
EPiC Series in Computing

Volume 77, 2021, Pages 70–79

Proceedings of ISCA 30th International Confer-
ence on Software Engineering and Data Engineering

VS-TAP: Veteran Services Tracking and Analytics Program

Jonathon Hewitt, Daniel Hall, Christopher Parks, Payton Knoch,
Sergiu Dascalu, Devrin Lee, Nikkolas J. Irwin, and Frederick C. Harris, Jr.

Department of Computer Science and Engineering,
University of Nevada, Reno, NV USA

fred.harris@cse.unr.edu

Abstract

The Veteran Services Tracking and Analytics Program (VS-TAP) is a web application
used to store and query the rate and duration of visitors within Veteran Services’ locations.
The application accepts data from Navigate as well as a hosted demographics survey to dis-
play statistics in a graphically meaningful way. Accumulating data from different sources
allows stakeholders to create custom reports to compare multiple variables that represent
student veterans.

Keywords: Analytics, Authentication, Data, Database, Django, Document
processing, ETL (Extract, Transform, Load), Systemd-nspawn, Tracking, Vet-
eran Services, Visualization, Web application

1 Introduction

The Veteran Services Tracking and Analytics Program (VS-TAP) is a data gathering and
analytics application. The goal of this program is to collect, store, and combine data from
several sources into a single usable database. The web application tracks the rate and duration
of visitors that attend veteran centers and events. The program also combines all the data
collected from various sources that can be queried for data visualization purposes. Data capture
and visualization are important to the center’s existence and helps determine the success of
events as well as requests for funding.

The interface for data visualizations is presented as a “reports wizard” to help walk Veteran
Services staff through graph generation. The initial aim was to mimic the quantity of graphs
associated with Microsoft excel while eliminating the learning curve. The reports wizard was
designed to give staff members more control over graph axis, titles, and graph aesthetics than
was previously possible using Microsoft excel.

Concerning security, VS-TAP was be designed to protect against malicious actors. To
this extent developers integrated user authentication, protection from SQL injections to the
database, as well as CSRF (Cross-Site Request Forgery) token validation. In addition to the
security mentioned, VS-TAP is only accessible from the University of Nevada, Reno (UNR)
network to limit external network traffic.

F. Harris, R. Wu and A. Redei (eds.), SEDE 2021 (EPiC Series in Computing, vol. 77), pp. 70–79



VS-TAP Hewitt, Hall, Parks, Knoch, Dascalu, Lee, Irwin, Harris

The VS-TAP web application was designed to be containerized using systemd-nspawn which
is native to the Linux operating system. In May 2021, VS-TAP was launched on the Department
of Engineering’s virtual server at the University of Nevada, Reno.

The rest of this paper is structured as follows: Section 2 presents the motivation and design
of VS-TAP including Functional and Non-Functional requirements as well as the application’s
Use Cases. Section 3 covers the technologies used to implement the current version of VS-TAP.
The final version of VS-TAP along with screen shots are given in Section 4. VS-TAP conclusion
as well as future works are given in Section 5.

2 Motivation and Design

Manually collecting visit data is difficult and unreliable, and the kinds of reports you can
generate from this data is limited. By automating the check-in and check-out procedures at the
Veteran Services offices and collecting data in the process, the amount of useful reports that
can be created increases. The main goals for this project is to provide a seamless check-in and
check-out experience and to augment the kinds of reports that can be generated. To make sure
these goals are adequately met, a list of functional and non-functional requirements are created
alongside a list of desired use cases.

2.1 Functional Requirements

Functional requirements, per Ian Sommerville [5], are used to describe the necessary function-
ality of a system. These requirements are directly seen in the final project. The following is a
list of functional requirements for the VS-TAP system.

1. The site will be hosted and run on the UNR network.

2. Parse scanner data from Navigate.

3. Store visit and demographic data in a database.

4. Allow users to query the database for data reports and display on the reports page.

5. Allow users to specify events for visit data.

6. Allow users to create an account.

7. Allow users to log in to their accounts.

8. Implement a navigation page that links each page on the site.

9. Allow users to export reports as images for reports.

10. Allow users to export report tables as CSV files.

11. Allow for users to search individual students.

12. Allow for users to remove individual students from the visit data.

13. Display different home pages for authorized and unauthorized visitors.

14. Provide a wizard as a user interface for creating new reports.

15. Allow users to specify a range of dates for reporting.

16. Allow users to change their password.

17. Allow users to upload a profile picture associated with their account.

18. Allow users to change their account first and last name.

19. Allow users to change their email address.

20. Support manual upload of visits when scanners are unavailable.

21. Allow users to quickly query for individual statistics e.g. average visit duration.

71



VS-TAP Hewitt, Hall, Parks, Knoch, Dascalu, Lee, Irwin, Harris

22. Allow users to save templates for data visualizations and load them with new data points.

23. Provide an administrative page for managing all user accounts.

24. Allow administrators to change names, email addresses, passwords, and profile pictures
of other users within the system.

25. Allow users to change the name of each saved report type.

26. Provide a dynamic wizard page for adding stacked graphs.

27. Allow users to download reports as PDF files.

28. In addition to the wizard, provide an interactive dashboard for quickly creating new
reports.

29. Automatically import visit data from Navigate on a live basis.

30. Provide a portal for quickly sharing visit data to other users.

2.2 Non-Functional Requirements

Non-functional requirements, per Ian Sommerville [5], are used to describe the quality con-
straints that a system must satisfy. The following is a list of non-functional requirements for
the VS-TAP system.

1. Allow for multiple concurrent users to upload data and create visualizations

2. The site should return queries for data, and data visualizations quickly

3. The site should be easy to navigate for people with little to no technical knowledge

4. The data reporting options should be shown in a straightforward and usable manner

5. The site should have minimal downtime

6. The site should be robust to bad data uploads

7. The site should be non portable and only accessible from the campus network

8. Users should be able to obtain all visual reports that are needed for funding of VS

9. All information protected by FERPA must be secure from unauthorized access

10. The software should be designed in a way that does not need frequent updates

11. The code should be easily maintainable in case future updates to the software are necessary

12. The software should function offline during downtime

2.3 Detailed Use Cases

• AccountLogin
When the user first enters the website, the user will be prompted for a user name and
password. If the credentials are correct, the user will be taken to the home page.

• ChangePassword
If the user wants to change their password, they can select Change Password. The user
will be prompted for their current password, the new password, and a second entry for
their new password. The current password must be correct and the two entries for the
two password must match. If all forms are correct, the user will receive a message that
their password was successfully changed. If the current password is incorrect or the two
fields for the new password do not match, an error message will display.

• SelectReportPage
When the user selects Visualizations from the navigation bar or enters the “Visualiza-
tions” view from the address bar, the user will be taken to the visualizations page.

72



VS-TAP Hewitt, Hall, Parks, Knoch, Dascalu, Lee, Irwin, Harris

Figure 1: Use Case Diagram

73



VS-TAP Hewitt, Hall, Parks, Knoch, Dascalu, Lee, Irwin, Harris

• SelectImportPage
When the user selects Upload Files from the navigation bar or enters the “Import” view
from the address bar, the user will be taken to the upload page.

• SelectHomePage
When the user selects Home from the navigation bar or enters the “Home” view from the
address bar, the user will be taken to the home page.

• ImportFile
On the Import page, the system will prompt the user for a file. The user will select the
file from their computer. If the file is successfully uploaded to the server, the system will
indicate to the user that it was successful; otherwise an error message will display. After
a successful upload, the parser will begin parsing the file.

• GetIndividualStatistic
On the Reports page, one of the options that the system provides to the user is the
ability to select an individual statistic (e.g. average G.P.A, total number of visitors on
10/31/2020). The user will select from the available individual statistics, then click Get

Individual Statistic to obtain the statistical report.

• DownloadFile
On the Reports page, the user will have the option to download any data visualization
that they select to their computer. For example, if they select a bar graph, they can
download the graph as an image.

• PlotData
On the Reports page, the user will select from a list of options for a specific type of graph.
After selecting the options, the user will click a button that will submit a user request to
the system to plot the data. The visualizations module should return the plotted data to
the user in the form of a graph.

• CompleteSurvey
Upon the first visit of the VS office, the student is taken to the Survey page to complete
a list of fields.

• SubmitSurvey
Upon completing the survey, the student clicks Submit. If all fields are correctly filled
out, the survey data is inserted into the database; otherwise, an error message appears.

• GetReport
After filling out the reports wizard, users can get a detailed report about attendance for
a given data range, including both visual and tabular data.

• SelectPreset
After selecting a specific saved report from the list of saved reports, a user is given the
details of that report with options, such as creating a new report from the saved report
preset and deleting the preset altogether.

• SavePreset
After obtaining a report from the Reports Wizard, the user is given the option to save
the preset. If the user saves the preset, the the preset is saved into the database where
the use can access it via the Presets page.

• DeletePreset
The report preset is deleted from the database after the user selects Delete Preset and
the preset no longer appears in the list of saved presets.

• GetBarGraph
In the reports wizard, the user obtains visit, demographic, and/or survey data in bar
graph format.

74



VS-TAP Hewitt, Hall, Parks, Knoch, Dascalu, Lee, Irwin, Harris

• GetLineGraph
In the reports wizard, the user obtains visit, demographic, and/or survey data in line
graph format.

• GetPieChart
In the reports wizard, the user obtains visit, demographic, and/or survey data in pie chart
format.

• GetHistogram
In the reports wizard, the user obtains visit, demographic, and/or survey data in his-
togram format.

• RunServer
Upon execution of manage.py, the web server loads the software and makes it available
to its users.

• StoreFiles
The web server will maintain storage of all files, including database files and user profile
pictures.

• LoadTemplates
In conjunction with Django, the web server is responsible for loading all template (HTML)
files that will display web page content to the end user.

• AuthenticateLogin
The web server should authenticate the user’s credentials when they try to log into the
systems. If the password or username are not correct, the server shall deny user access to
the system.

3 Technologies Used

VS-TAP uses Django as the main architecture. As VS-TAP is a web application, the frontend
features Hypertext Markup Language (HTML), Cascading Stylesheets (CSS) to provide visual
enchancements to the object displayed via HTML, and JavaScript to provide any interactivity to
the users. The backend logic is handled via Python scripts. SQLite3 is the database containing
all of the visit and demographic data. Additionally, the team used the Bootstrap HTML library
for faster frontend development time and JQuery for handling user events in JavaScript.

Django: Django uses a concept known as Model-View-Template (MVT), which is based off
of the Model-View-Controller architectural pattern [3]. Django models feature objects that
interact with the integrated database, such as SQLite3. A model object contains all of the
database fields associated with the object. Each instance of the object corresponds to an entry
in the database. The View contains all of the functions that render the HTML templates and
the associated logic performed prior to the rendering. The Template is the HTML templates
that are displayed, including any accompanying JavaScript or CSS styling.

HTML/CSS/JavaScript: A majority of the frontend starts with a base HTML page that
contains the common styling and layout used for all of the web pages. Specific web pages (e.g.
Reports page) extend from the base HTML page. Django provide dynamic elements in the
HTML pages through the use of context variables. A context variable is a variable whose value
is calculated by the backend via Python functions. The output varies based on conditions such
as the database contents and user input. CSS provides styling to individual HTML elements,
classes of HTML elements, or entire pages. CSS style options include (but are not limited to)

75



VS-TAP Hewitt, Hall, Parks, Knoch, Dascalu, Lee, Irwin, Harris

centering, changing the color, font size, and font color. JavaScript provides interactivity to the
page based on user actions, such as clicking on a button and typing in a text entry.

Dash: Dash is a library used for creating detailed and informative interfaces that provide
visual reports through Plotly [2]. VS-TAP uses Dash because each visit report needs visual
representation, such as a Bar Graph or a Pie Chart. Django contains an extension known
as Django-Plotly-Dash. Django-Plotly-Dash provides tools for integrating Dash components
within the Python scripts and HTML code. The backend of the reports page is written using
Plotly functions and variables in Python while the graph itself is rendered by Dash.

SQLite3: SQLite3 is used for the database. The database logic for the user accounts and
the report presets is automatically carried out by Django models. The logic for the student
demographics and visits are direclty handled by SQLite3 commands embedded in the Python
view functions within the parser and the reports modules.

4 Results

Aside from security, such as user authentication, there are three main sections of the VS-TAP
web application that veteran services’ staff and visitors interact with: the student survey, the
document upload section, and the data visualization page.

Student Survey: The student survey is a multiple choice questionnaire which is accessible
by students using a QR code located within each veteran center. Data collected from the
student survey helps veteran services determine relationships between various demographic
data, student’s involvement in the center, and student’s academic performance. Figure 2 and 3
show the beginning and end of an 18 question survey that helps the VS-TAP web application
create more dynamic reports to better serve student veterans.

Document Upload: The document upload section allows users to upload documentation
from different sources. Once a document is submitted to the application, the web application
extracts, transforms, and loads (ETL) the data into the back-end of the application. The
document upload section allows the users to upload data from the university’s Navigate system,
GPA data, and manual entry data in the event that the navigate system is down. Figure 4
show the document upload section where users may upload two different comma separated value
(csv) documents or enter manual student’s visit data.

Data Visualization: The data visualization section walks the user through a “reports” wiz-
ard to create a graphical representation of specific visitor’s data. Reports creation allows the
user to generate various different graph types while querying 28 different student visitor param-
eters. Figure 5 and 6 show the results from one such query where the reports wizard creates
a table and graph for the classification of students who visit the center between the dates of
04/05/2021-08/31/2021.

5 Conclusion and Future Work

The staff of VS can now use spreadsheets obtained from Navigate to upload them to VS-TAP.
By uploading the spreadsheet data, the data is saved to a database and the data storage process

76



VS-TAP Hewitt, Hall, Parks, Knoch, Dascalu, Lee, Irwin, Harris

Figure 2: The UNR Veteran Services Survey requires each visitors NSHE ID to relate their
survey demographics to their visit data.

Figure 3: When each survey is submitted the student’s responses are stored along their visits
data for future querying.

77



VS-TAP Hewitt, Hall, Parks, Knoch, Dascalu, Lee, Irwin, Harris

Figure 4: In the event that the university student tracking system is offline, staff at Veteran
Services may still upload visits data manually.

Figure 5: Table representing the amount of students who visit the center and their associated
classification year.

is automated. Staff members of VS can specify the type of report, date range, and aesthetics
to retrieve a report that is automatically generated. Previously, VS staff needed to manually
inspect multiple spreadsheet pages to create a custom report for VS funding. VS-TAP has
the potential to be used for other buildings at both the UNR campus and other Universities.
Other universities provide an equivalent to the Veteran Services building and may use a similar
funding structure; therefore, it would be beneficial for other universities to use this software to
track attendance.

Although there exists commercial software that tracks attendance, such as ADP [1], the
commercial software is primarily concerned with tracking employee attendance for payroll pur-
poses. VS-TAP customizes the attendance tracking to provide data visualizations and reports
to obtain funding. In the future, VS-TAP’s functionality can also be expanded to a more in-
teractive dashboard of data visualizations. Currently, reports are generated by selecting from
a list of customization options through a Wizard format. If users can dynamically view how
their customization choices can change the output of their reports, they can find their ideal cus-
tomization settings at a faster rate. The interactive dashboard can be achieve through libraries

78



VS-TAP Hewitt, Hall, Parks, Knoch, Dascalu, Lee, Irwin, Harris

Figure 6: Pie chart representing the amount of students who visit the center and their associated
classification year.

such as Dash Enterprise [4].
VS-TAP requires users to upload visit data from a third party source. The third party

source is Navigate. In the future, it would be beneficial if visit data reflected in real-time.
Real-time visit data can be obtained through an auxiliary application within VS-TAP that uses
hardware to scan the WolfCard, then uploads the visit to the VS-TAP database through a
cloud infrastructure. By allowing real-time visit uploads, VS staff would be solely focused on
obtaining the desired report needed for funding.

Acknowledgments

This material is based in part upon work supported by the National Science Foundation under
grant number IIA-1301726. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References

[1] ADP. Employee time tracking. https://www.adp.com/what-we-offer/time-and-attendance/

employee-time-tracking.aspx.

[2] Dash. Dash python user guide. https://dash.plotly.com/.

[3] Django Software Foundation. Django documentation, release 3.2.4.dev. https://docs.

djangoproject.com/en/3.2/#django-documentation, 2021.

[4] Plotly. Dash overview. https://plotly.com/dash/.

[5] Ian Sommerville. Software engineering 6th edition. https://www.pearson.com/us/

higher-education/program/Sommerville-Software-Engineering-6th-Edition/PGM267706.

html.

79

https://www.adp.com/what-we-offer/time-and-attendance/employee-time-tracking.aspx
https://www.adp.com/what-we-offer/time-and-attendance/employee-time-tracking.aspx
https://dash.plotly.com/
https://docs.djangoproject.com/en/3.2/#django-documentation
https://docs.djangoproject.com/en/3.2/#django-documentation
https://plotly.com/dash/
https://www.pearson.com/us/higher-education/program/Sommerville-Software-Engineering-6th-Edition/PGM267706.html
https://www.pearson.com/us/higher-education/program/Sommerville-Software-Engineering-6th-Edition/PGM267706.html
https://www.pearson.com/us/higher-education/program/Sommerville-Software-Engineering-6th-Edition/PGM267706.html

	Introduction
	Motivation and Design
	Functional Requirements
	Non-Functional Requirements
	Detailed Use Cases

	Technologies Used
	Results
	Conclusion and Future Work

