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Abstract

Incorporating a dynamic kick engine that is both fast and effective is pivotal to be
competitive in one of the world’s biggest AI and robotics initiatives: RoboCup. Using the
NAO robot as a testbed, we developed a dynamic kick engine that can generate a kick
trajectory with an arbitrary direction without prior input or knowledge of the parameters
of the kick. The trajectories are generated using cubic splines (two degree three polyno-
mials with a via-point), cubic Hermite splines or sextics (one six degree polynomial). The
trajectories are executed while the robot is dynamically balancing on one foot. Although a
variety of kick engines have been implemented by others, there are only a few papers that
demonstrate how kick engine parameters have been optimized to give an effective kick or
even a kick that minimizes energy consumption and time. Parameters such as kick config-
uration, limits of the robot, or shape of the polynomial can be optimized. We propose an
optimization framework based on the Webots simulator to optimize these parameters. Ex-
periments on different joint interpolators for kick motions have been observed to compare
results.

1 Motivation and Background

Generating dynamic motions on a robot without explicitly programming the motion is a difficult
task and a fairly new research area. Kick engines such as [2, 12, 8, 7, 10, 3] have been developed
for the NAO robot and although they are dynamic, there are static values incorporated into
the kicks such as retraction points, foot positions from floor, hip/ankle pitch and hip/ankle roll
ratio, and shapes of trajectories. These values are usually derived from empirical observations
and are not guaranteed to be optimal values.

The difficulty of the task is to optimize parameters on the physical robot because the robot
is limited by hardware, energy consumption, and most importantly real time execution. Hence,
the robot cannot run for thousands or even millions of iterations to get a good set of parameters.
Other dynamic kick engines such as [13] developed a kick engine for the THOR-MANG from
Robotis that generate static kick motions. Lengagneua et al. [6] have developed a kick engine
that incorporates optimization offline and a re-planning step when the kick is executed but
do not optimize on the physical robot or use a simulation software that takes into account
hardware properties of the robot.

Wenk et al. [10] developed a kick engine that generates online kick motions using trajectories
generated by Bézier curves which are continuously differentiable.
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Bockmann et al. [3] provided a mass spring damper model to model motor behavior. The
authors also adapted Dynamic Motion Primitives (DMP) to generate kick trajectories. Kick
trajectories are usually generated from Bézier curves or via-point kick trajectories, but here the
authors used a PD controller with a forcing term in the transformation system to control the
shape of the trajectory.

Sung et al. [9] used full body motion planning and via-point representation to generate
joint angle trajectories. These trajectories are generated using five degree polynomials and
via points are specified to constrain the swing trajectory. In order to create efficient full body
motion trajectories, the author used optimization techniques such as Semi-Infinite Programming
(SIP) to specify constraints such as minimal energy and torque. The optimization also dealt
with joint redundancy.

Muhammad Usman et al. [1] used RoboCup Soccer Simulation 3D to optimize Bézier curves
and cubic Hermite splines. The optimization method used by the authors was Particle Swarm
Optimization. The simulator used for these experiments is mostly for agents and it is not
transferable to physical robots because the kinematics of the robot are different as well as the
dynamics produced by the simulator. In contrast, the Webots simulator used in this framework
is directly related to the physical robot, and the optimized parameters from the simulator can
be directly used with minimal modifications to compensate for each physical robot.

Jouandeau et al. [5] generated rocking motions for the swinging leg, and also created a
swing motion for the torso to generate kicks. The authors used an optimization method called
Confident Local Optimization techniques (CLOP) for the swinging foot and torso. The kicks
were tested in the RoboCup 3D simulator.

Yi et al. [13] used THOR-OP (Tactical Hazardous Operations Robot - Open Platform) full
sized humanoid robot to generate kick and walk motions for the AdultSize League in RoboCup
2014. The kick motions generated were handled by the hybrid walking controller to create
smooth transitions between the dynamic walk and strong kick.

We propose a new kick engine for the NAO robot that can generate kick trajectories
using cubic splines, cubic Hermite splines, and sextic polynomials (six degree polynomials). A
comparision of these kick trajectories generated by different interpolators will be compared
to observe the best kick trajectories generated by each interpolator. The values of the kick
trajectories are optimized in the Webots simulator to get a good set of parameter values. The
overview of the control framework is presented in fig. 1.

In this paper, the optimization module of the framework will be explained which includes
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Figure 1: Overview of the control framework for the kick engine
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Figure 2: The left polynomials are the cubic splines. As shown in the figure, two polynomials need to be
defined with a knot referred to as the via-point. The middle polynomial is referred to as a sextic (six degree
polynomial). The six degree polynomial allows definition of a via point without adding another polynomial.
The right polynomial is a cubic Hermite spline which guarantees the control points to be tangent to the
tangent vectors creating smooth trajectories for the kick. In this case, no via-point is defined unless a cubic
Hermite spline is chained with another.

the simulator and the kick interpolators. The paper is organized as follows: we describe how
each interpolator is constructed from the properties of the kick trajectory in Section 2. The
model optimization on the kick is discussed in Section 3, and our experiments and results are
explained in Section 4, followed by the conclusion in Section 5.

2 Kick Trajectory

In order to generate a kick trajectory, the most trivial case is to change the leg joint angles
until a desired kick configuration has been reached. This is tedious work and will be suboptimal
since the joint space is very large. Another approach is to use optimization to find key-frame
values, but this only works for a set of kicks and it is not dynamic enough to create any kick
trajectory. Therefore, a more efficient solution is to generate motions using polynomials [11].
Polynomials are a great solution in robot motion because they can be configured to generate
smooth curves. To generate a polynomial for the kick motion requires constraints such that
the motion generated by the polynomial does not conflict with any unwanted configuration.
The polynomials will not be used in the joint space, but rather will be used to determine
the next position of the swinging foot. When the position of the foot is determined by the
cubic polynomial, the Inverse Kinematic module will provide the angles for the foot position
requested. In the case of cubic splines, two cubic polynomials are generated. The point where
the two polynomials meet is called the via-point. The purpose of this point will be discussed
later. The cubic polynomial is as follows,

a1 (t) = a13t3 + a12t2 —+ a11t —+ aio Ozz(t) = a23t3 + a22t2 —+ aglt —+ a0

In pursuance of generating an arbitrary motion, specific constraints need to be put upon the
polynomials. Since there are two cubic polynomials (i.e. 8 coefficients / degrees of freedom),
there are 8 constraints. The first constraint is the point of the first polynomial at ¢ = 0. At
t = 0, the kick motion will swing the leg back. This is called the retraction point. This is
the point farthest from the ball. The second constraint is that the velocity of the first point
at t = 0 which is zero. The third constraint is the position of the via-point where both cubic
polynomials meet. The via-point is used to determine the height of the kick trajectory.

It is also a very important point because it is where both polynomials meet. Hence, both
polynomials need to have the same position at this point and their velocities need to match.
Moreover, the acceleration at the via point for both polynomials also needs to match. This
guarantees a smooth trajectory with C? continuity. The last two constraints define the position
and velocity of the second cubic spline at ¢t = t;. The constraints are summarized as follows,
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a1 (0) = [0, Y0, 0] (retraction point)
a1 (0) = [0,0,0]
a1(tvia) = [Tty Ytyiar Rfloor] (constraint on foot from floor)
a2(0) = [Tty Ytuiar Nfloor] (constraint on foot from floor) )
dl(tvia) = dg (O)
dl(tm'a) = Qo (O)
as(ty) = [Tr,y5,2f] (contact point)
G2 (tf) = [07 0, 0]

Moreover, as shown above, the constraints are defined as vectors because there needs to be
polynomials for the x, y, and z plane. The six cubic polynomials (two for each plane) will form
a parametric curve in R3. To solve the coefficients of the polynomials we solve the following
system which was created by inputting the constraint in the polynomial and rearranging terms.
As seen in (9), aig, a11, and agy do not need to be a part of the system of equations because
their answer is trivial (a1(0) = a19, d1(0) = a1, @2(0) = ag).

Solving (9), gives us the coefficients for our polynomials, but we still are missing one step.
Before we begin solving (9), we need to determine the optimal via point position. This is
discussed in section 3. We can also do the same for sextic interpolation (six degree polynomial)
as we did for the cubic polynomial with the advantage that there is only one equation for the
interpolation rather than two such as the cubic spline. For the cubic Hermite spline, the end
points referred to as the control points on the spline needs to be defined. In this case, it is the
retraction point and the contact point as (9). Also, a tangent vector for each control point needs
to be defined. The initial tangent vectors are suggested to be the vector from the retraction
point to the contact point. In section 3, the optimizer will find the optimal tangent vectors. In
fig. 2, a kick trajectory for each is shown.

3 Model Optimization

Generating a good parameter set is important to attain a good kick. Although these values can
be found empirically, it is a tedious task. We therefore used the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES, [4]) for model optimization. The values were optimized and
visualized in Webots, which can be seen as the standard simulation software for NAOqi, the
robot’s OS. For each kick trajectory, the whole parameter space was optimized. Therefore for
the sextic and cubic trajectories, the retraction point, contact point, via point, and length
of the kick were optimized. The time lapse to arrive at the via point was also optimized.
The parameter space for sextic and cubic is 12-dimensional. For cubic Hermite spline, the
retraction and contact points and their corresponding tangent vectors were also optimized.
The dimension space of cubic Hermite spline is 14-dimensional. The extra two dimensions
correspond to the length of the kick and a single parameter non-linear transformation of time
to control speed along the path without affecting the shape of the curve. The initial population
began with a feasible kick trajectory which was constructed from empirical observations. This
allowed the optimization to finish much faster than if the seed was a random kick trajectory.
The initial objective function of the optimization was the distance of the ball traveled when
the ball was kicked. Using this objective function, the agent learned to use the momentum of
it’s body to kick the ball further while falling. Therefore, the objective function was updated
with a penalty if the robot fell. In turn, the agent learned to kick farther without falling.
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Figure 3: Diagonal kick generated by cubic spline interpolator on a NAO physical robot
4 Experiments

For the validation of our approach, various kicks (forward, side, diagonal, backward) were
generated and data for kick trajectory generation was recorded. The first graph in fig. 4 shows
the fitness function value and it demonstrates that the optimization was able to learn new kicks
that can kick the ball further than the original kicks built from observation. It is also important
to notice that sextic had a harder time to minimize the function value as well as Hermite. The
cubic spline interpolator was able to converge faster as well as more stable at every generation.
This can be due to the initial seed of the other interpolators being inferior to the seed of cubic
spline making it harder to explore. On the right of the fitness function graph in fig. 4, the
distance traveled of the ball was plotted. Initially, it can be seen that the ball traveled about
three meters with a viable seed. After 300 iterations, the distance of the ball increased by a
factor of about two. It is important to note that the distance traveled of the ball in each iteration
is the maximum distance traveled for the current generation. Hence within each generation,
the distance traveled for the population must have been less than or equal to the maximum
distance traveled in the current generation. The dynamics of the parameter values for the three
kick interpolators can also be seen in fig. 4. As can be seen, the optimization explores the
parameter space vastly for the first 200 iterations. After exploring the parameter space for
200 iterations, the optimization stops searching and rather exploits the current parameters.
In general, the optimization converges quickly because the initial seed of the optimization is
a viable kick. Therefore this shows how essential it is to start with a good seed. The kick
trajectories were also generated on the physical robots. A video of the kick engine can be
found at: https://www.youtube.com/watch?v=4fmuql_CpQw and a diagonal kick trajectory
generated using cubic splines can be seen in fig. 3.

5 Conclusion

We have compared results of kick trajectories generated by different joint interpolators. The
results have shown that kicks can be optimized using these interpolators. The joint interpolators
used for these experiments were cubic splines which are two three degree polynomials that
meet at a via point, a sextic polynomial which is a six degree polynomial, and a cubic Hermite
spline which needs to have the end points and their tangent vectors defined. These results
demonstrated that the joint interpolators can be optimized to get powerful kicks rather than
optimizing on the full joint space; drastically reducing the dimension of the problem. The
cubic spline resulted the best joint interpolator in terms of minimizing the function value at a
faster pace. The results have also exhibited that with a good initial seed, the optimization can
converge at a rather fast pace; in contrast with optimizations done on the joint space which can
take longer training times. For future work, optimizations can be done in parallel with diverse
feasible seeds to converge on suboptimal kicks and compare results.
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Figure 4: Results from optimization on Webots simulator
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