
EPiC Series in Computing

Volume 43, 2017, Pages 91–105

ARCH16. 3rd International Workshop on Applied
Verification for Continuous and Hybrid Systems

Implementation of Interval Arithmetic in CORA 2016

(Tool Presentation)

Matthias Althoff1 and Dmitry Grebenyuk2

1 Technische Universität München,
Department of Informatics,

Munich, Germany
althoff@in.tum.de

2 Ludwig-Maximilians-Universität München,
Department of Physics,

Munich, Germany
Dmitry.Grebenyuk@physik.uni-muenchen.de

Abstract

Interval arithmetic can be seen as one of the workhorses for formal verification ap-
proaches. The popularity of interval arithmetic stems from the fact that the possible
outcomes of almost all frequently occurring mathematical expressions can be bounded. A
disadvantage of interval arithmetic is that due to the negligence of dependencies of vari-
ables in expressions, results can be overly conservative. For this reason, interval arithmetic
is typically used in formal verification tools when formulas are not contributing much to
the accuracy of the overall approach, but do not belong to a restrictive class of expressions
and are thus hard to evaluate. Although a lot of textbooks and software manuals for
interval arithmetic exist, we have not found a complete and detailed description of how
all standard mathematical functions are evaluated. This work changes this situation and
describes concisely the evaluation of all standard mathematical functions. The described
techniques are implemented as a class in CORA, a free MATLAB tool for continuous
reachability analysis. Previously, CORA used the MATLAB toolbox INTLAB, but this
tool is no longer freely available. Thus, our interval arithmetic class is currently the only
freely available implementation of interval arithmetic that runs under current MATLAB
versions. We have thoroughly tested our implementation against INTLAB and present the
results.

1 Introduction

Cyber-physical systems arise across many innovative sectors in growth markets, such as au-
tomated vehicles, smart grids, and collaborative human-robot manufacturing to name only a
few [29]. One of the main characteristics of cyber-physical systems is the tight interconnection
of software with physical elements [19, 23]. Thus, a cyber-physical development process has
to consider the discrete dynamics typically originating from computation and the continuous

G.Frehse and M.Althoff (eds.), ARCH16 (EPiC Series in Computing, vol. 43), pp. 91–105

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

dynamics typically arising from physical components. Cyber-physical systems clearly perform
better when the discrete and continuous dynamics is jointly considered in the modeling, the
analysis, and the control design [13, 30].

Since analytical methods are basically non-existent for the analysis of mixed discrete and con-
tinuous dynamics, which are typically referred to as hybrid dynamics, algorithmic analysis
techniques have been developed [21]. One of the most frequently used technique for analyz-
ing hybrid systems is reachability analysis [27]. A variety of tools have been developed that
can perform reachability analysis as listed in the references of e.g. [2, 5, 6, 11, 17, 27]. Our
tool COntinuous Reachability Analyzer (CORA) [4] realizes techniques for reachability analysis
with a special focus on developing scalable solutions for verifying hybrid systems with non-
linear continuous dynamics. Due to the modular design of CORA, much functionality can be
used for other purposes that requires resource efficient representations of multi-dimensional sets
and operations on them. The set representations that are currently supported are intervals,
zonotopes, zonotope bundles, polynomial zonotopes, and polytopes. CORA also realizes the
conversion between the aforementioned set representations, while some conversions are realized
in an over-approximative fashion since not all representations are equally expressive. Methods
for polytopes are not implemented in CORA, but realized by the MPT toolbox [10]. The same
holds for intervals, for which CORA 2015 integrated the INTLAB toolbox [25]. However, INT-
LAB has become commercial and thus CORA 2015 is no longer a toolbox that solely relies on
non-commercial software, which is not the intention of the developers. For this reason, we have
implemented interval arithmetic on our own and have integrated it in CORA 2016. Since the
newly implemented interval arithmetic is the main novelty in CORA 2016, we focus on this
aspect.

Interval arithmetic is not new and has been developed over the last decades. Although numerous
textbooks (see e.g. [9,12,18,22,24]), tool papers (see e.g. [3,7,14,15,26]), and software manuals
(see e.g. [16, 28]) on interval arithmetic exist, we have not found a detailed description of how
a rather complete list of mathematical functions is implemented. It should also be noted that
since 2015 an IEEE standard for interval arithmetic exists [1]. This standard discusses many
important cases for which multiple outcomes are thinkable, e.g. how division by an interval
including zero should be treated. However, the standard does not provide methods on how to
evaluate mathematical functions. In contrast to previous work, we provide a detailed descrip-
tion of our implementation, which supports other researchers to implement their own interval
arithmetic toolbox. Furthermore, one can only discuss in depth better implementations, if the
used algorithm is described in detail. Since CORA does not consider rounding errors of floating
point numbers, the first version of the interval arithmetic implemented in CORA also neglects
this effect. Rounding effects are difficult to consider for transcendental functions due to the
table maker’s dilemma [8, Sec. 2.1.4], [20]. Computation of rounding errors for transcendental
functions has been taken special care of in INTLAB, but details of those algorithms, which are
specific to each function evaluation, are not published to the best knowledge of the authors. In
the first version, we also restrict ourselves to intervals of real numbers and exclude intervals of
complex numbers.

In Sec. 2 we describe how to compute the bounds of the outcome of scalar operations, such as
the addition of two intervals. The computation of results for interval vectors and matrices is
described in Sec. 3. Finally, in Sec. 4, we describe the implementation in CORA and compare
the results with INTLAB.

92

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

2 Scalar Operations

A real-valued interval [x] = [x, x] = {x ∈ R|x ≤ x ≤ x} is a connected subset of R and can be
specified by a left bound x ∈ R and right bound x ∈ R, where x ≤ x. Alternatively, one can
specify an interval by its center mid([x]) = 0.5(x+x) and its radius rad([x]) = 0.5(x−x). After
introducing set-based addition A⊕B = {a+b|a ∈ A, b ∈ B} and multiplication A⊗B = {a b|a ∈
A, b ∈ B}, where multiplication binds stronger than addition, an interval can be obtained using
the center and radius as [x] = mid([x])⊕ rad([x])⊗ [−1, 1]. In this work, we use reversed square
brackets to show that a bound is excluded from an interval, e.g. [x, x[= {x ∈ R|x ≤ x < x}.
We further denote the empty set by ∅ and the numeric data type not a number by NaN. If
NaN appears syntactically as the left or right bound of an interval, the result is no longer an
interval. Nevertheless, we use NaN within the interval notation (e.g. [NaN, 1]) to indicate whether
the computation of the left or right bound failed. The union and intersection are implemented
in CORA as (see [1, Sec. 9.3])

[x] ∩ [y] =

{

[max(x, y),min(x, y)] if max(x, y) ≤ min(x, y),

∅ otherwise,

[x] ∪ [y] =

{

[min(x, y),max(x, y)] if max(x, y) ≤ min(x, y),

[NaN, NaN] otherwise.

(1)

We introduce the interval hull of two intervals as (see [1, Sec. 9.3])

[x]∪[y] = [min(x, y),max(x, y)].

The only binary operations typically required for scalar intervals and implemented in CORA
are addition, subtraction, multiplication, and division. The result for a binary operation ◦ ∈
{+,−, ·, /} is defined as [x] ◦ [y] = {x ◦ y|x ∈ [x], y ∈ [y]} and implemented in a straightforward
way, except for division, as presented in previously mentioned textbooks (see e.g. [12, Sec.
2.3.3]):

[x] + [y] = [x+ y, x+ y],

[x]− [y] = [x− y, x− y],

[x] · [y] = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)].

(2)

Division is implemented differently depending on the software package. We use [12, eq. 2.54]:

[x]/[y] = [x] · (1/[y]), [1]/[y] =































∅ if y = [0, 0],

[1/y, 1/y] if 0 /∈ [y],

[1/y,∞[if (y = 0) ∧ (y > 0),

]−∞, 1/y] if (y < 0) ∧ (y = 0),

]−∞,∞[if (y < 0) ∧ (y > 0).

(3)

The solution is empty for y = [0, 0] since there exists no x that would solve 1 = 0 · x. When
we have the situation that 0 ∈ [y], the result can approach infinity since one can compute the
limit for approaching 0. This, however, is not possible when the interval only consists of 0.

Unary operations are typically evaluations of elementary functions f(x) defined as f([x]) =
{f(x)|x ∈ [x]}. In the following, we present the interval evaluation of elementary functions
implemented in CORA. We first discuss non-periodic function, followed by periodic functions.

93

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

2.1 Non-Periodic Functions

The easiest category of elementary functions with respect to interval evaluation, are monotonic
functions. A function fmi(x) is monotonically increasing if ∀x, y : x ≤ y ⇒ fmi(x) ≤ fmi(y)
and a function fmd(x) is monotonically decreasing if ∀x, y : x ≤ y ⇒ fmd(x) ≥ fmd(y). Thus,
it suffices to evaluate the left and right bound of such functions as for the exponential function:

e[x] = [ex, ex]. (4)

The same technique can be used for log(·) and
√

(·), but they are only defined for positive
values (when considering real interval arithmetic):

log([x]) =











[log x, log x] if x ≥ 0,

[NaN, log x] if (x < 0) ∧ (x ≥ 0),

[NaN, NaN] if x < 0,

√

[x] =











[
√
x,

√
x] if x ≥ 0,

[NaN,
√
x] if (x < 0) ∧ (x ≥ 0),

[NaN, NaN] if x < 0.

(5)
Please note that other works (e.g. [12, eq. 2.48]), given the domain D of a function, compute
f([x]) = {f(x)|x ∈ [x] ∩ D}. Thus, based on the domain D = [0,∞[of

√

(·), one would

obtain
√

[−1, 4] = [0, 2] instead of [NaN, 2]. However, we use the latter solution to indicate that
the input interval is improper. The inverse trigonometric functions arcsin(·), arccos(·), and
arctan(·) are all monotonic. However, arcsin(·) and arccos(·) are only defined for values within
[−1, 1]. If the argument is not within this interval, we return NaN to be consistent with log(·)
and

√

(·):

arcsin([x]) =



















[arcsin (x), arcsin (x)] if (x ≥ −1) ∧ (x ≤ 1),

[arcsin (x), NaN] if (x ∈ [−1, 1]) ∧ (x > 1),

[NaN, arcsin (x)] if (x < −1) ∧ (x ∈ [−1, 1]),

[NaN, NaN] if (x < −1) ∧ (x > 1),

arccos([x]) =



















[arccos (x), arccos (x)] if (x ≥ −1) ∧ (x ≤ 1),

[arccos (x), NaN] if (x < −1) ∧ (x ∈ [−1, 1]),

[NaN, arccos (x)] if (x ∈ [−1, 1]) ∧ (x > 1),

[NaN, NaN] if (x < −1) ∧ (x > 1),

arctan([x]) = [arctan (x), arctan (x)].

(6)

The hyperbolic functions sinh(·) and tanh(·) are monotonic and cosh(·) is monotonic within
]−∞, 0] and [0,∞[:

sinh([x]) = [sinh (x), sinh (x)],

cosh([x]) =











[cosh (x), cosh (x)] if x < 0,

[1, cosh (max(|x|, |x|))] if (x ≤ 0) ∧ (x ≥ 0),

[cosh (x), cosh (x)] if x > 0,

tanh([x]) = [tanh (x), tanh (x)].

(7)

94

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

The inverse hyperbolic functions arcsinh(·), arccosh(·), and arctanh(·) are all monotonically
increasing, where arccosh(·) is only defined for [1,∞[and arctanh(·) is only defined for]− 1, 1[.

arcsinh([x]) = [arcsinh (x), arcsinh (x)],

arccosh([x]) =











[arccosh (x), arccosh (x)] if x ≥ 1,

[NaN, arccosh (x)] if (x < 1) ∧ (x ≥ 1),

[NaN, NaN] if x < 1,

arctanh([x]) =



















[arctanh (x), arctanh (x)] if (x > −1) ∧ (x < 1),

[arctanh (x), NaN] if (x ∈]− 1, 1[) ∧ (x ≥ 1),

[NaN, arctanh (x)] if (x ≤ −1) ∧ (x ∈]− 1, 1[),

[NaN, NaN] if (x ≤ −1) ∧ (x ≥ 1).

(8)

The power [x]n, where n ∈ N, is monotonic for uneven n and monotonic for even n within
]−∞, 0] and [0,∞[(see [22, Appendix B]):

[x]n =











[xn, xn] if (x > 0) ∨ (n uneven),

[xn, xn] if (x < 0) ∧ (n even),

[0,max(|x|, |x|)n] if (0 ∈ [x]) ∧ (n even).

(9)

The absolute value function is monotonic for]−∞, 0] and [0,∞[:

|[x]| =











[|x|, |x|] if x < 0,

[x, x] if x > 0,

[0,max(|x|, |x|)] if 0 ∈ [x].

(10)

Please note that this result is in line with the previous definition f([x]) = {f(x)|x ∈ [x]}.
However, many textbooks (see e.g. [22,24]) define |[x]| = max(|x|, |x|). In [9, Example 3.4], the
syntax abs([x]) is used for the absolute value function, which is evaluated as in this work, and
|[x]| is used for the largest absolute value. To avoid any confusion, the IEEE standard uses the
syntax abs([x]) for the absolute value function (see [1, Tab. 9.1]) and mag([x]) = max(|x|, |x|)
for the largest absolute value (see [1, Tab. 9.2]).

2.2 Periodic Functions

Monotonicity is also exploited in CORA for trigonometric functions as suggested by standard
textbooks. However, in none of the checked textbooks [9,12,18,22,24] we have found a detailed
description of how all trigonometric functions are implemented. Throughout this subsection,
we assume that the arguments of trigonometric functions are in radians. If they are in degree,
they can be easily converted to radians upfront. Due to the periodic nature of trigonometric
functions, it suffices to only consider intervals whose radius rad([x]) is below a certain threshold.

Please note that it is not required to provide implementations for all trigonometric functions,
since they depend on each other, e.g. sin([x]) = cos(π2 − [x]). This, however, would require
additional operations, such as π

2 − [x] in the previous example, which reduces the computational
efficiency. For this reason, we suggest the implementations as presented subsequently. We begin
with the sin(·) function (see Fig. 2), for which holds

sin([x]) = [−1, 1] if x− x ≥ 2π

95

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

so that we can focus on the case x − x < 2π. We further simplify the problem by considering
only values within the interval [0, 2π[by using the modulo function from which we obtain

y = mod(x, 2π), y = mod(x, 2π). (11)

The following proposition helps distinguishing the different cases for obtaining sin([x]):
Proposition 1 (Interval bound difference after applying the modulo operator). There only
exist two cases for x− x < 2π after applying (11):

x− x = y − y (case 1)

x− x = (y − y) + 2π (case 2)

Proof. After applying the modulo operator, we have that y ∈ [0, 2π[and y ∈ [0, 2π[so that
y − y ∈] − 2π, 2π[. If y − y ∈ [0, 2π[, we obtain case 1 since x − x < 2π and the difference
(x−x)− (y− y) can only be a multiple of 2π. The remaining interval is y− y ∈]− 2π, 0[, which
results in case 2, since only the addition of 2π ensures x− x = (y − y) + 2π ∈ [0, 2π[.

Thus, it suffices to check whether y > y for necessary corrections, since when y ≤ y we know
that x − x = y − y. To compute the sin(·) function, we separate the interval [0, 2π[into three
monotonic regions (see Fig. 1) with

Rs1 = [0,
π

2
[, Rs2 = [

π

2
,
3π

2
[, Rs3 = [

3π

2
, 2π[.

If the regions of y and y are equal, we additionally have to check whether y > y holds – this, of
course, follows directly when the regions are unequal. Thus, in total, we have 6 combinations
of unequal regions and 3 combinations of equal regions, for which we have to check whether
y > y. Thus, in total we have 6 + 2 · 3 = 12 cases:

sin([x]) =











































































































[−1, 1] if (x− x ≥ 2π)∨
(y ∈ Rs1 ∧ y ∈ Rs1 ∧ y > y)∨
(y ∈ Rs1 ∧ y ∈ Rs3)∨
(y ∈ Rs2 ∧ y ∈ Rs2 ∧ y > y),

(y ∈ Rs3 ∧ y ∈ Rs3 ∧ y > y),

[sin(y), sin(y)] if (y ∈ Rs1 ∧ y ∈ Rs1 ∧ y ≤ y)∨
(y ∈ Rs3 ∧ y ∈ Rs1)∨
(y ∈ Rs3 ∧ y ∈ Rs3 ∧ y ≤ y),

[min(sin(y), sin(y)), 1] if (y ∈ Rs1 ∧ y ∈ Rs2),

(y ∈ Rs3 ∧ y ∈ Rs2),

[−1,max(sin(y), sin(y))] if (y ∈ Rs2 ∧ y ∈ Rs1)∨
(y ∈ Rs2 ∧ y ∈ Rs3),

[sin(y), sin(y)] if (y ∈ Rs2 ∧ y ∈ Rs2 ∧ y ≤ y).

(12)

The correctness of each case can be easily checked via visual inspection in Fig. 1; if y > y, the
inspection has to be performed as demonstrated in Fig. 2.

96

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

0 π/2 π 3/2 π 2π

-1

-0.5

0

0.5

1

φ [rad]

si
n
(φ
)

Rs1 Rs2

Rs3

Figure 1: Regions of sine.

-2 π -π 0 π 2π 3π 4π

-1

-0.5

0

0.5

1

φ [rad]

si
n
(φ
)

x y

x = y
{sin(x)|x ∈ [0, y] ∪ [y, 2π[}

Figure 2: Movement of infimum and supremum after ap-
plying the modulo operator.

For computing the cos(·) function, we only require two monotonic regions (see Fig. 3) with

Rc1 = [0, π[, Rc2 = [π, 2π[.

Thus, in total, we have 2 cases with unequal regions and 4 cases with equal regions, yielding 6
cases:

cos([x]) =















































[−1, 1] if (x− x ≥ 2π)∨
(y ∈ Rc1 ∧ y ∈ Rc1 ∧ y > y)∨
(y ∈ Rc2 ∧ y ∈ Rc2 ∧ y > y),

[cos(y), cos(y)] if (y ∈ Rc2 ∧ y ∈ Rc2 ∧ y ≤ y),

[min(cos(y), cos(y)), 1] if (y ∈ Rc2 ∧ y ∈ Rc1),

[−1,max(cos(y), cos(y))] if (y ∈ Rc1 ∧ y ∈ Rc2),

[cos(y), cos(y)] if (y ∈ Rc1 ∧ y ∈ Rc1 ∧ y ≤ y).

(13)

The tan(·) function has a shorter period of π so that we use slightly different auxiliary angles
compared to sin(·) and cos(·):

z = mod(x, π), z = mod(x, π).

For tan(·) we require two monotonic regions (see Fig. 4) with

Rt1 = [0, π/2[, Rt2 = [π/2, π[,

resulting in 6 cases as for cos(·):

tan([x]) =







































]−∞,∞[if (x− x ≥ π)∨
(z ∈ Rt1 ∧ z ∈ Rt1 ∧ z > z)∨
(z ∈ Rt2 ∧ z ∈ Rt2 ∧ z > z)∨
(z ∈ Rt1 ∧ z ∈ Rt2),

[tan(z), tan(z)] if (z ∈ Rt1 ∧ z ∈ Rt1 ∧ z ≤ z)∨
(z ∈ Rt2 ∧ z ∈ Rt2 ∧ z ≤ z).

(14)

The cot(·) function is monotonically decreasing in [0, π[so that we directly obtain

cot([x]) =

{

]−∞,∞[if (x− x ≥ π) ∨ (z > z),

[cot(z), cot(z)] if (z ≤ z).
(15)

97

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

0 π/2 π 3/2 π 2π

-1

-0.5

0

0.5

1

φ [rad]

co
s(
φ
)

Rc1 Rc2

Figure 3: Regions of cosine.

0 π/2 π

-10

-5

0

5

10

φ [rad]

ta
n
(φ
)

Rt1 Rt2

Figure 4: Regions of tan-
gent.

3 Vector/Matrix Operations

This section addresses how CORA handles interval vectors and matrices. An interval vector
[x] ⊆ R

n, which we denote by a small bold symbol, can be defined as the Cartesian product of
n intervals ([x] = [x1]× [x2] . . .× [xn]) or as the set bounded by a left vector x ∈ R

n and a right
vector x ∈ R

n ([x] = {x|xi ≤ xi ≤ xi, i ∈ {1, . . . , n}}). Analogously, a (m × n)-dimensional
interval matrix [X] ⊆ R

m×n, which we denote by a capital bold symbol, can be defined as the
Cartesian product of m × n intervals ([X] = [x11] × [x12] . . . × [x21] . . . × [xmn]) or as the set
bounded by a left matrix X ∈ R

m×n and a right matrix X ∈ R
m×n ([X] = {X|xij ≤ xij ≤

xij , i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}).
Matrix multiplication and the multiplication of a scalar with a matrix is defined and imple-
mented in CORA for [X] ⊆ R

o×n, [X̃] ⊆ R
o×n, [Y] ⊆ R

n×p, and [a] ⊆ R as

([X] [Y])ij =

n
∑

k=1

[X]ik [Y]kj , ([a] [X])ij = [a] [X]ij . (16)

Matrix addition is straightforwardly implemented as

[X] + [X̃] = [X+ X̃,X+ X̃]. (17)

All unary operations are realized in CORA elementwise as

f([X])ij = f([X]ij)

Note that we typically compute with larger intervals. For smaller intervals, there exist tech-
niques that directly operate on the center matrix and the radius matrix for computational
efficiency [26], but obtain results that are not tight anymore.

4 Implementation in CORA

This section lists the functions realized in CORA. Since CORA is implemented in MATLAB,
the function names are chosen such that they overload the built-in MATLAB functions. The

98

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

currently implemented functions are listed in Tab. 1 and Tab. 2. The list in Tab. 1 shows which
mathematical functions have been realized and Tab. 2 shows all other functions, which are
required to specify intervals, arrange them in matrices, access values, perform set operations,
display the intervals, among others.

Table 1: Methods of the class interval that realize mathematical functions. All functions can
be applied to scalars, vectors, or matrices.

name description

abs returns the absolute value as defined in (10)
acos arccos(·) function as defined in (6)
acosh arccosh(·) function as defined in (8)
asin arcsin(·) function as defined in (6)
asinh arcsinh(·) function as defined in (8)
atan arctan(·) function as defined in (6)
atanh arctanh(·) function as defined in (8)
cos cos(·) function as defined in (13)
cosh cosh(·) function as defined in (7)
exp exponential function as defined in (4)
log natural logarithm function as defined in (5)
minus overloaded ’-’ operator, see (2)
mpower overloaded ’ˆ’ operator (power), see (9)
mrdivide overloaded ’/’ operator (division), see (3)
mtimes overloaded ’*’ operator (multiplication), see (2) for scalars and (16) for matrices
plus overloaded ’+’ operator (addition), see (2) for scalars and (17) for matrices
rdivide overloads the ’./’ operator: provides elementwise division of two matrices
sin sin(·) function as defined in (12)
sinh sinh(·) function as defined in (7)

sqrt
√

(·) function as defined in (5)
tan tan(·) function as defined in (14)
tanh tanh(·) function as defined in (7)
times overloaded ’.*’ operator for elementwise multiplication of matrices
uminus overloaded ’-’ operator for a single operand
uplus overloaded ’+’ operator for single operand

4.1 Examples

An interval matrix can be generated by first generating scalar intervals and then assembling
them using the same MATLAB syntax as for real-valued variables, or by directly specifying the
left and right bounds:

1 a_11 = interval(-1,1); % generate scalar interval

2 a_12 = interval(-1,2); % generate scalar interval

3 a_21 = interval(0.5,1); % generate scalar interval

4 a_22 = interval(-2,-1); % generate scalar interval

5

6 A_variant1 = [a_11 a_12; a_21 a_22] % generate matrix and display it

7

8 A_inf = [-1 -1; 0.5 -2] % specify infimum

9 A_sup = [1 2; 1 -1] % specify supremum

10

11 A_variant2 = interval(A_inf, A_sup) % generate matrix and display it

12

13 firstElement = A_variant2(1,1) % obtain and display first element

99

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

Table 2: Methods of the class interval that do not realize mathematical functions. All func-
tions can be applied to scalars, vectors, or matrices.

name description

and returns the intersection as defined in (1)
display displays the values of the interval object in the MATLAB workspace
horzcat overloads the operator for horizontal concatenation, e.g. a = [b,c,d]

infimum returns the infimum of an interval
interval constructor of the interval class
isempty returns 1 if interval is empty and 0 otherwise
isscalar returns 1 if interval is scalar and 0 otherwise
length overloads the operator that returns the length of the longest array dimension
mid returns the center of an interval
rad returns the radius of an interval
size overloads the operator that returns the size of the object, i.e., length of an array in

each dimension
subsasgn overloads the operator that assigns elements of an interval matrix I, e.g. I(1,2)=value,

where the element of the first row and second column is set
subsref overloads the operator that selects elements of an interval matrix I, e.g. value=I(1,2),

where the element of the first row and second column is read
supremum returns the supremum of an interval
transpose overloads the ’.’ ’ operator to compute the transpose of an interval matrix
vertcat overloads the operator for vertical concatenation, e.g. a = [b;c;d]

14 firstRow = A_variant2(1,:) % obtain and display first row

15 secondColumn = A_variant2(:,2) % obtain and display second column

This produces the workspace output

A_variant1 =

[-1.00000,1.00000] [-1.00000,2.00000]

[0.50000,1.00000] [-2.00000,-1.00000]

A_variant2 =

[-1.00000,1.00000] [-1.00000,2.00000]

[0.50000,1.00000] [-2.00000,-1.00000]

firstElement =

[-1.00000,1.00000]

firstRow =

[-1.00000,1.00000] [-1.00000,2.00000]

secondColumn =

[-1.00000,2.00000]

[-2.00000,-1.00000]

Mathematical functions are evaluated using the MATLAB syntax as for real-valued variables:

1 A_inf = [-1 -1; 0.5 -2]; % specify infimum

2 A_sup = [1 2; 1 -1]; % specify supremum

3 A = interval(A_inf, A_sup); % generate matrix

4

5 B_inf = [0 -1; 0 1]; % specify infimum

6 B_sup = [1 3; 0.5 1.2]; % specify supremum

100

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

7 B = interval(B_inf, B_sup); % generate matrix

8

9 A+B % addition

10 A*B % multiplication

11 A.*B % pointwise multiplication

12 A/interval(1,2) % division

13 A./B % pointwise division

14 Aˆ3 % power function

15 sin(A) % sine function

16 sin(A(1,1)) + A(1,1)ˆ2 - A(1,1)*B(1,1) % scalar combination of functions

17 sin(A) + Aˆ2 - A*B % matrix combination of functions

This produces the workspace output

A+B =

[-1.00000,2.00000] [-2.00000,5.00000]

[0.50000,1.50000] [-1.00000,0.20000]

A*B =

[-1.50000,2.00000] [-4.20000,5.40000]

[-1.00000,1.00000] [-3.40000,2.00000]

A.*B =

[-1.00000,1.00000] [-3.00000,6.00000]

[0.00000,0.50000] [-2.40000,-1.00000]

A/interval(1,2) =

[-1.00000,1.00000] [-1.00000,2.00000]

[0.25000,1.00000] [-2.00000,-0.50000]

A./B =

[-Inf,Inf] [-Inf,Inf]

[1.00000,Inf] [-2.00000,-0.83333]

A^3 =

[-9.00000,7.00000] [-12.00000,18.00000]

[-3.00000,9.00000] [-18.00000,3.00000]

sin(A) =

[-0.84147,0.84147] [-0.84147,1.00000]

[0.47943,0.84147] [-1.00000,-0.84147]

sin(A(1,1)) + A(1,1)^2 - A(1,1)*B(1,1) =

[-1.84147,2.84147]

sin(A) + A^2 - A*B =

[-4.84147,5.34147] [-12.24147,9.10930]

[-3.52057,2.34147] [-2.90930,8.55853]

101

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

4.2 Comparison with INTLAB

In this subsection, we compare the speed and accuracy of our implementation with INTLAB.
Please note that we do not compare the results with b4m [31] since this tool no longer runs on
current MATLAB versions. Since INTLAB considers rounding errors of floating-point numbers,
the results of INTLAB are slightly larger intervals due to outwards rounding. As mentioned
in the introduction, the first version of interval arithmetic realized in CORA does not consider
floating-point errors, since they are also not considered in other computations of CORA. The
main purpose of CORA is to prototypically realize algorithms for reachable set computations.
Once an algorithm is mature, one should consider rounding errors when aiming for a commercial
tool. Since we neglect floating-point errors, our implementation is faster for almost all functions
compared to INTLAB as shown in Tab. 3. The computation times have been averaged from 104

runs for each function and have been carried out on an Intel Core i5-3230M processor running at
2.60GHz. Please note that this is an old processor and computation times have been observed
to be more than 100 times faster on a modern processor.

Let us introduce the left and right bound of the jth out of N = 104 evaluations of a particular
function in CORA as xC,j and xC,j . Likewise, the bound of the jth evaluation using INTLAB
is denoted by xI,j and xI,j . The maximum relative error over all runs is defined as

ǫ = max(µ1, . . . , µN), µj =
max(|xC,j − xI,j|, |xC,j − xI,j |)

xC,j − xC,j

. (18)

We have used the same 104 runs for each function as for measuring the average computation
time. We introduce the random variables U and U∆, which are uniformly distributed within an
interval. The interval for U is [u, u] and the one for U∆ is [u∆, u∆]. We construct the following
random input intervals for unary operations: [U ,U + U∆]. For binary operations, this random
interval is computed twice. For our implementation, we have used the standard precision of
MATLAB floating point numbers, which is the double-precision data type according to the
IEEE 754 standard. The bound of the random variables vary depending on the tested function
and are listed in Tab. 3. The results of the evaluation in Tab. 3 show that the maximum relative
error ǫ over all runs is marginal compared to the range of intervals xC,j − xC,j .

5 Conclusions

This paper has three main contributions. First, we present how we integrate interval arithmetic
into CORA and list all implemented methods. Currently, we provide the only freely available
MATLAB implementation of interval arithmetic running under the latest MATLAB versions.
Second, we compare our implementation to INTLAB; the main result of our comparison is that
our tool obtains results faster, but does not consider floating-point errors. These, however,
are also not yet considered in the other methods provided by CORA, mainly since the tool is
designed for prototypically testing different approaches for reachability analysis. The resulting
error from neglecting floating-point arithmetic is marginal for the tested functions. Finally,
we provide all required formulas for evaluating the range of functions – all previous works
referenced in here do not provide such an exhaustive list, but only point out that monotonicity
should be considered when evaluating functions. We admit that the evaluations of functions are
not difficult, but especially when considering cases where the input interval is not within the

102

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

Table 3: Comparison with INTLAB.

avg. comp. time [s] input intervals

function error ǫ; see (18) INTLAB CORA u u u
∆

u∆

abs 0 7.388 · 10−5 8.503 · 10−5 −100 100 0 100
acos 4.711 · 10−12 4.881 · 10−4 1.346 · 10−4 −1 0 0 1
acosh 8.208 · 10−13 5.433 · 10−4 1.279 · 10−4 1 10 0 10
asin 1.948 · 10−12 4.318 · 10−4 1.282 · 10−4 −1 0 0 1
asinh 2.304 · 10−12 5.196 · 10−4 1.131 · 10−4 −100 100 0 100
atan 5.915 · 10−11 3.179 · 10−4 1.081 · 10−4 −100 100 0 100
atanh 4.801 · 10−12 4.711 · 10−4 1.271 · 10−4 −1 0 0 1
cos 8.515 · 10−13 4.857 · 10−4 1.086 · 10−4 −100 100 0 100
cosh 1.865 · 10−14 3.971 · 10−4 1.203 · 10−4 −100 100 0 100
exp 2.627 · 10−14 2.262 · 10−4 6.840 · 10−5 −100 100 0 100
log 2.028 · 10−11 3.090 · 10−4 1.127 · 10−4 0 100 0 100
minus 7.583 · 10−15 9.846 · 10−5 8.425 · 10−5 −100 100 0 100
mpower (()3) 1.873 · 10−12 2.993 · 10−4 1.550 · 10−4 0 100 0 100
mrdivide 4.656 · 10−15 2.300 · 10−4 3.449 · 10−4 −100 100 0 100
mtimes 4.053 · 10−15 1.817 · 10−4 1.208 · 10−4 −100 100 0 100
plus 3.327 · 10−15 9.453 · 10−5 5.625 · 10−5 −100 100 0 100
rdivide 4.896 · 10−15 2.056 · 10−4 2.735 · 10−4 −100 100 0 100
sin 3.139 · 10−13 4.093 · 10−4 9.839 · 10−5 −100 100 0 100
sinh 1.902 · 10−12 3.224 · 10−4 1.044 · 10−4 −100 100 0 100
sqrt 1.407 · 10−12 1.524 · 10−4 1.163 · 10−4 0 100 0 100
tan 5.627 · 10−12 5.371 · 10−4 1.267 · 10−4 −π

2 + 0.1 0 0 π
2 − 0.1

tanh 1.418 · 10−12 2.432 · 10−4 1.050 · 10−4 −1 1 0 1
times 9.434 · 10−15 1.828 · 10−4 1.257 · 10−4 −100 100 0 100
uminus 0 1.880 · 10−5 3.452 · 10−5 −100 100 0 100
uplus 0 1.078 · 10−5 1.631 · 10−5 −100 100 0 100

domain of a function, we believe that a complete documentation of the implemented algorithms
is beneficial.

Acknowledgment

The authors gratefully acknowledge financial support by the European Commission project
UnCoVerCPS under grant number 643921.

References

[1] IEEE standard for interval arithmetic. IEEE Std 1788-2015, pages 1–97, June 2015.

[2] A.Eggers, N. Ramdani, N. S. Nedialkov, and M. Fränzle. Improving the sat modulo ode approach to
hybrid systems analysis by combining different enclosure methods. Software & Systems Modeling,
14(1):121–148, 2012.

103

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

[3] G. Alefeld and G. Mayer. Interval analysis: Theory and applications. Computational and Applied

Mathematics, 121:421–464, 2000.

[4] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for

Continuous and Hybrid Systems, pages 120–151, 2015.

[5] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler. Recent progress in
continuous and hybrid reachability analysis. In Proc. of the 2006 IEEE Conference on Computer

Aided Control Systems Design, pages 1582–1587, 2006.

[6] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid
systems. In Proc. of Computer-Aided Verification, LNCS 8044, pages 258–263. Springer, 2013.

[7] J. S. Ely. The VPI software package for variable precision interval arithmetic. Interval Computa-

tions, 2:135–153, 1993.

[8] D. Goldberg. What every computer scientist should know about floating point arithmetic. ACM

Computing Surveys, 23(1):5–48, 1991.

[9] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. C++ Toolbox for Verified Computing I. Springer,
1995.

[10] M. Herceg, M. Kvasnica, C.N. Jones, and M. Morari. Multi-Parametric Toolbox 3.0. In
Proc. of the European Control Conference, pages 502–510, Zürich, Switzerland, July 17–19 2013.
http://control.ee.ethz.ch/~mpt.

[11] F. Immler. Tool presentation: Isabelle/HOL for reachability analysis of continuous systems. In
Proc. of the 2nd Workshop on Applied Verification for Continuous and Hybrid Systems., pages
180–187, 2015.

[12] L. Jaulin, M. Kieffer, and O. Didrit. Applied Interval Analysis. Springer, 2006.

[13] J. C. Jensen, D. H. Chang, and E. A. Lee. A model-based design methodology for cyber-physical
systems. In Proc. of the 7th International Wireless Communications and Mobile Computing Con-

ference, pages 1666–1671, 2011.

[14] R. B. Kearfott. Algorithm 763: INTERVAL ARITHMETIC: A Fortran 90 module for an interval
data type. ACM Transactions on Mathematical Software, 22(4):385–392, 1996.

[15] R. B. Kearfott, M. Dawande, K. Du, and C. Hu. Algorithm 737: INTLIB: A portable Fortran 77
interval standard-function library. ACM Transactions on Mathematical Software, 20(4):447–459,
1994.

[16] O. Knüppel. PROFIL/BIAS V 2.0. Technical report, Technische Universität Hamburg-Harburg,
1999.

[17] S. Kong, S. Gao, W. Chen, and E. Clarke. dReach: δ-reachability analysis for hybrid systems.
In Proc. of Tools and Algorithms for the Construction and Analysis of Systems, 200-205, pages
200–205, 2015.

[18] U. W. Kulisch and W. L. Miranker. Computer Arithmetic in Theory and Practice. Academic
Press, 1981.

[19] E. A. Lee. CPS foundations. In Proc. of the 47th Design Automation Conference, pages 737–742,
2010.

[20] V. Lefèvre, J.-M. Muller, and A. Tisserand. Toward correctly rounded transcendentals. IEEE

Transactions on Computers, 47(11):1235–1243, 1998.

[21] S. Mitra, T. Wongpiromsarn, and R. M. Murray. Verifying cyber-physical interactions in safety-
critical systems. IEEE Security and Privacy, 11(4):28–37, 2013.

[22] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis. Society for
Industrial and Applied Mathematics, 2009.

[23] R. Poovendran. Cyber-physical systems: Close encounters between two parallel worlds. Proceedings
of the IEEE, 98(8):1363–1366, 2010.

[24] H. Ratschek and J. Rokne. Computer Methods for the Range of Functions. Halsted Pr, 1984.

[25] S. M. Rump. Developments in Reliable Computing, chapter INTLAB - INTerval LABoratory,

104

http://control.ee.ethz.ch/~mpt

Implementation of Interval Arithmetic in CORA 2016 Matthias Althoff and Dmitry Grebenyuk

pages 77–104. Kluwer Academic Publishers, 1999.

[26] S. M. Rump. Fast and parallel interval arithmetic. BIT Numerical Mathematics, 39(3):534–554,
1999.

[27] S. Schupp, E. Ábrahám, X. Chen, I. Ben Makhlouf, G. Frehse, S. Sankaranarayanan, and
S. Kowalewski. Current challenges in the verification of hybrid systems. In Proc. of the Fifth

Workshop on Design, Modeling and Evaluation of Cyber Physical Systems, pages 8–24, 2015.

[28] Sun Microsystems, Inc., 901 San Antonio Road Palo Alto, CA 94303 U.S.A. 650-960-1300. C++

Interval Arithmetic Programming Reference, 2001.

[29] J. Sztipanovits, S. Ying, I. Cohen, D. Corman, J. Davis, H. Khurana, P. J. Mosterman, V. Prasad,
and L. Stormo. Strategic R&D opportunities for 21st century cyber-physical systems. Technical
report, National Institute of Standards and Technology (NIST), 2013.

[30] W. Wolf. Cyber-physical systems. Computer, 42(3):88–89, 2009.

[31] J. Zemke. b4m — A free interval arithmetic toolbox for Matlab based on BIAS. Technical report,
Arbeitsbereich Technische Informatik III 4-04, Technische Universität Hamburg-Harburg, 1999.

105

	Introduction
	Scalar Operations
	Non-Periodic Functions
	Periodic Functions

	Vector/Matrix Operations
	Implementation in CORA
	Examples
	Comparison with INTLAB

	Conclusions

