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Abstract

We study nonlinear connectives (exponentials) in the context of Type Logical Grammar (TLG). We devise four
conservative extensions of the displacement calculus with brackets, Db!, Db!?, Db!;, and Db!,?, which contain
the universal and existential exponential modalities of linear logic (LL). These modalities do not exhibit the same
structural properties as in LL, which in TLG are especially adapted for linguistic purposes. The universal modality
! for TLG allows only the commutative and contraction rules, but not weakening, whereas the existential modality
? allows the so-called (intuitionistic) Mingle rule, which derives a restricted version of weakening. We provide a
Curry-Howard labelling for both exponential connectives. As it turns out, controlled contraction by ! gives a way
to account for the so-called parasitic gaps, and controlled Mingle ? iteration, in particular iterated coordination.
Finally, the four calculi are proved to be Cut-Free, and decidability is proved for a linguistically sufficient special
case of Db!,,?. (and hence Db!}).

1 Introduction

Categorial logic such as displacement calculus D [4] is intuitionistic sublinear logic. A major innovation
of linear logic are the so-called exponentials which afford a controlled use of structural rules. Here
we look at linguistically relevant exponentials in TLG: a universal exponential without weakening in
relation to parasitic gaps, and a restriction of the existential exponential to mingle in relation to iterated
coordination:

(1) a. man who; the friends of ¢; admire #; without praising ¢;
b. John praises, likes, and will love London.

In Section [2| we define two logically simple calculi Db! and Db!? with Curry-Howard labelling and
we discuss their linguistic suitability. In section [3] we define linguistically refined versions Db!}, and
Db!y,?,, improving the previous calculi in respect of capturing the ‘parasicity’ of parasitic gaps, that
is that, seemingly, parasitic gaps must appear in islands. In Section 4] we discuss Cut-elimination and
decidability.

2 Db extended with contraction and mingle modalities
The displacement calculus with brackets Db is defined in Figures [I] ] and 3] The calculus Db! is

obtained by adding the universal exponential rules in Figure[d] We denote Db!? the universal exponential
displacement calculus with, in addition, the existential exponential rules of Figure E}
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Figure 1: Semantically labelled continuous multiplicative rules
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Figure 2: Semantically labelled discontinuous multiplicative rules

The very elementary characterisation of (object) relativisation is obtained by assigning a relative
pronoun type (CN\CN)/(S/N). This captures the long distance character of relativisation but only
allows peripheral extraction. Using the universal exponential we can improve the type assignment to
(CN\CN)/ (S/!N) which, in view of the permutability of the exponential subtype also allows medial
extraction.

Various ‘islands’ can inhibit or block relativisation: weak islands such as subjects (Chomsky
1973]1]) and adverbial phrases, from which extraction is mildly unacceptable, and strong islands such as
coordinate structures (Ross 1967[3]]) and relative clauses themselves, from which extraction is entirely
unacceptable:

(2) a. ?man who; the friend of #; laughed
b.  ?paper which; John laughed before reading ¢;

(3) a. “*man who; John laughed and Mary likes ¢;
b.  *man who; John likes the woman that loves ¢;

Furthermore, relativisation can also comprise ‘parasitic extraction’ in which a relative pronoun binds
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Figure 3: Semantically labelled bracket modality rules
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Figure 4: Semantically labelled universal exponential rules

more than one extraction site (Taraldsen 1979[7]]; Engdahl 1983[3]]; Sag 1983[6]). There must be a ‘host’
gap which is not in an island, and according to the received wisdom, and according with the terminology
‘parasitic’, this may license a ‘parasitic’ gap in (any number of immediate weak) islands:

(4) a. the man who; the friends of #; admire #;
b. the paper which; John filed #; without reading ¢,
c. the paper which; the editor of ¢ filed #; without reading #;

In addition, we observe that these parasitic gaps may in turn function as host gaps licensing further
parasitic gaps in (weak) subislands, and so on recursively:

(5) a. man who; the fact that the friends of #; admire #; surprises t;
b. man who; the fact that the friends of #; admire #; without praising #; offends ¢;
without surprising #;

The bracket modalities of Figure |3| have application to syntactical domains such as prosodic
phrases and extraction islands. For example, walks: ()N\S for the subject condition, and before:
[17'(VP\VP)/ VP for the adverbial island constraint. The relative pronoun type (CN\CN)/(S/!N) re-
spects these island constraints because the brackets induced block association and permutation of the
exponential hypothetical subtype into the bracketed domains.

The presence of the contraction rule potentially allows for parasitic extraction, but in fact the islands
in which the parasitic gaps are supposed to occur are closed off for the reasons just given. Furthermore
the calculus as it stands overgenerates pseudo-parasitic multiple extraction in which ‘parasitic’ gaps do
not occur in islands:

(6) a. *the slave who; John sold ¢ to ¢;
b. * the slave who; John sold ¢ ¢;

Thus the logic of contraction as it stands precisely both undergenerates and overgenerates parasitic
extraction. We fix this in the next section.

Using the existential exponential, ?, we can assign a coordinator type and:(?N\N)/N al-
lowing iterated coordination as in John, Bill, Mary and Suzy: N, or and:(?(S/N)\(S/N))/(S/N) for
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Figure 5: Semantically labelled existential exponential rules

John likes, Mary dislikes, and Bill hates, London (iterated right node raising), and so on.

3 Db extended with restricted modalised contraction and mingle

The calculus Db, is obtained by adding to Db the restricted universal exponential rules in Figure [
Note how now the application of contraction induces a bracketed domain. We denote Db!,?; the re-
stricted universal exponential displacement calculus with, in addition, the existential exponential re-
stricted to only succedent occurrences, and with only the rules of Figure

I'{A:x) = By A1 x1,..., Apix, = A ¢
17. 1L 'R
T{(!A:x) = B:y Apixg,..., 1Ap:x, = 1A ¢
A(A:x,TY = By AT, 1A:x) = By
P P
AT, 1A x) = By A(A: x, Ty = By

AAp: x0, ... 1An: xn, [1A0: Y0, - - - s An:y0, T = By

A!Ag: xo, - - - A X0, I) = Bryp{xo/y0, - > Xn/Yn}

Figure 6: Semantically labelled restricted universal exponential rules

I'=A:¢
18. —F R
I'= 7A:[¢]

I'=A:¢ A=Ay

M,
A= :[¢ly]

Figure 7: Semantically labelled restricted existential exponential rules

In the following subsections we report analyses computer-generated by a categorial parser/theorem-
prover CatLog?2.
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3.1 Parasitic relativisation

As we have remarked subjects are weak islands; accordingly in our CatLog fragment there is no deriva-
tion of simple relativization from a subject such as:

(7) man+[[that+[the+friends+of]+walk]] : CNs(m)

(Note the strong island double brackets of the relative clause ensuring that it is an island from which
parasitic extraction is not possible.) However, a weak island ‘parasitic’ gap can be licensed by a host

gap [/]:

(8) man-+[[that+the+friends+of+admire]] : CNs(m)

Lexical lookup yields:

(9) OCNs(m) : man, [[mYn([1"'[1"'(CNr\CNn)/m((ONt(m)'mNtm)\S 1)) : AAABAC[(B C)AA O)],
mvYn(Nt(n)/CNn) : (,0(CNp/PPof) : friends,0((Yn(CNn\CNn)/maAbNb)&(PPof /daNa))
“Cof, ADD),

O((()(JaNa—IgNt(s(e))\S f)/daNa) : "AEAF (Pres ((Cadmire E) F))]] = CNs(m)

There is the following derivation, where the use of contraction, involving brackets and, in focused
proofs, stoups, corresponds to generating the parasitic gap:
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Nt(s(m))| = Nt(s(m)) L
mN1(s(m)) | = Nt(s(m)) lw
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i PPof/3aNa |,
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uNi(s(m)) = E [mn(Nt(n)/ CNn), 0(CNp/PPof),((Yn(CNn\CNn)/mIbNb)&(PPof /| JaNa)), = h\
[m¥Yn(Nt(n)/ CNn), 0(CNp/PPof ), o((¥n(CNn\CNn)/m3bNb)&(PPof | JaNa)),
[mVn(Nt(n)/CNn),a(CNp/PPof), a((Yn(CNn\CNn)/m3bNb)&(PPof [ JaNa)),
O(CNp/PPof),0((¥n(CNn\CNn)/m3AbNb)&(PPof /JaNa))], O(({)}(FaNa—IgNt(s(g))\S f)/JaNa), mNt(s(m)) = Sf
T\SEs: [WN1(s(m)); mYn(Nt(n)/ CNn), 0(CNp/PPof), 0(¥n(CNn\CNn)/mIbNb)&(PPof /JaNa))], 0((()(FaNa-IgNt(s(g)\S f)/JaNa) = § x

oL
P
P

CNs(m)| = CNs(m)
oL

7 OCNs(m) 7 = CNs(m) 7 CNs(m) 7 = CNs(m)
= CNs(m)

!mN1(s(m)), m¥n(Nt(n)/CNn), DAQSV\Eu&J, O((Yn(CNn\CNn)/m3AbNb)&(PPof /JaNa)), O(({()(FaNa—-IgNt(s(g)\S f)/JaNa) = u\
O((()(FaNa—IgNt(s(@)\S f)/JaNa) = S f \R
wVn(N#(n)/ CNn), B(CNp/PPof), O((¥n(CNn\CNn)/mAbNb)&(PPof /JaNa)), B((()(3aNa-IgNt(s(@))\S f)/IaNa) = (ON#(s(m))"I!mNH(s(m)\S f BCNs(m). [ [I”' (CNs(m)\CNs(m)) || = CNs(m)

R
wVn(Nt(n)/CNn), 0(CNp/ PPof), 0((¥n(CNn\CNn) /mIbNb)&(PPof /3aNa)), 0(((NIaNa—TgN(s())\S £)/FaNa) = m(((Nt(s(m)NImN1(sem)\S f) " OCNs(m), [ [17'[I"'(CNs(m)\CNs(m)) []] = CNs(m)

\L
u'e

0'e

/L

BCNs(m). [T 117

O(CNp/PPof),0((Vn(CNn\CNn)/m3IbNb)&(PPof /JaNa)), 0((()(FaNa—IgNt(s())\S f)/JaNa)]] = CNs(m) v

OCNs(m), 5 O(CNp/PPof), 0((¥n(CNn\CNn)/m3bNb)&(PPof 3aNa)), 0((()(3aNa-IgNt(s()\S f)/3aNa)]] = CNs(m)

uL

OCNs(m), 5 wYn([]7'[17 (CNn\CNn)/m((()Nt(n)r1!

O(CNp/PPof), o(¥n(CNn\CNn)/mAbNb)&(PPof /AaNa)), O((()(FaNa-AgN1(s(2)\S £)/FaNa)]] = CNs(m)
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This delivers the following semantics in which the gap variable is multiply bound:

(10) AC[('man C) A (Pres (Cadmire C) (¢ Cfriends C))))]

3.2 Iterated coordination

To express the lexical semantics of coordination, including iterated coordination and coordination in
various arities, we use two combinators: a non-empty list map apply @* and a non-empty list map ®"
combinator ®"*. The former is a follows:

1) (" [x]y)
(" [x,ylz] w)

[(x y)]
[(x wla™ [ylz] w)]

The latter is thus:

12) (@ 0and) x) [y) = [yAx]
(@ 0o x) [y = [yval
(@™ 0 and) x) [y,zw]) = [y A (" 0and) x) [zlw])]
(@™ 0or) x) [y, 2w = [y V(@ 0or)x) [zw])]

(@™ (sn) ©) x) y) 2) (@™ ne)(x2) (@ y2)

Transitive verb phrase iterated coordination:
(13) (crd(28)) [john]+[[praises+likes+and+will+love]]+london : S f
Lexical insertion yields:

(14) [mNt(s(m)) : j1, [([O((OTgNt(s(e)\S f)/FaNa) : "AAAB(Pres ((praise A) B)), 0((()IAgNt1(s()\S f)/FaNa) :
"ACAD(Pres (('like C) D)), m¥ f¥a((?m((()Na\S f)/FbND)\[17' (17" (ONa\S f)/IbND))/m((()Na\S f)/AbND)) :
(@ (s (s 0) and),mVa(((ONa\S f)/(O)Na\Sb)) : AEAF(Fut (E F)),0(({()3aNa\Sb)/JaNa)
"AGAH((’love G) H)]],
mNi(s(n)): 1l = Sf

The coordination combinator semantics is such that:

(15) (D" (s (5 0)) and) x) [y,z]) w) u) =
((((@"* (s 0) and) (x w)) (@ [y,z] w)) u) =
((((@"* (s 0) and) (x w)) [(y w), (z w)]) u) =
(((@"" 0 and) ((x w) w)) (a* [y w), (2 w)] u)
(@™ 0 and) ((x w) w)) [((y w) u), (2 w) u)]
(O w) w) A L((zw) u) A ((xw) w]]

):
):
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There is the derivation:

Nt(s(m)) = Nt(s(m))
Jr

Nt(s(m)) = |JaNa
OR
N8344 = N84 INHGsGn)] = [()3aNa | = Sb,
N8344 = [JaNa =86,
oL
| N8344 = Sb Ni(s(m)) = Ni(s(m))
ONH(s(m). 0O JaNa\Sb)/ JaNa), N834 = b - [Nt(s(m)] = \()Nz(s(m))\ =Sf,
R

0((()JaNa\Sb)/JaNa), N8344 = (Nt(s(m))\Sb

=>Sf

0O aNa\Sb)/JaNa). N§344 = Sf

0O aNa\Sb)/JaNa), N§344 = Sf

| 0((()JaNa\S b)/FaNa), N8344 = S f 3
[Nt(s(m))], mY¥a(((YNa\S £)/((YNa\S b)), 0((()FaNa\S b)/IaNa), IbNb = S f
ON(s(m)), m¥a(((YNa\S f)/(ONa\S b)), a(((yIaNa\S b)/FaNa), IbNb = S f
wYa((ONa\S f)/((ONa\S b)), 0((()JaNa\S b)/JaNa), IbNb = (Nt(s(m)\S f
mYa((ONa\S )/ ((ONa\S b)), 0(((yJaNa\S b)/daNa) = ((Nt(s(m)\S f)/IbNb

wYa((ONa\S f)/(ONa\Sb)),0((()JaNa\S b)/JaNa) = m((ONi(s(m)\S f)/IbND)

OL

®
Nt(s(m)) = Nit(s(m))
Ni(s(m)) = Nt(s(m)) - Ni(s(m)) = W ‘
Nt(s(m)) = | IgNt(s(g)) N8346 = NB8346 [Nt(s(m))] = | ()JgNt(s(g)) Sfl = Sf
N8345 = N8345 [Ne(s(m)] = [ (3¢ =S f N8346 = \MFR [N(s(m)),| O FgNH(s@)\S f\ =S f
N8345 = [JaNa] [Nt(s(m)), \<>3g1vx(v<g»\s1\ =5/, INe(s(m)L,| (OTgNH(s(@)\S f)/TaNa |
[N(s(m)],[ (OFgNi(s(2)\S f)/FaNa | N8345 = S f oL [N(s(m)],| DO AN 1(s(\S £)/TaNa) | N8346 = Sf
[Ne(s(m)],| O((O)AgN(s(2)\S f)/aNa) | N8345 = S f 9 [N1(s(m))], B((OFgNH(s(e)\S f)/3aNa), IbNb = S f
Ne(s(m)). DO IgNi(s()\S /)/FaNa) Nb = Sf ONt(s(m)), (O FgNH(s(e)\S f)/3aNa), INb = S f
ONi(s(m), BUOFENI@N\S )/FaNa). INb = Sf ' B(()3gNt(s(e)\S f)/FaNa), IbNb = ON1(s(m)\S f
B((O3gNH(s(@\S f)/FaNa), IbNb = ON1(s(m)\S f B((OIgNH(s@\S f)/FaNa) = (ONH(sm)\S £)/IbNb
B(OIN(s@)\S /FaNa) = ONHsmNS f)/INb BOIN (@S f)/FaNw) = W(ONHsmINS [)/FbNE)
B((O3gNH(s(@\S f)/FaNa) = m(ONH(s(m)N\S f)/FbNb) O((O3gNH(s(g)\S f)/3aNa) = \?-<(<>Nr<s<m>>\sf)/abNb>\,7E
OO TGN H(s(\S £)/FaNa), O(OFLNH(s@)\S f)/FaNa) = [ m(ONK(s(m)\S £)/IbNb) | '
@
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Nt(s(m))| = Nt(s(m)) I

[mNi(s(m) | = 323:- "

[mNt(s(m)] = [ON1(s(m) | 0
[mN1(s(m))], 02;23:61 =Sf I

(ONt(s(m)\S f)/IbNb |, mNt(s(n)) = S f

izigi = Ni(s(n)) .
[}

7IZNC_Q:L = Nit(s(n))
Eld
uNi(s(n)) =
[mN#(s(m))],

o'

[N (s, 1| 17 ((ON#(sm)\S £)/3bND) ||, mNi(s(m)) = S f
] [mN1(s(m))] _7 07 7 (ON#(sm)\S £)/3bNb)
] [mN#(s(m))], [[B(()IgNH(s(e)\S f)/FaNa), O((OAgN1(s(e)\S f)/FaNa),| M(ONi(sm)\S £)/IBNO\™' (I (ON(sm)\S £)/IbNb)

o'

], mNt(s(n)) = S f

\L

mNi(s(n)) = Sf

/L
| mYa((ONa\S f)/((ONa\S b)), 0((()FaNa\S b)/3aNa)]], mNi(s(n)) = S f "

[WN1(sGm)], [[B(((FgN1(s(¢)\S f)/FaNa), DAAongNQQ:GbDQZQL (?m(ONt(s(m)\S £)/FBNO\™' (17! (ON1(s(m))\S £)/3bNb))/m(ONi(s(m)\S f)/3bNb)

[mNi(s(m))], [[D(OFgN1(s()\S f)/FaNa), D(OFgN1(s()\S f)/FaNa),
[mN1(s(m))], [[B((OFgN1(s()\S f)/FaNa), o(AgN1(s())\S f)/FaNa),

[mN1(s(m))], [[B((OFgN1(s(@)\S f)/FaNa), B(((YFgNi(s()\S f)/FaNa),

Ya((?m((ONa\S £)/IbNONI 17 (ONa\S f)/3bNb))/m(O)Na\S f)/3bNb))

. mYa((ONa\S f)/(ONa\S b)), 0((()JaNa\S b)/JaNa)]], mNi(s(n)) = S f VL
v fYa((Mm((Na\S f)/FbNO)\[I”'[I' (ONa\S f)/3bNb))/m(()Na\S f)/3bNb))
wY fYa(("m(ONa\S ))/FbNH\I™' 17 (ONa\S £)/3FbNb))/m(ONa\S f)/FbNb))

- mYa((ONa\S f)/(ONa\S b)), 0((()FaNa\S b)/3aNa)]], mNi(s(n)) = S f .

L

- mYa((ONa\S /)/(ONa\S b)), 0((()FaNa\Sb)/FaNa)]], mN1(s(n)) = S f
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All this assigns the correct semantics:
(16) [(Pres (("praise 1) j)) A [(Pres ((like 1) j)) A (Fut ((Clove I) j)]1]

4 Cut elimination and decidability (proof idea)

Cut elimination has several key steps and commutative steps. Here we consider only the key step
concerning the existential exponential modality. As usual, the proof proceeds by a double induction
on the size of the Cut formula and the sum of the heights of the premises of the Cut occurrences. The
so-called pseudo-key step of a right application of ! or !, (as left premise of Cut) and a contraction (as
right premise of Cut) is more involved but still standardE] Notice that crucially, the !,-contraction must
be defined for !,-modalized sequences as is the case in Figure E]E]

The key Cut steps involve the structural rules !C and ?M. The case of !C is standard in the literature
of linear logic; we therefore omit it. What is really new is the !M key Cut, which is as follows. (This key
step simply does not exist in the case of the calculi Db!}, nor in Db!},?, because there are only succedent
occurrences of the existential exponential.) Where !A(I';) = !A}, T, |A;, we have that the following rule
GM:

IAT) =24 IAT) =24

AT, )= 2A
is derivable from ?M by application of ?M and the permutation and contraction !-steps without the use
of Cut. Then there is the key step:

a7 GM

IAT) =24 1AT) =24

) —
IA(T,T5) = 24 1©(24) = B c
ut
1®(IA(T},T>)) = 7B
IAT)=?4  10(24) = ?B ur IAT,) =24  10(24) = ?B cur
u u
~ 1O(IA(T))) = ?B 1O(IA(T,)) = ?B oM

I®(IA(T},T>)) = 7B

Let us see now the proof that the generalized Mingle rule for ? is Cut-free derivable in Db!? using !-
contractions and ?-Mingle. If we write !A(Z) as A}, X, !A, for arbitrary configurations A; and Z, we
have the following ?-Mingle derivation:

IAT) =24 IAT) =24
S:= AT, ATy =24

To the end-sequent S of the above derivation we apply a finite number of !-permutation steps and we
get the provable sequent:
!Al, !A],rl,rz, !Az, !Az =74

Finally, to the above sequent we apply a finite number of !-contraction steps obtaining:

!Al,l"l,l"z, 'AQ =74

IRecall that both ! and !, allow only contraction. No weakening nor expansion are associated to these connectives.
2The so-called full Lambek calculus with contraction enjoys Cut-elimination if the contraction rule is generalized to se-
quences of types.
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This last sequent can be written as:

AT, To) =4
Hence, the 7-GM structural rule is Cut-free derivable in Db!?. This ends the proof idea of the Cut
admissibility of the four calculi we have considered.

In order to prove the decidability of a linguistically sufficient special case of Dby ?,, which we call
polar bracket non-negative Db}, 7. we introduce two useful technical tools: bracket-count of a type and
degree of contraction of a sequent S. Building upon ([8]]), we define the bracket-count of a sequent
recursively as follows:

(18) Definition (Bracket-count)

Where A and B are arbitrary Db!y,?-types:

#1(4) = 0if Ais atomic
#[] (A.B) = #[](A) + #[](B)
#)(AO;B) = #,(A) + #(B)
#9(B/A) = #y(B) —#p(A)
#1(BT:A) = #y(B) —#3(A)
#1(A\B) = #,(B) —#,(A)
#(BlkAd) = #(B) —#3(A)
#[](()A) = #[](A) +1
#1174 = #yA) -1
#n(1A) = #;(4)
#,(?A) = #y(A)
Where A, A; (i = 1,--- ,n, n > 0) are Db!,, ?.-configurations:

#[](A) = 0

#1(A, A) = #3(A) +#(4)

#[](1) = 0

#[](A{Al Lo An}, A) = Z #[](Ai) + #U(A)

i=1
#[]([A]) = #[](A) +1

(19) Definition (Degree of Contraction)

We define the degree of contraction of a sequent S:=A = A, d.(S), in terms of bracket
counts as follows:

(St (A) — #(A)

We see now some simple facts on the degree of contraction of sequents:

- Fact 1: Given a derivation whose last rule is a binary or unary bracket rule with conclusion S and
premises S;:
dc(S) 2 de(S)

- Fact 2: Suppose that the last rule of a derivation is the contraction rule where the configuration !T" is a

bracket-free configuration:
Sy = NI [I,B))=> A \

S =NILO=A
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Then we have:
d.(S1) > d(S»)

- Fact 3: Suppose that the last rule of a derivation is the restricted Mingle rule, where all type-
occurrences are bracket-free:

SQZ=A1=>A S3Z=A2:>?A
M,
S] = A],Az =74

Then we have:
de(S1) 2 de(82) + dc(S3)

Finally, a useful arithmetic tool is the length of an arbitrary sequent S := A = A, |S|. The well known
length of a type, which is simply its number of connectives, and the (overloaded) length of a configura-
tion A, |A|, which is the sum of the lengths of all its type-occurrences, we define |S]| as |A| + |A|. We have
the following theorem:

(20) The Cut-free proof-search space in Db!y,?; is finite.

Proof. Let <. be the total strict lexicographical order in N?. Consider a sequent S such that
d.(S) = 0 (for otherwise it could not be provable). We want to check its provability. We can expand
the current goal sequent S of the proof-search space ProofSearch by a finite number of goal sequents,
which can be either the subgoals of a logical rule or a structural rule. We associate to each sequent

S of ProofSearch its measure ,u(S)déf(dC(S), |S]). If we expand S with a contraction rule, the degree
of contraction is strictly decreased. In case of a restricted Mingle rule or a logical rule the degree of
contraction may be decreased or remain equal. In case that the degree of contraction remains equal,
the lengths of the premises of the applied rule are strictly decreased. Hence, ProofSearch is a finitely
branched tree such that any path (S;);»o of it satisfies u(Si+1)<pexa2(S;) for all i. Since < ey i
well-founded every strictly decreasing sequence is finite. Therefore, by Konig’s lemma, ProofSearch
is finite. O

From the preceding theorem, it follows that Db!y?, is decidable in the case that the exponential
subtypes are bracket-free in the sense of not containing bracket modalities within exponentials which
give rise to antecedent antibracket modalities nor succedent bracket modalities . We call the restriction
to such types polar bracket non-negative Db!}, ?;.

Whether the calculus Db!? is decidable is an open problem. However, it is interesting to notice that
Db!? extended with additive connectives is undecidable. In fact, the Lambek Calculus with additives
and the connective !, of which Db!? with additives is a conservative extension, is already undecidable.
This can be proved by a Girard-style translation (-)* between the full Lambek calculus with contraction
(FLC) and the full Lambek calculus with !-contraction (FLC!) as follows:

A* = Aif A is atomic
(B/A)® = B*/IA*

(A\B)* = IA°\B*
(AeB)* = !A*®!B°
(A&B)* = A*&B*
A=A = A=A

We can prove the following theorem:
(21) Theorem (Embedding translation between FLC and FLC!)

FLC r A = Aiff FLC!(A = A)*
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(22) Corollary (Undecidability of FLC!)

It has been proved that FLC is undecidable [2]. If FLC! were decidable, for any FLC-
sequent A = A, we could decide whether its translation (A = A)*® is provable. We would have
then that FLC is decidable. Contradiction.

Appendix: ?-Mingle vs. ?-Expansion

Consider the following structural rule called ?-expansion. For any type A:
A(?A) = B
A(?A,7A) = B
It is straightforward to see that Db!? + Cut is deductively equivalent to Db!? + Exp — Mingle + Cut.

However, Db!? + Cut enjoys Cut elimination, but Db!? + Exp — Mingle + Cut does not enjoy Cut
elimination.

(23)
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