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Abstract 

Off-site construction has become widely acknowledged for its advantages, 
such as saving time, enabling faster assembly, and being cost-efficient. The 
sector's rapid growth has driven the demand for more advanced and effective 
methods of construction scheduling. Construction scheduling is naturally 
complicated due to the numerous constraints it involves, including those 
connected to workforce and resource availability. Conventional approaches, like 
the Critical Path Method (CPM), fail to account for multiple constraints, which 
limits their effectiveness in practical project scenarios. This research presents a 
simulation-based Genetic Algorithm (S-GA) approach to develop optimal 
construction schedules while accounting for constraints in labour and 
resources. Reducing the total project duration is the objective of proposed 
method. The proposed S-GA framework enhances the ability to manage 
scheduling across all construction phases. A real-world case which contains a 
prefabricated bridge with 6 spans was conducted to assess the method. For 
comparison, traditional methods and the evolution algorithm (EA) were 
adopted, and the findings indicated that S-GA not only produced superior 
construction schedules but also operated with less computational time. 
Proposed S-GA generated the best construction schedule with shortest project 
duration within least computational time. As a result, the proposed approach 
offers an advanced scheduling method that is applicable to real-world 
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construction projects. Project managers could use proposed method to make 
plans for their construction projects. 

1 Introduction 

Automated construction scheduling offers project managers support in effectively 
handling labor, equipment, timelines, costs, and other key project aspects. This approach 
serves as a decision-making tool, pinpointing necessary tasks and establishing both the 
timing and method for their execution. According to Ding et al. (2023), automated scheduling 
in construction aligns with the Resource Constrained Project Scheduling Problem (RCPSP) 
framework. Typically, a construction schedule divides the entire workload into a hierarchy of 
work breakdown structures and specific tasks, which are then assigned to corresponding 
subcontractors (Bai et al., 2009). Construction planning not only includes scheduling but also 
integrates various planning functions, such as material handling, site layout arrangement, 
equipment mobilization, and general site logistics. A skilled scheduler with substantial prior 
experience is required to carefully manage all on-site information to complete a construction 
schedule, although this task can demand considerable time and effort (Amer et al., 2021). 

 A range of methods and theories have been formulated to support construction 
scheduling. Construction project scheduling, as a decision-making process, seeks to 
determine the best sequence of activities and allocate diverse resources to tasks while 
navigating a range of constraints (Zhou et al., 2013). The Critical Path Method (CPM) is one 
of the most widely applied techniques (Koskela, 2000), breaking down projects into distinct 
work breakdown structures (WBS). It requires manual work to reorder WBS for better 
scheduling. Alamode and Plaza (1994) introduced case-based reasoning (CBR) techniques, 
where past cases are used as references to solve new scheduling challenges. Although 
these techniques rely heavily on prior experiences, they often lack the flexibility necessary 
for managing a range of construction projects. Heuristic methods and Genetic Algorithms 
(GA) offer a different approach to scheduling by framing it as an optimization problem, where 
specific conditions limit one or more objectives to be achieved (Ahmed et al., 2021; Bettemir 
& Sonmez, 2015; Erdal & Kanit, 2021; Lin et al., 2022; Yuan et al., 2021). Christodoulou 
(2010) introduced an agent-based ant colony optimization (ACO) approach to address 
resource limitations in construction projects. Cheng et al. (2016) applied a symbiotic 
organisms search (SOS) method for tackling multiple project scheduling challenges. El-
Rayes and Jun (2009) used a genetic algorithm to minimize unwanted resource fluctuations 
and reduce idle time. Ma et al. (2021) examined the construction order for various PC and 
CiS components and introduced a multi-objective discrete symbiotic organisms search 
method aimed at reducing the project makespan. Liu et al. (2021) created a heuristic-driven 
GA designed to assist construction managers in reaching target profits and enhancing 
project oversight. Despite their strengths, these methods generally struggle with adaptability 
to various construction. Organizing tasks in real-world construction projects presents 
challenges, as multiple constraints—such as labor, resources, and construction 
techniques—determine the sequence in which activities can proceed. 

 Combining simulation methods with GA (S-GA) to solve schedule optimization 
problems offers several advantages. First, simulation provides a realistic model of the 
complex, dynamic interactions within scheduling systems, capturing variability in factors 
such as resource availability, processing times, and demand fluctuations. This realism 
enhances the quality of solutions, as they are tested in conditions that closely mimic actual 
operations. Meanwhile, GAs offer a robust search mechanism capable of exploring a wide 
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solution space by using evolutionary principles of selection, crossover, and mutation. The 
combination allows for effective exploration and exploitation of scheduling options, as GAs 
can efficiently search through potential solutions while the simulation evaluates each 
solution's performance in a realistic environment. This hybrid approach is especially 
beneficial for complex scheduling problems, where traditional optimization methods may 
struggle due to non-linearity or high-dimensionality. In summary, integrating simulation with 
GA enhances solution robustness, adaptability, and practical applicability in real-world 
scheduling environments. 

2  Method 

2.1 Problem Definition 

 
The construction process for a prefabricated bridge is organized into different structural 

categories, including the superstructure and the substructure. Figure 1presents a simplified 
WBS of a bridge, divided into two main sections: the superstructure and the substructure. 
The superstructure includes precast girders and joints, with 3 and 4 sub-activities, 
respectively. The substructure comprises precast pier caps, precast piers, pile caps, and 
piles, with each component involving 4, 4, 6, and 7 sub-activities, respectively. This 
hierarchical structure helps to organize and manage the construction tasks involved in 
building the bridge. 

 
 

Figure 1: Construction activities representation 

The proposed optimization focuses on minimizing the total duration of the construction 
project to achieve earlier completion than scheduled (Equation 1). This approach operates 
within the boundaries of resource limitations and task order dependencies (Equations 2 to 
4). 

Objective: 

                                                      (1) 
Subject to:  

                                                          (2) 

                                                         (3) 

                                                                (4) 
Where 𝐷𝑝𝑟𝑜𝑗𝑒𝑐𝑡  denotes the total duration of the project; 𝑅𝑡(𝑎)  denotes the resources 

required for activity 𝑎; 𝑅 represents the resources for each operation; 𝑡𝑘 denotes the starting 

time of the 𝑘𝑡ℎ activity; 𝑑𝑘 represents the duration of 𝑘𝑡ℎ activity; 𝑁𝑐 denotes the number of 
constraint violations.  
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2.2 Environment Development 

This flowchart (Figure 2) represents a simulation process for generating and evaluating a 
genetic algorithm chromosome in a scheduling optimization context. The process begins 
with the initialization of a new chromosome, which represents a potential solution by 
encoding a sequence of activities to be executed. Structure groups within the chromosome 
are identified, and activities are selected and looped through, where each activity’s crew and 
equipment requirements are allocated. Activities are then added to an activity buffer and 
executed, with their duration monitored and incremented. For each activity, the system 
checks if its duration has been completed; once an activity ends, the allocated resources 
(crew and equipment) are released. Completed activities are recorded along with essential 
information such as structure group ID and segment ID. After each activity completion, the 
simulation updates three main states: the resource usage state (Rt), which tracks resource 
availability and utilization; the structure state (Gt), which monitors the progress of each 
structure group; and the ongoing activity state (Pt), which reflects the progression of 
activities. This looping process continues until all activities within the chromosome have 
been executed. By simulating the execution and resource allocation for each chromosome, 
this process allows the GA to evaluate and optimize scheduling performance, promoting 
efficient resource usage and timely completion of tasks. 
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Figure 2: Simulation environment 

2.3 GA Design 

Due to the diverse cases and assumptions in existing studies, current scheduling 
algorithms are not directly applicable to this research. To address this, a new approach is 
developed that integrates a simulation-based GA. This approach merges a modified S-GA 
with a simulation model, where each gene represents a specific construction activities, and 
the gene sequence determines the order in which these activities are arranged. The model 
tackles construction scheduling challenges by using the simulation environment as a 
decoder for GA chromosomes, ensuring optimal utilization of resources and labours. For 
generating the initial population, the algorithm employs regret-based biased random 
sampling (RBRS) alongside a serial schedule generation scheme (SSGS). The evolutionary 
process involves selecting the best individuals, performing two-point crossover, swapping 
genes (swap mutation), and applying a mutation method with a probability that gradually 
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changes over time (parameters detailed in Table 1). The study's results are compared with a 
conventional scheduling method, namely Critical Path Method (CPM) and an artificial 
intelligence method, namely Q-Learning. The GA configurations are displayed in Table 1. 

Table 1: S-GA parameters 

Population Size 200 

Crossover Rate 0.8 

Mutation Rate 0.2 

TOP 0.15 

2.4 Case Study 

This study focuses on a prefabricated construction project located on Longdong Avenue 
in Shanghai, China. In prefabricated bridge construction, the majority of above-ground 
components are cast off-site. The on-site construction work breakdown structure (WBS) 
includes tasks such as pile construction and platform casting. Following these steps, precast 
structures—such as columns, cover beams, and girders—are assembled sequentially. 
Multiple crews will handle various tasks with different equipment types. For instance, a 
dedicated lifting crew, equipped with a walking crane, will manage activities like lifting piles, 
piers, pier caps, and girders. In this study, the construction process is broken down into 28 
distinct activities, involving 12 crews and 4 types of equipment. Segment classifications are 
based on bridge structures and construction methods, including: 1) piles, 2) pile caps, 3) 
piers, 4) pier caps, 5) girders, and 6) seams. The 9-span bridge consists of 10 sets each of 
piles, pile caps, piers, and pier caps, along with 9 sets of girders and seams. Each segment 
encompasses various activities, totalling 273 sub-activities. There are 4 lifting and hammer & 
piling crews, while other crews number 2 each. The equipment includes 4 units of mobile 
cranes and hammers, with 2 units each of other equipment. 

3 Results 

The result of proposed method is compared with other algorisms and displayed in Table 
2. The manual schedule is derived from the initial master plan, which sets a 45-day 
completion target for the project. With a standard workday of 8 hours, this timeframe 
equates to a total construction period of 360 hours. The manual outcome is then modified 
with CPM and the total duration is shortened to 336h. Q-learning performs better than 
traditional methods with better schedule duration. GA generates the best outcome with 
310h. From the perspective of algorithm running time, Q-learning runs for over 500s and GA 
only costs 135.1s.  

Table 2: Scheduling results 

Method Manual CPM + manual Q-Learning S-GA (150 iters) 

Duration (h) 360 336 321 310 

CPU times / / 518.7s 135.1s 
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4 Discussion 

The results summarized in Table 2 highlight the effectiveness of various scheduling 
methods, including a S-GA, Q-learning, and conventional manual and CPM-modified 
schedules. Each method's performance was assessed based on both the project completion 
time and the computational efficiency of the algorithm. The manual schedule, set against a 
45-day completion target with an equivalent work period of 360 hours, serves as a baseline. 
When adjusted with CPM, the project duration is reduced to 336 hours. This improvement 
shows that the CPM method can enhance scheduling efficiency to some degree by 
identifying and optimizing the critical path, though its capability remains limited by the static 
nature of the initial master plan. 

In comparison, Q-learning demonstrates a further improvement over CPM, achieving a 
project duration of 321 hours. As a reinforcement learning technique, Q-learning offers the 
advantage of learning optimal actions over time through interaction with the environment. 
However, its prolonged runtime of 518.7 seconds indicates a significant computational cost, 
which could hinder its applicability in scenarios requiring rapid scheduling adjustments or 
where computational resources are limited. The S-GA method outperforms all other 
approaches, reducing the project duration to 310 hours and achieving the best balance of 
efficiency and effectiveness among the tested methods. S-GA’s capacity to explore a wide 
range of possible solutions through iterative optimization allows it to find a near-optimal 
solution with only 150 iterations. Notably, S-GA achieves this result in a significantly shorter 
time (135.1 seconds) than Q-learning, suggesting that S-GA is more computationally 
efficient while also producing the most favorable project schedule. 

This study exists some limitations. First, the proposed method only considers shortening 
the duration as the only objective. All the algorithm features are designed for single objective 
purpose. Secondly, proposed S-GA architecture is very simple, larger case studies is still 
required to test its effectiveness. Thirdly, the method considers the construction process as 
statistic process without unexpected disruptions. 

5 Conclusion  

The comparison of scheduling methods reveals that the proposed S-GA significantly 
outperforms traditional scheduling techniques and Q-learning in both project duration and 
computational efficiency. The manual schedule and CPM-modified plan provide a 
foundational timeline, but they lack the adaptability and optimization capacity necessary to 
achieve the best outcomes. Q-learning, while effective in reducing project time compared to 
traditional methods, comes with a high computational cost, making it less practical for 
environments requiring quick adjustments. In contrast, S-GA achieves the shortest project 
duration of 310 hours with a computation time of only 135.1 seconds, showcasing its ability 
to optimize effectively within a limited runtime. This combination of fast processing and 
superior schedule reduction underscores the suitability of S-GA for complex scheduling 
tasks where both time efficiency and resource allocation are crucial. Consequently, S-GA 
emerges as the preferred method, providing a balanced solution for scheduling in dynamic 
and time-sensitive project environments. 

Building on the promising results of the S-GA in optimizing project scheduling, future 
research could explore hybrid approaches that combine S-GA with other machine learning 
techniques, such as Q-learning or neural networks, to enhance both scheduling accuracy 
and adaptability. Hybrid models may harness the exploration capacity of reinforcement 
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learning to guide S-GA toward more diverse solutions, potentially improving performance in 
highly dynamic environments where project parameters frequently change. Additionally, 
future work could focus on optimizing the S-GA parameters and exploring real-time 
scheduling adjustments in response to project changes. Integrating real-time data inputs and 
developing adaptive scheduling mechanisms could enable a more responsive model that 
recalibrates the schedule in real-time as project conditions evolve. Lastly, the application of 
these methods to larger, multi-phase projects could test scalability and reveal insights into S-
GA’s efficiency across complex, resource-intensive scheduling scenarios. 
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