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Abstract

This paper introduces METTELQ, a tableau prover generator producing JAVA code from
the specification of a logical syntax and a tableau calculus. It is intended to provide an
easy to use system for non-technical users and allow technical users to extend the generated
implementations.

1 Introduction

Building a platform for automatically generating provers from the definition of a logic is a
challenging task. As the problem of generating a deduction calculus from the definition of a
logic is highly undecidable, the best that we can hope for is technology for solving the problem
for certain restricted cases. The tableau method was introduced in the 1950s by Beth and
Hintikka [8, 16]. With origins in the work of Gentzen in the 1930s [13] and thoroughly studied
by Smullyan in the 1960s [29], it has become one of the most popular deduction approaches in
automated reasoning. Tableau methods in numerous forms exist for various logics and many
implementations of tableau provers are available.

Based on the collective experience in the area our recent research has been concerned with
trying to develop a framework for synthesising tableau calculi from the specification of a logic.
The tableau synthesis framework introduced in [27] effectively describes a class of logics for
which tableau calculus synthesis can be done automatically. This class includes many modal,
description, intuitionistic and hybrid logics. Our long-term goal is to synthesise not only tableau
calculi, but also implementations of the tableau calculi as tableau provers.

As a step towards this goal we have implemented a tool, called METTEL2, for automatically
generating code of a tableau prover from user-defined specifications of a syntax and a set
of tableau rules for a logical theory. The syntax and tableau rule specification languages of
METTEI? are designed to be as simple as possible for the user and to be as close as possible
to the traditional notation used in logic and automated reasoning textbooks. At the moment
the syntax specification language is limited to multi-sorted propositional languages with finitary
connectives. The tableau calculus specification language covers different types of tableau calculi
that fit the traditional representation of tableau rules of the form Xo/X; | -+ | X, where the
X, denote finite sets of expressions of the given logical theory. X is a set of premises and
{X1,..., X} is a finite set of branches of the rule. Many labelled semantic tableau calculi for
modal, description, hybrid and superintuitionistic logics belong to this paradigm.

METTEI? is complementary to the mentioned tableau synthesis framework [27]. The frame-
work provides a theoretical foundation for sound, complete and terminating implementations
of tableau procedures for a wide class of logics with first-order representable semantics and,
in particular, for many logics which can be specified in METTEIZ. The scope of METTEI?

*This research is supported by EPSRC research grant EP/H043748/1.

P. Fontaine, R.A. Schmidt, S. Schulz (eds.), PAAR-2012 (EPiC Series, vol. 21), pp. 149-162 149



METTEIZ: Towards a Tableau Prover Generation Platform D. Tishkovsky, R. A. Schmidt, M. Khodadadi

extends however that of tableau calculi derived in the framework and is not limited to semantic
or labelled tableau calculi.

METTEL? is the successor of the METTEL system [31, 1]. METTEL is a tableau prover
for a large class of propositional modal-type logics, including various traditional modal logics,
dynamic modal logics, description logics, hybrid logics, intuitionistic logic and logics of metrics
and topology. It does already allow users to specify their own tableau calculi and then use
METTEL as a prover for the specified calculus. Though flexible, the specification language of
METTEL is based on a fized set of logical operators common to the mentioned logics. This
means there is no facility in the specification language to allow the user to define their own set
of logical operators unrelated to operators of modal-type logics.

The functionality of METTEIZ considerably extends that of the METTEL prover. METTEI?
generates JAVA code for a tableau prover to parse problems in the user-defined syntax to solve
satisfiability problems. In order to come closer to the vision of a powerful prover generation
tool, METTEL is equipped with a flexible specification language for users to define their logic or
logical theory with syntactic constructs as they see fit. Thus no logical operators are predefined
in METTEIZ.

Compared with the previous METTEL system, the tableau reasoning core of METTEI? has
been completely reimplemented and several new features have been added, the most impor-
tant being: dynamic backtracking [14] and conflict-directed backjumping [11, 25], and ordered
forward and backward rewriting for operators declared to be equality and equivalence opera-
tors. There is support for different search strategies. The tableau rule specification language
in METTEI? now allows the specification of rule application priorities thus providing a flexible
and simple tool for defining rule selection strategies. To our knowledge, METTEI? is the first
system with full support of these techniques for arbitrary logical syntax.

The aim of the current implementation is to provide an easy to use prover generator with ba-
sic specification languages without sophisticated meta-programming features that might over-
whelm non-technical users. For technical users, the generated code consists of a thoroughly
designed hierarchy of public JAVA classes and interfaces that can be extended and integrated
with other systems.

The paper is structured as follows. We introduce the syntax and tableau specification
languages of METTEI? in Sections 2 and 3. Section 4 describes a common scenario of using
METTEL? as a prover generator. Details on implementation, prover generation, integrated
optimisations, and features for controlling derivations are given in Sections 5, 6, and 7. We
show how generated provers can be run and discuss their output in Section 8. The scope of
METTEI? and further features are illustrated in Section 9. In Section 10 we discuss possible
applications of METTEI? and our experience of using the system. Sections 11 and 12 give an
overview of related work and further directions for development of the system.

2 Language specification

The language of METTEI? for specifying the syntax of a logical theory, is in line with the
many-sorted object specification language of the tableau synthesis framework defined in [27].
We give a simple ‘non-logical’ example for describing and comparing lists to illustrate how the
language of a logical theory can be defined in METTELZ.

specification lists;
syntax lists{
sort formula, element, list;
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list empty = <>’ | composite = ><’ element list ’>’;
formula elementlnequality = > [’ element ’ !'=’ element *] ?;
formula listinequality = > {’ list > !=" list °}’;

}

The first line starting with the keyword specification defines lists to be the name of the user-
defined logical language. The syntax lists{...} block consists of the declaration of the sorts and
definitions of logical operators in simplified BNF notation. Here, the specification is declared
to have three sorts. For the sort element no operators are defined. This means that all element
expressions are atomic. The second line defines two operators for the sort list: a nullary operator
<> (to be used for the empty list) and a binary operator <..> (used to inductively define non-
empty lists). composite is the name of the operator <..>, which could have been omitted. The
next two lines define how expressions of sort formula can be formed. For example, the line
formula listinequality = > {’list > !="list >}’; defines an inequality operator on lists, while the previous
line defines an inequality operator on elements (note the difference in notation via the brackets).
This means formulae can be two types of inequality expressions. The first mentioned sort in a
declaration, in our case formula, is the main sort of the defined language. Several declarations
of connectives for the same sort are equivalent to a joint statement which is composed from
these declarations by means of the operator |. For example, the two statements for formula are
equivalent to the following statement:

formula elementinequality = > [’ element * ! =" element *]’ | listinequality = > {’ list > =" list > }?;

Another example we consider is three-valued Lukasiewicz logic L3. The syntax of the logic
includes the standard connectives 1, T, =, V, A, and —. Truth values are considered over three-
element Lukasiewicz algebra over the set {0, %, 1}. The elements of the algebra are naturally
ordered. The algebra operations correspond to the connectives of the logic and are defined for
any elements a and b from the algebra as follows [20, 17, 30].

1L =0 aAb = min{a,b} -a = 1-—a

T &9 aVb = max{a,b} a—b = min{l,1—a+b}

The syntax specification for the logic Lg with respect to the three-valued Lukasiewicz algebra
is the following;:

specification Lukasiewicz3;

syntax Lukasiewicz3{
sort valuation, formula;
valuation true = > T’ formula | unknown = *U’ formula | false = *F’ formula;
formula true = >true’ |false = false’;
formula negation = > 7’ formula;
formula conjunction = formula ’ &’ formula;
formula disjunction = formula ’ | * formula;
formula implication = formula > -> formula;

}

Thus, in the specification we denote truth value 0 as F (‘false’), truth value % as U (‘unknown’),
and truth value 1 as T (‘true’). In order to indicate that a formula ¢ has truth value a in
the Lukasiewicz algebra we prepend ¢ with a, that is U (p —> q) means that the formula
P —> q has ‘unknown’ truth value.

151



METTEIZ: Towards a Tableau Prover Generation Platform D. Tishkovsky, R. A. Schmidt, M. Khodadadi

3 Tableau calculus specification

The tableau rule specification language of METTEL is loosely based on the tableau rule speci-
fication language of METTEL, but extends it in significant ways. The premises and conclusions
of a rule are separated by / and each rule is terminated by $;. Branching rules can have more
than two sets of conclusions and are separated by $| symbols. Premises and conclusions are
expressions in the user-defined logical language. Additionally, the user can annotate a rule with
a priority value. The default priority value of any rule with unspecified priority is 0. Roughly
speaking (see Section 7), smaller priority values imply a rule is applied earlier.

Turning back to the examples of the previous section, tableau rules for list comparison might
be defined as follows.

[a !=a]/ priority 0$;
{L =L}/ priority 03;
{<a L0> I=<b L1>}/[a !=b] $| {LO |= L1} priority 2$;

The first two rules are closure rules since the right hand sides of / are empty. They reflect that
inequality is irreflexive. The last rule is a branching rule. As the parsing of rule specifications
is context-sensitive the various identifiers (a, L, LO, etc) are recognised as symbols of the appro-
priate sorts. Thus sorts of identifiers are distinguished by their contextual position within the
rule and not their symbolic representation.

A tableau calculus for the three-valued Lukasiewicz logic is given in [17]. The following is
its specification in METTEI? syntax.

T false / priority 03; Ufalse / priority 0$;

Utrue / priority 03; F true / priority 0%;

TP FP/ priority 0$; TP UP/ priority 0$;

UP FP/ priority 0$; UP FP/ priority 0$;

T~P/FP priority1$; U~P/UP priority1$; F~P/ TP priority 1$;
T(P&Q)/ TP TQ priority 2$; F(P&Q)/ FP $ FQ priority1$;

UP&Q /TP UQS$ UPTQ $ UP UQ priority 3$;

T(P| Q/ TP$ TQ priority 23; F(P| Q/FP FQ priority1$;

UP| Q/FP UQS$ UPFQS$ UP UQ priority 3$;

F(P—>Q)/ TP FQ priority1$; UP—>Q/UPFQ $ TP UQ priority 2$;

T(P—>Q)/TQ $ FP $ UP UQ priority 3$;
The first eight rules are closure rules which detect contradictions between truth values of for-
mulae. All of them have the highest priority (priority value 0). The rest of the rules reflect the
truth tables for the connectives of the logic (in the Lukasiewicz algebra) and are given priorities
proportional to their branching factors. This means that the higher the branching factor of a
rule, the less often the rule is applied in tableau derivations.

4 Using MetTel?

The binary version of METTEI? is distributed as a jar-file and requires Java Runtime Envi-
ronment, Version 1.6.0 or later. METTEIZ can be called from the command line as follows.

>java —jar mettel2.jar [—1i <sf>] [t <tf>] [-d <od>] [—p <pf>]

A file with the syntax specification can be given using the —i option. A file with the
specification of the tableau rules can be given with the —t option. If the —t option is specified
METTEI? attempts to do everything for the user by generating JAVA source code, compiling it
and producing a final executable jar-file of the prover. In this case, Java Development Kit,
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tableau.rule.delimiter Terminator of tableau rules. Default: §;

tableau.rule.branch.delimiter Separator between branches in branching rules. Default:
$l

tableau.rule.premise.delimiter | Separator of premises and conclusions in rules. Default:
/

branch.bound An expression for computing an apriori bound on the
maximal number of expressions in a branch. Default:
empty, this means the feature is disabled

Figure 1: Properties accepted by METTEIZ.

Version 1.6.0 or later is required. The directory where the generated JAVA source code is placed
can be given using the —d option.

With the —p option the user can specify the name of a standard JAVA property file where
currently a small number of properties can be configured. Figure 1 lists the properties currently
supported by METTEIZ. In order to be able to handle logics with eventualities a non-standard
feature to realise the ‘avoid huge branch strategy’ (cf., [10, 28]) is the branch .bound property.
For example, this line in the JAVA property file

branch.bound = ((int) (java.lang.Math.pow(2,%1)))

configures the generated prover so that any branch is discarded once it contains more than 2%
expressions, where %1 is the parameter for the length of the input expression. %1 is the only
pattern variable available in the current METTEI? implementation but we plan to introduce
several other patterns, e.g., pattern variables that reflect the number of atomic expressions of
each sort in the input. The property file is also reserved for other non-standard features, flag
settings, and definitions that may be required for advanced tuning of the prover generation
process.

All the options are optional. In the case that the —i option is omitted, METTEI? waits
for a language specification from standard input. If the —t option is not given, METTEI? will
not generate a jar-file of the prover. In this case only JAVA code for the prover is generated.
This is useful, for example, if the user is going to amend the code with the aim of tailoring the
prover for performance or defining a non-standard feature, or simply wishes to compile the code
by a JAVA compiler provided by a different vendor. Whenever —d is not specified the default
directory for output of JAVA code is the subdirectory output of the current directory. If the
—p option is omitted the default values are used.

5 Prover generation

The parser for the specification of the user-defined logical language is implemented using the
ANTLR parser generator. The specification is parsed and internally represented as an abstract
syntax tree (AST). The internal ANTLR format for the AST is avoided for performance pur-
poses. The created AST is passed to the generator class which processes the AST and produces
the following files: (i) a hierarchy of JAVA classes representing the user-defined logical language,
(ii) an object factory class managing the creation of the language classes, (iii) classes repre-
senting substitution and replacement, (iv) an ANTLR grammar file for generating a parser of
the user-specified language and the tableau language, (v) a main class for the prover parsing
command line options and initiating the tableau derivation process, and (vi) JUNIT test classes
for testing the parsers and testing the correctness of tableau derivations. In the current version,
for testing purposes, most of the classes related to the derivation process are combined in a
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separate library. In future versions, more and more classes from this library and their extensions
will migrate to the generated parts. This will allow the production of faster provers tailored for
particular application areas.

The generated JAVA classes for syntax representation and algorithms for rule application
follow the same paradigm as in the previous METTEL system [31]. All generated JAVA classes
for the syntax representation are specialisations of the basic MettelExpression interface. For
efficiency reasons, each kind of expression is represented as a separate JAVA class, which is
not parameterised by operators. At runtime, the creation of expression objects is managed by
means of a factory pattern generated as a specialisation of the base interface MettelObjectFactory
and ensures that each expression is represented by a single object. Each generated expression
class implements several methods. The two most important are: (i) a method for matching
the current object with the expression object supplied as a parameter. This method returns
the substitution unifying the current expression with the parameter. (ii) The second method
returns an instance of the current expression with respect to a given substitution.

Every node of the tableau is represented as a tableau state object comprising of a set of
formulae associated with the node and methods for manipulating the formulae and realising
rule applications.

The application of rules is implemented as follows. Every rule is applied within a tableau
state. A tuple of formulae from the set of active formulae associated with the tableau state is
selected and the formulae in the tuple are matched with the premises of the chosen rule. Since
matching is computationally expensive, it is performed only once for any given formula and each
premise of a rule. This is achieved by maintaining sets of all the substitutions obtained from
matching the selected formula with the rule premises. All the selected formulae are discarded
from the set of active formulae associated with the rule. If the tuple of the selected formulae
match the premises of the rule, the resulting substitution object is passed to the conclusions of
the rule. The final result of a rule application is a set of branches, which are sets of formulae
obtained by applying the substitution to the conclusions of the rule.

6 Built-in optimisations

METTEI? implements two general techniques for reducing the search space in tableau deriva-
tions: dynamic backtracking [14] and conflict directed backjumping [11, 25]. Dynamic back-
tracking avoids repeating the same rule applications in parallel branches by keeping track of
rule applications common to the branches. Conflict-directed backjumping derives conflict sets of
expressions from a derivation. This causes branches with the same conflict sets to be discarded.
Since METTEL is a prover generator, dynamic backtracking and backjumping needed to be
represented and implemented in a generic way completely independent of any specific logical
language and tableau rules. Although dynamic backtracking and backjumping are known for
some time and have been used in many tableau provers they are usually defined for a partic-
ular tableau procedure which is based on some fixed syntax and fixed tableau calculus. The
implementation in METTEI? is especially involved for the case of backjumping where calcula-
tions of conflicting sets are closely tied to the rules of the tableau calculus. To the best of our
knowledge, METTEL? is the first system which implements these techniques in a generic way for
any logical syntax and any calculus. The performance achieved by these optimisations has not
been specially tested, but, due to these optimisations, the total execution time of the generated
provers on examples developed for testing the METTEI? generator and the generated provers
decreased more than 100-fold.

The provers generated by METTEI? come with support for ordered backward and forward
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rewriting with respect to equalities appearing in the current branch. In the language specifica-
tion, equality expressions can be identified with one of the built-in keywords equality, equivalence
or congruence. For example, the declaration formula equivalence = formula ><->’formula; in the
logic specification defines the binary operator <->. The keyword equivalence signals that rea-
soning with this operator should be realised by rewriting.

Each JAvA class representing a tableau node keeps a rewrite relation completed with respect
to all equality expressions appearing in a branch. Since only ground expressions are allowed in
a branch, the rewrite relation operates only on ground expressions. Every equality expression is
oriented by a lexicographic path ordering < based on the order of creation of atomic expressions
in the branch. Hence, any (ground) rewrite system based on any such ordering < is terminating.
Thus, if an equality expression a > 8 appears on the branch one of the rewrite rules a—3 or
S is added to the rewrite relation depending on whether 3 < a or vice versa.

Once an equality expression is added within a tableau node, backward rewriting is applied.
This means the rewrite relation is rebuilt with respect to the newly added equality, and all
expressions of the node are rewritten with respect to the rewrite relation. Forward rewriting
(with respect to the current rewrite relation) is applied to all new expressions added to the
branch during the derivation.

In future we plan to provide an implementation of a completion procedure for added equali-
ties which takes a care about dependencies of derived rewrite rules for more efficient backtrack-
ing.

7 Controlling derivations and blocking

The core tableau engine of METTEI? provides various ways for controlling derivations.
The default search strategy is depth-first left-to-right search which is implemented as a
MettelSimpleLIFOBranchSelectionStrategy request to the MettelSimpleTableauManager. Breadth-first
search is implemented as a MettelSimpleFIFOBranchSelectionStrategy request and can be used af-
ter a small modification in the generated JAVA code. A user can also implement their own
search strategy and pass it to MettelSimpleTableauManager. In future more search strategies will
be implemented (e.g., strategies with iterative deepening) and the choice of strategy will be
configurable at the generation stage.

The rule selection strategy can be controlled by specifying priority values for the rules in
the tableau calculus specification. The rule selection algorithm checks the applicability of rules
and returns a rule that can be applied to some expressions on the current branch according to
the rule priority values.

First, the algorithm selects a group of rules with the same priority value. Selection of a group
with higher priority value is made only if no rules with smaller priority values are applicable.
That is, if several rules are applicable preference is given to rules from groups with smaller
priority values.

Second, rules with the same priority values are checked for applicability sequentially. Usu-
ally, fair application of rules is a necessary condition to achieve completeness of a tableau
derivation. An application of rules during derivation is fair if every rule which is applicable
to some expressions in a branch is eventually applied to these expressions or a contradiction is
detected beforehand. To ensure fairness for rules within the same priority group all rules within
the group are checked for applicability an equal number of times. For example, given a single
closure rule, to achieve that the closure rule is applied immediately after any new information
is added to a branch the user can assign to the closure rule the priority value 0 and to all other
rule values higher than 0, e.g., 1. If, however, several rules are assigned the same priority value
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as the closure rule it can happen that several tableau expansion rules are applied before the
branch is checked for contradictions via the closure rule. Furthermore, if the closure rule has a
priority value strictly greater than other rules, then the branch is checked for contradiction via
the closure rule only after it has been fully expanded, i.e., no expansion rule is applicable to it.
More subtle control for application of the closure rules can be also achieved, e.g., to ensure that
the closure rules are applied only after particular expansion rules. On the side we remark that
it is not necessarily a good idea to give closure rules highest priority in a group by themselves
as then performance may degrade because contradiction testing dominates the search.

Again the user could implement their own rule selection strategy and modify the generated
code.

To achieve termination for semantic tableau approaches some form of blocking is usually
necessary. To generate a prover with blocking the user can specify a blocking rule similar to the
unrestricted blocking rule from [28] as one of the rules of the tableau calculus. If the definition
of the rule involves equality operators then rewriting is triggered (see above), and, based on
the results in [27, 28], the blocking rule can be used to achieve termination for logics with the
finite model property.

Consider, for example, the following declarations which might be part of the language spec-
ification for a description (or hybrid) logic.

sort concept, individual;
concept at = ’ @’ individual concept | negation = >~ concept;
concept equality = ’ [’ individual ’=’ individual *] ’;

This defines respectively the sorts concept and individual and two operators @ and ~. The last line
defines an equality operator = on individuals which is handled by rewriting. The unrestricted
blocking rule can now be defined by the following tableau rule.

@ip@jq/[i=]%~=]18%;

The purpose of the two premises here is domain predication so that, on application of the rule,
the variables i and j are instantiated by individuals which are present in the current tableau
node (cf. [27]), because symbols that do not occur in premise positions are not instantiated. In
essence the rule causes individuals occurring in expressions of the form @i p to be systematically
set to be equal. If this does not lead to a model in the left subtableau, then the right branch
is explored.

The idea of unrestricted blocking rule is to ensure termination of sound and complete tableau
calculus in case the specified logic has the finite model property (cf. [27, 28]) and find finite
models. The first of the two termination conditions in [27, 28| is automatically true because
the generated provers are equipped with ordered rewriting. The second termination condition
can be satisfied by using appropriate priority values for tableau rules of the tableau calculus.
Currently, it is not yet possible to emulate standard blocking techniques such as subset and
equality blocking but by varying the specification of the blocking rule it is possible to perform
blocking more selectively 4, 18].

8 Using the generated provers

The generated prover jar-file can be run via the command line as follows.

>java —jar <prover_name>.jar [—i <if>] [—-o <of>] [t <tf>]
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<prover_name> is the name of the syntax specification. An input file <i£> can be specified
via the —i option. If the option is not specified then input is expected from the standard input.
The input file must contain a list of expressions of the main sort (the first specified sort in the
syntax specification) separated by space characters. The prover will output the result to the
file <of>, if the option —o is given, or to the standard output stream, otherwise. With the
—t option the user can specify a file with an alternative definition of a tableau calculus. If the
option is omitted then the calculus specified at generation is used. If no tableau calculus was
specified at generation then a tableau calculus definition must be provided now, which can be
done with the —t option.

The generated provers return the answers Satisfiable or Unsatisfiable. If the an-
swer is Unsatisfiable and the prover is able to extract the input expressions needed for
deriving the contradiction they are printed. If the answer is Satisfiable then all the ex-
pressions within the completed open branch are output as a Model.

Considering our list example, the user can run the prover generated from the syntax and
tableau specifications in Sections 2 and 3 as follows.

>java —jar lists. jar

Since the —i option is not specified the prover will wait for input from the terminal. Suppose

{<a (<b L>)> != <a (<b L>)>} is typed (and finished by pressing <Ctrl—D>). The
output is

Unsatisfiable.

Contradiction: [({(<a (<b L>)>) != (<a (<b L>)>)1})]

For the input {<a (<b LO0>)> != <a (<b L1>)>} the output is

Satisfiable.
Model: [({(<a (<b LO0>)>) != (<a (<b L1>)>)}), ({(<b LO>) !=
(<b L1>)}), ({LO !'= L1})]

In order to test validity of a formula in the three-valued Lukasiewicz logic Ls we have to run
the prover two times with truth values U and F for the formula (cf. [17]). For example, to show
that p —> (g —> p) is a theorem in L3 we run the prover two times for each expression
Up —> (g —> p) andF p —> (g —> p) using the following command.

>java —jar Lukasiewicz3. jar
In the case if the input isU p —> (g —> p) we get the following output from the prover:

Unsatisfiable.
Contradiction: [(U (p —> (g —>p ) ) )]

For the input F p —> (q —> p) we also obtain a contradiction:

Unsatisfiable.
Contradiction: [(Tp ), (Fp), (F(p—-—>(qgq-—>p))),
(F (q—>p) )l

Thus, there is no interpretation of variables p and q in the three element Lukasiewicz alge-
bra that makes the truth value of the formula p —> (g —> p) different from T. That is,
P —> (g —> p) is a theorem of Ls.

9 Illustration of scope and further features

METTEI? is designed for propositional logics and not supposed to deal with first-order lan-
guages. Nevertheless, the syntax specification language of METTEI? has enough expressive
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power to represent languages of first-order theories with a finite number of predicate and func-
tional symbols. Predicate and functional symbols of such a theory can be defined as connectives
of formula sort and term sort respectively. For example, the following is a specification of a
language of a first-order theory which contains a constant ¢, a unary function symbol f, a bi-
nary function symbol g, a unary constant predicate symbol P, and a binary constant predicate
symbol Q.
specification fotheory;
syntax SomeFOTheory{
sort formula,term,var;
termvar =1 var;
termc="c’;
termf=""£> > term *)’;
termg="g’ > (’ term >, term ’) ’;
formula true = >true’ |false = false’;
formulaP =P’ > (° term ) ?;
formulaQ="Q’ > (’ term >, term ’) ?;
formula negation = >~ formula;
formula conjunction = formula ’ &’ formula;
formula disjunction = formula * | * formula;
formula implication = formula ’>=>’ formula;
formula equivalence = formula > <->’ formula;
formula universalQuantifier = *forall’ var formula;
formula existentialQuantifier = >exists’ var formula;
}
The additional connective ! is required to embed sort of variables var into the sort of terms term.
The following expression is an example of a well-formed formula in the specified syntax.

forall x (forall y (~ P(g(£f(!x),!'y))) | (exists y Q(f(!y),!x)))

Notice that predicate symbols P and Q are constant predicate symbols. In fact, under the
above approach to syntax specification, every predicate symbol of a given theory is a constant
symbol. The effect of this becomes apparent in interpretation tableau rules where substitutions
for these symbols will be forbidden. While the rules for Boolean connectives do not pose a
problem and remain the same as for Boolean logic, the standard rules for quantifiers must
be appropriately instantiated for every predicate symbol. Correct specification of a complete
tableau calculus in such cases is tedious and even an impossible task for some theories.

A more promising approach to deal with first-order theories in METTEI? is to represent the
given finitely defined first-order theory as a deductive system of formula schemes [32]. Since
every deductive system in the sense of [32] is a propositional multi-modal logic, it can be
naturally specified in METTEIZ.

For the curious reader we also give an example of how to specify in METTEI? a rule for the
<& operator of standard modal logics. The syntax specification has to include a definition of an
additional connective which corresponds to a Skolem function. For example, the syntax of a
(hybrid) modal logic can include the following lines.

sort formula, individual;

formula singleton = *{ individual *}’;

formula at = ’@” individual formula;

formula diamond = ’ <>’ formula;

individual SkolemTerm = £’ > (? individual ’ , > formula *) ’;
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Thus, the symbolic representation of the <& operator is <> and f(.,.) is a new binary connective
such that f(i,p) is an individual for any individual i and formula p. In this syntax, the standard
<& rule is as follows.

@i(<> p) / @i(<> f(i,p)) @f(i.p) p $;

That is, for every instance of the formula @i(<>p) in current tableau branch, a new individual
term f(i,p) is created (where i and p are appropriately instantiated) and two formulae @i(<> f(i,p))
and @f(i,p) p are added to the branch. The formula @i(<> f(i,p)) states that the individual f(i,p) is
accessible from i.

Using Skolem terms instead of newly generated individual constants avoids the need to per-
form again some inference steps on the same branch and in combination with ordered rewriting
can considerably reduce the search space. Furthermore, Skolem terms add flexibility to tableau
specification language because Skolem functions are legal not only in conclusions of tableau
rules but also in their premises.

10 Application areas and experiences so far

Software to generate code for provers is useful anywhere where automated reasoning is needed.
The provers generated by METTEI? also output models for for satisfiable problems on termi-
nation, so can be used for model generation purposes.

With METTEI? a quick implementation of a tableau prover can be obtained and changes can
be made without programming a single line of code. Prover generation is useful for obtaining
provers for newly defined logics or new combinations of logics. This is particularly pertinent to
an area such as multi-agent systems where the logics are staggering complex. In ongoing work we
are using METTEI? in combination with the tableau synthesis framework to develop provers for
multi-agent interrogative epistemic logics [21]. For these logics and related dynamic epistemic
logics there are almost no implemented reasoning tools. Therefore being able to generate tableau
provers is very useful especially to researchers without the resources or expertise to implement
automated reasoning tools themselves.

We have found METTEI? useful for analysing tableau calculi under development whose
properties are not known yet. For example, in research conducted for [19] we used METT EI2
to determine the refinability or unrefinability of tableau rules for a modal logic with global
counting quantifiers operators. METTEI? can also be used to compare the effectiveness of
different sets of tableau rules for the same logic. For example, with minimal effort it is possible
to compare the effectiveness of standard tableau calculi with calculi following the KE approach
where disjunction is handled by an analytic cut rule and a unit propagation rule.

Concrete case studies we have undertaken with METTEI? include implementing unlabelled
tableau calculi for Boolean logic and three-valued Lukasiewicz logic, labelled tableau calculi for
standard modal logics K, KT, S4, description logic ALCO, a hybrid logic K(FE,) with global
counting operators [19], a multi-agent interrogative epistemic logic [21], and internalised tableau
calculi for hybrid and description logics. We used METTEI? to implement a tableau decision
procedure for ALBOM, a description logic with the same expressive power as the two-variable
fragment of first-order logic. Some of these test cases, including the Lukasiewicz3 example and
the lists example from this paper (as well as an extended version of the lists example with a
concatenation operator) are available at the METTEL website [1].
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11 Related work

A fast and robust method to obtain a prover for a given logic is to translate the logic into a
more expressive target logic for which an automated reasoning tool is available. For instance,
translation of modal and description logics into first-order logic has been extensively researched,
and specialised translation approaches have been developed which use first-order resolution
theorem provers [9, 22, 26] or provers for higher-order logic such as LEO II [6] (see [5] for the
approach). Translation approaches require however the user is familiar with the target logic.
In addition it requires knowledge of the deduction approach and prover for the target logic so
that the user can appropriately use the prover and understand its output. Experience shows it
is unrealistic to expect users to learn a new language, a new theory, and capabilities and flag
settings of the prover being used.

Several dedicated systems exist for developing and prototyping tableau provers for modal-
type logics. The Logics Workbench [15] implements a suite of generic decision procedures
for propositional logic and numerous non-classical logics and includes a full programming lan-
guage. In the eighties, work on developing languages for programming in non-classical logics
has evolved into the generic tableau prover development platform LOTREC [12|. The Tableau
Workbench (TWB) [2] provides a generic prover development platform for modal logics. Both
LOTREC and the TWB give users the possibility to program their own tableau prover for
modal-type logics using meta-programming languages for building and manipulating formulae,
and controlling the tableau derivation process. The Logics Workbench, LOTREC, the TWB
and also METTEL differ in various ways, for example, in the kind of tableau approach used,
the specification language provided, the way blocking is performed and configured, and the
possibilities to control the way the search performed. Although they have notable features
compared to METTEI? none of them have the facility for the user to define their own set of
logical operators unrelated to the built-in operators.

Support for user-definable languages and rule sets can be found in logical frameworks such
as PVS [23], ISABELLE/HOL [24] and CoqQ [7]. These are based on higher-order logic and
can be used for prototyping calculi and deductive systems. There are also formal software
development tools such as the KEY system [3] which allow the specification of logical theories
via a taclet mechanism containing not only rule declarations, but also usage pragmatics.

All these systems are however not designed to produce executable code for a prover but
rather act as virtual machines that perform derivations (in some cases interactively but often
fully automatically). Even though some incorporate various support tools and are extensible,
within a virtual machine it is not possible to accommodate all imaginable requirements for new
provers without giving the user appropriate flexibility in the specification language. On the
other hand, any specification language necessarily restricts the user. This is actually useful,
since it also reduces the potential number of specification errors. METTEI? addresses this
inescapable dilemma by generating prover code that is ready for possible modifications by an
experienced user who may wish to incorporate, for example, specialised simplification routines
and optimisation techniques for better performance, or who may want to incorporate the prover
into a larger systems requiring automated reasoning, or add other features not supported by
the prover generator, the prover engineering platform or the logical framework being used.

12 Conclusion

METTEI? is a prototypical system intended for experimenting with tableau calculi and prover
generation for various logics. It is a small but essential step to the very ambitious goal to create a
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reliable and easy to use prover generation platform which implements the automated synthesis
framework [27|. In line with this goal we intend to expand the system in various ways. In
particular, we will give the user more flexibility in controlling derivations by specifying various
search heuristics as well as reduction orderings for the ordered rewriting at the generation
stage. This will allow the user to contribute to the improvement of the generated provers. We
are going to implement a selection of standard blocking mechanisms and also various generic
blocking mechanisms based on specialisations of the unrestricted blocking rule. These will help
to improve the performance of the generated provers, especially for non-compact logics such
as temporal and dynamic logics. Finally, a comparison with other provers and the design of
benchmarking suites is necessary in order to estimate the performance of generated provers and
to indicate directions for further development of the prover generator.

METTEI? can be downloaded from [1]. A web-interface for METTEI? is also provided, where
a user can input their specifications in syntax aware textareas and generate provers. The user
can either download the generated prover as a jar-file or directly run the generated prover in
the interface.
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