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Abstract

Codon usage bias has been known to reflect the expression level of a protein-coding gene
under the evolutionary theory that selection favors certain synonymous codons. Although
measuring the effect of selection in simple organisms such as yeast and E. coli has proven to
be effective and accurate, codon-based methods perform less well in plants and humans. In
this paper, we extend a prior method that incorporates another evolutionary factor, namely
mutation bias and its effect on codon usage. Our results indicate that prediction of gene
expression is significantly improved under our framework, and suggests that quantification
of mutation bias is essential for fully understanding synonymous codon usage. We also
propose an improved method, namely MLE-Φ, with much greater computation efficiency
and a wider range of applications. An implementation of this method is provided at
https://github.com/luzhixiu1996/MLE-Phi.

1 Introduction

Codon usage bias, which refers to using synonymous codons that code for the same amino acid
at different rates, has been studied for decades. For example, the Codon Adaptation Index
(CAI) relies on relative synonymous codon usage observed in highly expressed genes, and has
been effective at predicting gene expression in unicellular microorganisms [11]. Inspired by CAI,
tAI goes further and incorporates tRNA gene copy number that exhibits a high and positive
correlation with overall rRNA abundance [9]. The underlying assumption behind CAI and tAI
is proteins with higher expression contain more optimal codons. Because optimal codons help
achieve faster translation with less error, protein-coding genes with a higher ratio of optimal
codons likely have experienced more positive selection over time.

Codon usage within multi-cellular organisms with smaller effective population sizes—such
as flies, plants and humans—should be less directly affected by selection [9] [14]. To improve
prediction performance for all organisms, the Mutation-Selection-Drift balance model was pro-
posed in which selection favors optimal codons and less optimal codons persist due to genetic

Q. Ding, O. Eulenstein and H. Al-Mubaid (eds.), BICOB 2020 (EPiC Series in Computing, vol. 70),
pp. 139–148

https://github.com/luzhixiu1996/MLE-Phi


Analysis of Mutation in Codon Usage Bias Across Species Zhixiu Lu, Michael A. Gilchrist, Scott Emrich

Table 1: Run time of MLE-Phi vs. ROC-SEMPPR
Run time of ROC-SEMPPR and MLE-Phi for several model organisms. All runs per-
formed on a machine with a i7-6700 CPU and 16 GB of memory.

drift. Codon bias can therefore be thought of a balance between both mutation (e.g., GC con-
tent of an organism) and selection (e.g, either high expression or a focus on higher accuracy).

One model that implements this concept is ROC-SEMPPR, which uses a Bayesian Markov
chain Monte Carlo (MCMC) to estimate the strength of selection on codon usage [6]. Because
this model considers both selective pressure and mutational bias, it can be more comprehensive
than models that rely solely on features in highly expressed genes.

Although more inclusive, ROC-SEMPPR’s MCMC calculations are also significantly more
computationally intensive than most traditional codon usage models. For example, using the
current implementation of ROC-SEMPPR requires about 19 hours to process 8.5 Mb of yeast
genome data. Codon specific metrics such as CAI and tAI are much faster because they use
rely on pre-computed values. For example, the CAI estimate for any given gene sequence is
simply the geometric mean of each codon’s respective value under the model.

Here, we leverage ideas from ROC-SEMPPR to develop a faster, more flexible codon us-
age model that also relies on pre-computed values. This new method, which we call MLE-Φ
(Maximum Likelihood of Φ), estimates the protein synthesis rate Φ on arbitrary intervals using
previously computed ROC-SEMPRR parameters. With this modified Φ estimation framework,
we can also predict gene expression at a much finer grain than prior efforts, and we show this
using experimental data from several model organisms.

2 Methods

ROC-SEMPPR is capable of calculating codon specific estimates of selection pressure and
mutation bias. These estimates have been used to estimate gene expression (Φ) based on this
previous equation from [6]:

pi =
exp [−∆Mi,1 − ∆ηi,1Φ]∑ng

j=1 exp [−∆Mj,1 − ∆ηj,1Φ]
(1)

∆η is the ROC-SEMPPR measure of relative translation inefficiency for synonymous codons,
scaled relative to the preferred codon under selection pressure (Preferred codon has a ∆η = 0).
In other words, the higher ∆η is, the less efficient the codon is compared to the preferred codon
for a specific amino acid. ∆M describes the ratio of the frequencies of one codon relative to the
reference under pure mutation; it represents how mutational favored (mutation biased) a codon
is relative to the preferred codon. Mutation rates are not always equal, so when there is little
selection acting on codon usage (e.g., when gene expression is very low), codon frequencies will
be dominated by these more mutation-favored codons as detailed in [6].
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Figure 1: Correlation between independently derived tAI values: Chu et al. values
on the x axis and tRNA counts from Lowe et al. on the y axis. tAI calculations
from these two sources yield an almost identical result.

In the original ROC-SEMPPR model, Φ is calculated by sampling from the posterior dis-
tribution from Equation 1 using a Markov chain Monte Carlo (MCMC) approach. Although
more explicit, generating a Markov chain for each gene and sampling distributions from it is
computationally intensive. Further, the best estimates are often obtained when providing entire
genes as input to ensure convergence.

Analysis of codon usage bias in local regions/windows, however, is also important for esti-
mating so-called “translation tempo”, i.e., how fast the ribosome translates specific regions of
a transcript. To compute Φ for local regions more efficiently, we took an maximum likelihood
approach that maximizes the probability in Equation 1 using the revised formula below:

n+k∏
n

exp [−∆Mi,1 − ∆ηi,1Φ]∑ng

j=1 exp [−∆Mj,1 − ∆ηj,1Φ]
(2)

Here n marks the start position of a codon window/interval that spans k codons (when this
formula is applied to an entire gene, n = 0 and k = gene length / 3). By finding a Φ that
maximizes the output probability for this specific window, we can get a effective estimate of
Φ much faster, especially since MLE-Φ is optimized by Newton’s root approximation method.
In experimental studies such as a ribosome footprint count analysis (local translation rates), it
has been shown that the ribosome covers about 10 codons in a transcript, suggesting an ideal
value for k should be approximately ten for modeling protein translation.

Implementation of MLE-Φ and respective computed values of ∆η and ∆M for several most
studied organisms are hosted on GitHub, a sample run case is also included.

Experimental analysis

We also consider more complex mechanisms of codon usage bias. In this paper, we first compare
our MLE-Φ method with traditional selection based codon usage metrics such as tAI and CAI,
using experimental expression measurements from yeast, then shift to more complex organisms
to further validate and quantify the effect of mutation bias on codon usage bias.

Specifically, we use the original methods as described in [11] [9] for both tAI and CAI,
which estimates tRNA abundance from genomic sequences. To confirm this data source, we
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Figure 2: Correlation between MLE Φ and ROC-SEMPPR Φ
As shown there is a 0.93 Pearson correlation between these two measures, which indi-
cates that our new MLE estimation framework closely corresponds with the calculations from
the original ROC-SEMPPR.

found another measurement of tRNA abundances for the yeast s288c strain from the Chu lab [4],

which measures tRNA counts in a cell. We calculated tAI values for all considered genes
using both metrics, and values generated using these two sources have a correlation of 0.97
(see Figure 1). For CAI, we chose the top 5% of the highly expressed genes in empirically
determined expression data for computing the required model values, and use these with the
simple formula first proposed by Sharpe and Li to estimate the expression level of each gene.

3 Results

Run time comparison

Using pre-computed values of ∆η and ∆M to find the maximum likelihood of Φ significantly
reduces computation time for estimating Φ. In Table 1 we benchmark both methods using
different model organisms.

Note that the original ROC-SEMPPR must be run at least once, so computing the initial
values is dominated by the original MCMC calculations. We show, however, that optimized
MLE-Φ can produce subsequent estimates for these organisms in only seconds (versus days in
some cases). Further, this revised framework can now estimate protein translation rates for
more local regions of any given gene (see Methods).

3.1 ROC-SEMPPR vs MLE-Φ estimates

There is little downside in the significant improvement in computation speed as MLE-Φ closely
approximates MCMC-based Φ (Figure 2). As expected, the agreement of the two approaches
tends to be better for highly expressed genes. This is to be expected as codon usage bias
should have stronger detectable effects on genes with higher expression ( [13] [7] [8]). Low
expression genes correlate less well, in part because they tend to be noisier and harder to
measure experimentally ( [2] [12]). Even so, there is a clear and strong correlation between the
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Table 2: Comparison of three metrics for different yeast data
A comparison between our three considered metrics using previously published yeast
mRNA abundances. Based on the Pearson correlation between predictions and empirical gene
expression data, all three methods perform similarly in yeast.

Table 3: Estimation of Selection Pressure in Several Eukaryotes

original and our new approach with an overall correlation coefficient of 0.93.

3.2 Comparison of tAI, CAI and MLE-Φ Estimates

We tested the performance of Φ estimation using empirical gene expression data relative to
both CAI and tAI. This assessment will determine what effects (if any) incorporating mutation
bias (∆M) has on our predictions. We computed these gene expression measurements and
then computed their correlation using the same approach as Causton et al. (2001). MLE-
Φ’s correlation is always higher than CAI for all data, and higher than tAI for 3/5 data sets
considered (see Table 2). Combined, this supports using our new Φ estimation framework for
predicting gene expression.

3.3 Looking at the effects of other factors affecting expression

Based on the Selection-Mutation-Drift model, more complex organisms with smaller effective
populations sizes should be more tolerant of drift and therefore are expected to be less affected
by selection pressure. For example, in the original tAI paper the authors estimated the selec-
tion pressure on different organisms. Although yeast, considered above, has strong estimated
pressure (0.77-0.82), this pressure is only 0.24 in the model organism Arabidopsis thaliana and
almost non-existent in human (0.03) as shown in Table 3.

Because the more inclusive MLE-Φ model should perform better than CAI and tAI for
more complex organisms, we next decided to compare different metrics for organisms under
less selection pressure. Although MLE-Φ has the highest overall correlation for all organisms
(Table IV), Φ is not always significantly better that tAI and CAI (Z score, p < 0.01).

As described previously, measurement (and therefore assessment) is more difficult for genes
with lower overall expression ( [2] [12]). It is also possible that a given gene may have different
expression levels under different conditions/cell types in multicellular organisms. To address
this issue, “House keeping” genes have historically been used, which are genes involved in basic
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Table 4: Correlation-based comparison of the three considered metrics us-
ing the top 5% of highly expressed genes and empirical expression data
Fisher’s R-Z transform is used to compute the Z score

cell maintenance that are expected to maintain consistent expression levels irrespective of tissue
type, developmental stage, or external signals. Although there are also a few genes such as 16S,
tus, rpoD, glyA, dnaB, gyrA, pykA/F, pfkA/B, mdoG and arcA that are widely used, it is
difficult to obtain these specific values for the organisms we are studying [5].

To overcome this issue we extend a previously published method from 2007 [5] that used RT-
PCR-based abundance estimates to rank genes. By picking genes on the top of the generated
rankings, our selections would likely be “housekeeping” gene candidates and, more importantly,
for this analysis, have more stable expression levels. Here, rather than using RT-PCR RNA
abundance data we create rankings based on RNA-seq expression data from each organism and
analyze the top 5% of the highly expressed genes based on these data. As shown in table 4, this
approach generates candidates that are less noisy when compared to considering all protein-
coding genes. After reconsidering the Pearson correlation coefficients between the considered
metrics and prior empirical measurements, our Φ framework still consistently outperforms other
methods for all organisms tested.

We also analyzed the difference between correlation coefficients using Fisher’s R-Z transform.
As shown above, we observe consistently positive Z scores with most comparisons having a
corresponding p-value less than 0.05. This further confirms our hypothesis that, by weighting
in the effect of mutation bias, Φ-estimation is more comprehensive and therefore a more accurate
estimate fo organisms where selection pressure is not the dominant driver of codon usage bias.

3.4 Looking deeper into mutation bias

We have shown above that our MLE estimate of Φ has better accuracy than other traditional
codon usage metrics when mutation bias impacts gene expression level estimates.

To confirm that mutation bias is responsible for the observed differences between model
predictions, we created rankings for each coding gene in D. melanogaster using Φ, tAI, and the
prior empirical measurements. We then sorted the genes by the ranking distance differences
between tAI and Φ relative to the empirical measurement data. As we move from genes with
the highest prediction differences to the lowest, we observe a clear shift in GC content (see
Figure 3). This further confirms that mutation bias plays an important role in computational
prediction of gene expression, especially for multi-cellular organisms such as Drosophila.

3.5 Local vs Global estimates

To ascertain how mutation bias affects so-called “translation tempo”, or the rate by which a
ribosome transcribes a specific region, we compared local measurements of MLE-Φ and CAI
using a window-based analysis (similar to our prior work in [3]), created a ranking of CAI and
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Figure 3: Shift of GC content across genes with differ-
ence levels of prediction differences between using Φ and tAI
The x-axis represents the number of genes with the highest prediction differences be-
tween Φ and tAI, samples with a smaller size contain genes with more prediction differences,
while the y-axis represents the deviation from sample mean of GC content to population mean
calculated from all 11,196 coding genes in Drosophila). The observed GC bias decreases as we
sample less different predictions between Φ and tAI.

Figure 4: Relative MLE-Φ and CAI Window Estimation
MLE-Φ and CAI for k=10 codon windows for the ACT1 gene in yeast; values along x
axis mark the start codon position of the window, values on the y axis represent the ratio
between window metric estimate and whole gene metric estimate. This illustration indicates
that although ACT1 is a “housekeeping” gene with consistent global gene expression estimates
(difference in ranking < 1%) using different methods, there is visible disagreement in the more
local translation rate estimates using these approaches.
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Figure 5: Distribution of Window Measurements by CAI and MLE-Φ
Figure shows distributions of distance between CAI and MLE-Φ, x label shows the distance
if relative metric ratio between MLE-Φ and CAI, values along y axis represent the number of
windows (window size of 10 codons) with respective measurement distance.

Φ-based gene expression estimates, and selected a total of 300 genes (5% of roughly 6000 coding
genes in yeast) with the least difference in overall expression level predictions.

For an example gene, we present ACT1(YFL039C) that is a house keeping gene ranked in
the top 5% of highly expressed by MLE-Φ, CAI and all other methods considered here. As
expected, gene-wide predictions of the expression level of ACT1 are very similar; however, we
see clear variations in certain local regions (see Figure 4).

This result indicates that local protein translation rate estimates between models can vary,
even when global gene expression level predictions are similar. The rationale is CAI and MLE-Φ
are global estimates that converge to the same level but do not indicate how fast/slow specific
regions are translated. To illustrate this more clearly, we computed the distance between MLE-
Φ and CAI for codon windows in a total of 300 (roughly 5%) of the genes described above
(Figure 5). Although most genes have similar estimates using CAI and MLE-Phi, there are a
number like ACT1 that differ by a substantially. This is a major contribution of this work since
there was no local/window-based version of ROC-SEMPPR Φ prior to our developing MLE-Φ
as reported here and therefore such differences between global and local estimates has not yet
been reported to the best of our knowledge.

4 Discussion

Gene expression is a topic of great interest in biology, and there are a wide range of approaches
to model it [1] [15]. For example, prior work has applied probabilistic and machine learning
approaches based on microarray data and typically achieve a prediction accuracy between 73%
to 79% in yeast [1]. Similar performance is achieved using codon usage bias-based estimates
such as CAI and tAI. We extend and improve upon ROC-SEMPPR to develop a new MLE-Φ
framework, which allows estimating expression using any arbitrary interval. This allows using
codon usage bias to better understand other areas of biological interest such as protein synthesis
rates and co-translational protein folding.

Estimation of Φ also provides a more comprehensive interpretation of codon and incorpo-
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rating mutation bias estimates ∆M from ROC-SEMPPR. We confirm that mutation bias plays
an important role in shaping observed codon usage bias. By only selecting top 5% genes that
are highly expressed, which is the exact method that underlies CAI and TAI-based estimates,
we observe that our new method MLE-Φ is always better. This suggests that incorporating
mutation bias into the expression model better predicts the precise expression level of a gene,
even in highly expressed genes that are expected to have codon usage dominated by selection.
This discovery is most important for more complex organisms like D. melanogaster, Arabidopsis
and humans.

Significantly, we provide for the first time a framework that can use selection and mutation-
based parameters for more localized windows. Prior work, including ours ( [3]), have shown that
rare codons are evolutionary conserved and some likely help proteins fold by slowing down the
ribosome translation complex, a phenomenon called “co-translational folding” in the literature.
We show that a number of genes in yeast have the same global estimate but differ greatly in
a more local window-based analysis (see Figures 4 and 5). We are currently using our new
MLE-Φ framework with ongoing experimental validation of preferred codon usage models for
genes known to co-translationally fold (see [10] for details). This will provide biological support
that MLE-Φ, which incorporates selection and mutational bias to better predict overall gene
expression, also is better able to estimate the “tempo” of the ribosome and aid in downstream
protein-focused research.
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