeg(v) ≤ 2 and

σ(ς0v) . . . σ(ςoutdeg(v)−1v)
ρ(v)

σ(v)

is an inference rule over S.
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Identity, cut,
assumption

Id
t ` t

s ` u u ` t
Cut

s ` t
A

s ` t

Products RAx
t ` 1

si ` t
L×i i = 0, 1

s0 × s1 ` t

s ` t0 s ` t1
R×

s ` t0 × t1

Coproducts LAx
0 ` t

s0 ` t s1 ` t
L+

s0 + s1 ` t

s ` ti
R +i i = 0, 1

s ` t0 + t1

Fixpoints
τ(x) ` t

Lµx
x ` t

s ` τ(x)
Rµx

s ` x

τ(x) ` t
Lνx

x ` t

s ` τ(x)
Rνx

s ` x

Figure 1: Inference rules of the system

A path Γ of a pre-proof is left-traceable if, for all n, if ρ(Γ(n)) = Cut, then Γ(n+1) = ς0(Γ(n));
it is right-traceable if, for all n, if ρ(Γ(n)) = Cut, then Γ(n+ 1) = ς1(Γ(n)). Γ has a left µ-trace
if Γ is left-traceable, it contains a left regeneration rule, and the highest priority of its left
regeneration rules is odd; Γ has a right ν-trace if if Γ is right-traceable, it contains a right
regeneration rule, and the highest priority of its right regeneration rules is even.

Definition 2. A circular proof is a pre-proof Π = 〈G, ρ, σ〉 such that every cycle in G either
has a left µ-trace or a right ν-trace.

Given a circular proof Π, we set AΠ := {v ∈ G : ρ(v) = A} and CΠ := G \AΠ; AΠ is the set
of assumptions of Π, while CΠ is the set of its conclusions.

Semantics of the calculus. µ-bicomplete categories were defined in [3]. Let M be a µ-
bicomplete category. Given t ∈ TERMS and a finite subset X with VAR(t) ⊆ X, the natural
semantics of t, denoted |t|X , is a functor fromMX toM. The formal definition of |t|X is by
induction on the structure of t, as usual by interpreting the function symbols 1,×, 0,+ by means
of the categorical structure. Given a directed system of equations S and a finite subset X such
that FV(S) ⊆ X and BD(S) ∩X = ∅, the semantics of S, noted by JSKX , is a functor from
MX toMBD(S). The definition is as follows:

Definition 3. If BD(S) = ∅, thenMBD(S) is the terminal category so that we let JSKX be the
unique functor fromMX to the terminal category. Otherwise, the predecessor system P (S) is
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well-defined and its semantics is a functor fromMX∪MAX(S) toMBD(P (S)). Let G and H be
the functors so defined:

G := 〈|τ(x)|[BD(S)∪X] | x ∈ MAX(S)〉 :MBD(S)∪X −→MMAX(S) ,

H := 〈 G , JP (S)KMAX(S)∪X ◦ pr
BD(S)∪X
MAX(S)∪X 〉 :

MBD(S) ×MX =MBD(S)∪X −−−→MMAX(S) ×MBD(P (S)) =MBD(S) .

If π(MAX(S)) is odd, then JSKX is the parametrized initial algebra of H; if π(MAX(S)) is even,
then JSKX is the parametrized final coalgebra of H.

Finally, given a system S, a term t, and a finite subset X with FV(S)∪(VAR(t)\BD(S)) ⊆ X,
the value of t w.r.t. S, denoted JtKSX , is the functor defined by:

JtKSX :=

(
MX 〈id,JSKX〉−−−−−−→MX ×MBD(S) =MX∪BD(S)

|t|X∪BD(S)−−−−−−→M
)
.

We shall use a sloppy notation and write just JtK in place of JtKSX .

Lemma 4. For each x ∈ BD(S), if π(x) is odd, then there exists a canonical invertible arrow
ζx : Jτ(x)K −→ JxK; if π(x) is even, then there exists a canonical invertible arrow ξx : JxK −→
Jτ(x)K.

With exception of Id and Cut, a rule Rule with assumptions si ` ti and conclusion s ` t can
be intertpreted as a natural transformation

[Rule]X,X′ :
∏

i=1,...,n

M(JsiK, JtiK) −→M(JsK, JtK) : (MX)op ×MX −→ Set .

(For the fixpoint rules, use the structure maps ζx, ζ−1
x , ξx, ξ

−1
x ). The above remark is almost true

of Cut; if either we have a natural transformation β : JuK −→ JtK, or a natural transformation
γ : JsK −→ JuK, then we have:

[Cut, β] :M(JsK, JuK) −→M(JsK, JtK) , [γ, Cut] :M(JuK, JtK) −→M(JsK, JtK) .

Definition 5. A circular proof Π is homogeneous if it does not contain the rule Id and, for
each v ∈ Π with ρ(v) = Cut, exactly one among ς0v and ς1v is an assumption of Π.

For Π homogeneous, let Ac
Π = { ςiv ∈ AΠ | ρ(v) = Cut } and As

Π = { ςiv ∈ AΠ | ρ(v) 6= Cut };
w.l.o.g., we shall assume that Ac

Π ∩ As
Π = ∅. Given a collection of natural transformations

β = {βv : JσL(v)K −→ JσR(v)K | v ∈ Ac
Π }, the above rules give rise to a natural transformation

[Πβ ] :
∏
v∈CΠ

M(JσL(v)K, JσR(v)K)×
∏
v∈As

Π

M(JσL(v)K, JσR(v)K)→
∏
v∈CΠ

M(JσL(v)K, JσR(v)K) .

Theorem 6. For each system S, each homogeneous circular proof Π over S, and each collection
of natural transformations {βv : JσL(v)K → JσR(v)K | v ∈ Ac

Π }, there exists a unique natural
transformation

[Πβ ]† :
∏
v∈As

Π

M(JσL(v)K, JσR(v)K) −−−−−→
∏
v∈CΠ

M(JσL(v)K, JσR(v)K)

satysfying the fixpoint equation [Πβ ]† = [Πβ ] ◦ 〈[Πβ ]†, id〉.
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A circular proof is ground if it does not contain an assumption rule. A pointed circular
proof is a pair 〈Π, v〉 where Π is a ground circular proof and v ∈ Π. We can define JΠ, vK,
the interpretation of 〈Π, v〉 with respect to the system S, by induction, almost as usual; the
induction is now on the well-founded structure of maximal strongly connected components of
the underlying graph of Π. To this goal the key observation is that if C is such a non trivial
component of Π (i.e. if there exists v, u ∈ C and a non-null path from v to u), then the restriction
of Π to C is homogeneous. Thus Theorem 6 allows to interpret C as a sort of generalized inference
rule, whose assumptions belong to strictly lesser components.

The calculus is full in this sense: if a pointed circular proof 〈Π, v〉 is such that σ(v) = s[t/x] ` t,
then it is possible to construct a pointed circular proof 〈Π′, v′〉 whose semantics JΠ′, v′K shall be
the unique arrow f such that f ◦ ζx = JΠ, vK ◦ JsK(f). Of course, a dual property holds as well.

Cut elimination. We devise an algorithm that, given a pointed circular proof 〈Π, v〉, outputs
a proof-tree which is cut-free, finitely branching but with possibly infinite branches. Just like in
the classical case for Gentzen’s system (see [1] for instance), the procedure consists in “pushing”
every cut away from the root. Yet, this time, the output tree must be computed with a lazy
(outermost) rather than eager (innermost) strategy. This is because not every path in Π leads
to a leaf, so that we have to eliminate cuts by performing a breadth-first search of Π. A main
problem, see Figure 2, is that with this strategy it might be the case that we need to permute a
cut with another cut. We dismiss this problem by merging consecutive cuts together in a sort of
n-ary cut. Such an n-ary cut becomes the internal data structure (that we call a tape) of an
automaton that tries to build up a branch of the the proof-tree. When the proof-tree branches,
the automaton forks into several automata so to construct all the branches. Equivalently, we
can think that the automaton undeterministically chooses which branch to construct. The
automaton grows up the branch by means of commutative cut reductions at the extremities of
the tape; if all the cuts in the tape are principal, the automaton undeterministically chooses
one and reduces it, without constructing a new node on the branch. We can prove that the
automaton does not perform “internal chatting”. That is, the automaton eventually finds on
its tape the oppurtunity to perfom a commutative cut reduction, thus growing the prefix of the
proof-tree.

t0 ` t1 t1 ` t2
Cut

t0 ` t2 t2 ` t3 · · · tn−1 ` tn
Cut

t0 ` t3

⇒
t0 ` t1 t1 ` t2 · · · tn−1 ` tn

Cut
t0 ` tn

Figure 2: Flattening cuts into a tape of cuts
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