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Ilhan Özgen-Xian12, Dongfang Liang3, and Reinhard Hinkelmann1

1 Technische Universität Berlin, Berlin, Germany
ilhan.oezgen@wahyd.tu-berlin.de

2 RIKEN Advanced Institute for Computational Science, Kōbe, Hyōgo, Japan
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Abstract

The integral porosity shallow water model (IP) is a modified form of the depth-averaged
shallow water flow model, which utilizes porosities to account for unresolved sub-grid-scale
topography such as buildings to enable fast urban flooding simulations. Existing research
has repeatedly pointed out that the IP model is inherently oversensitive to the mesh de-
sign. This paper presents a detailed grid convergence study of the IP model for simulating
a laboratory experiment on the interaction between a dam-break wave and an obstacle in
a channel, which is featured by the highly complex non-hydrostatic flow with a backwards-
propagating hydraulic jump. We compare three different mesh refinement techniques with
up to six levels of refinement: (1) uniform, (2) manual, (3) locally coarsened. For this
investigated case, the modeling error due to the shallow water assumptions is more sig-
nificant than that due to the porosity treatment. Neither a conventional shallow water
model, nor the integral porosity model is able to predict the measured data well owning to
non-hydrostatic flow conditions and a backwards propagating hydraulic jump. We show
that the integral porosity model results converge to the conventional shallow water model
results at locations that are not affected by these non-hydrostatic flow conditions. We
conclude that, when the obstacle density is low, high-frequency oscillations may appear in
the domain owing to Kármán vortex shedding. These cannot be captured accurately by
the integral porosity shallow water model, unless high resolutions similar to those in the
conventional shallow water models are used. However, the benefit of the porosity model is
lost by using high resolutions.

1 Introduction

Porous shallow water equations describe free surface shallow flow at the macroscale, i.e. obsta-
cles are typically smaller than the control volume size, in order to reduce the computational
cost. Initially derived in [3], early porous shallow water models used a representative elemen-
tary area (REA) assumption to derive a single porosity parameter to limit both storage and
flux terms [8, 7]. It was quickly discovered that a single porosity parameter is not sufficient to
accurately account for preferential flow paths. Hence, in [9], an integral formulation of shallow
water equations with anisotropic porosity was proposed. This model is referred to as the integral
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porosity shallow water model (IP). Using an integral formulation removes the necessity for a
REA assumption and allows to use additional porosity parameters (conveyance porosity terms)
at the boundaries of the control volume, i.e. the cell edges in a mesh-based discretization of the
equations. The IP model results are very mesh-dependent. In [9], it is suggested to use so-called
gap-conforming meshes to ensure a reliable calculation of the conveyance porosity terms. In
this type of meshes, cell vertices are forced to coincide with the centroids of the obstacles. The
question we aim to answer in this study is, whether it is possible to prove grid convergence for
such a mesh-dependent model. Here, an additional challenge is that grid convergence should
be obtained at the macroscale, i.e. cell sizes should be larger than the average obstacle size. In
this work, we study the mesh-dependency of the IP model in [9]. However, it is noted that in
recent years other porous shallow water models have been derived in, e.g. [6, 5, 14, 15, 1]. As
a rule of thumb, models that use the REA assumption do not tend to be as mesh-dependent as
the IP model.

2 Governing equations

The governing equations of the IP model are written as∫
Ω

∂tφΩqdΩ +

∮
Γ

φΓF · ndΓ =

∫
Ω

sΩdΩ +

∮
Γ

sΓdΓ (1)

where Ω represents the area of the cell, φΩ is the storage porosity, Γ is the counter-clockwise
path along the boundary of the edge and φΓ is the conveyance porosity. q is the vector of
conserved variables, F is the flux tensor and n is the unit normal vector, pointing outwards
along Γ. sΩ and sΓ are source term vectors. The vectors are defined as
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1
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1
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 , (2)

with h being the water depth, qx and qy being the unit discharges in x- and y-direction,
respectively, where x and y are two directions of the Cartesian coordinate system. sm is the
mass source term, sf,x and sf,y are the friction source terms in x- and y-direction, respectively,
sd,x and sd,y are the building drag source terms in x- and y-direction, respectively, sz,x and
sz,y are the bottom slope source terms in x- and y-direction, respectively, g is the gravitational
acceleration and h0 is the water depth evaluated for a constant water elevation inside the cell.

The friction source term is calculated using Manning’s formulation as

sf,j = −gn2h−7/3qj ||q||, j = x, y, (3)

where n is Manning’s coefficient. The building drag dissipation can be calculated using a drag
dissipation formula, cf., e.g. [9, 13, and cited references therein]. In the present work, we have
neglected the building drag source term to focus solely on the mesh convergence.

3 Numerical methods

We solve the integral porosity shallow water equations derived in [9] by means of a first order
accurate Godunov-type finite volume discretization on unstructured triangular grids. Numerical
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Figure 1: Geometry of the experiment and location of gauges

fluxes over the cell edges are calculated with a Harten, Lax and van Leer approximate Riemann
solver with the contact wave restored (HLLC) [11]. The bottom slope source term is discretized
using the divergence formulation presented in [12].

The friction source term is discretized in a point implicit way [2]. Time integration is carried
out using an explicit forward Euler method.

4 Mesh refinement techniques

Meshes are generated using the mesh generator Gmsh [4]. We investigate three types of re-
finement strategies: (1) uniform mesh refinement (new cells are created by dividing existing
cells) (UMR), (2) manual mesh refinement (meshes are created from scratch for each refinement
stage) (MMR), (3) mesh refinement with local coarsening (cell size in regions around obstacles
is kept constant during the refinement to keep the model at macroscale) (LCR).

5 Case study

The presented case study is a laboratory experiment conducted at the facilities of the Université
catholique de Louvain, and a detailed discussion of the experimental setup, channel geometry
and measurement techniques can be found in the corresponding article [10].

The experiment consists of a reservoir with an initial water depth of η0,r = 0.4 m, that is
connected by a gate to a straight channel with a thin layer of η0,c = 0.02 m of water. The gate
is initially closed. A single obstacle with dimensions 0.4 m by 0.8 m is placed with an angle of
64◦ to the x-axis inside the channel. The gate is opened rapidly to generate a dam-break flow
against this obstacle. The geometry of the experiment and the location of measurement gauges
is sketched in Fig. 1. The grey area indicates the reservoir, the white area is the channel. The
Manning’s coefficient in the domain is given as n = 0.01 ms−1/3.

For UMR and MMR, the cell size is chosen such that the cell size in the reservoir lc,R relates
to the cell size in the channel lc,C as

lc,R = 2.5lc,C (4)

and the cell size around the obstacle lc,O is set in relation to lc,C as

lc,0 = 1.5lc,C (5)
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Figure 2: Meshes resulting from different refinement techniques for lc,C-values of 0.6 m (top in
each subfigure), 0.3 m (middle in each subfigure) and 0.15 m (bottom in each subfigure)

For LCR, Eq. 4 holds, but lc,O is held constant at 0.9 m for all refinement steps. lc,C is halved
at each refinement step, i.e. from 0.6 m to 0.3 m and so on, down to 0.01875 m. The meshes for
lc,C-values of 0.6 m, 0.3 m and 0.15 m for each refinement technique are shown in Fig. 2.

Forcing the center of the building polygon as a vertex into the triangulation is considered
good practice for designing meshes for the IP model. It is seen in Fig. 2 that this leads to
distorted cells. In UMR, this distortion is propagated to the finer meshes. In MMR and LCR,
new distorted elements may occur.

The total number of cells resulting from different refinement techniques is shown in Fig.
3. This number indicates how similar two refined meshes are. If the total number of cells
shows a linear increase if plotted on a log-axis, the refinement technique is said to yield similar
meshes. As expected, for UMR the cell number increases proportional to the power of 4 in each
refinement step, thus giving similar meshes that are ideal to use for mesh convergence studies.
MMR and LCR yield less number of cells and show a similar trend. LCR yields the lowest
number of cells, because the cells around the obstacle are kept large. Therefore, the MMR and
LCR refinement yields meshes that are not necessarily similar and may not be optimal to study
mesh convergence.
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Figure 3: Total cell number resulting from different refinement techniques

6 Results

Results obtained with the three finest meshes are plotted in Fig. 4. We see that for all meshing
strategies, results at gauge 1 start to oscillate at arount t = 15 s. Comparison with snapshots
from the simulation (not shown here) reveal that this coincides with the time that a backwards
propagating hydraulic jump arrives at this point. Results at gauge 3 converge for all meshes.
Gauge 4 gives mixed results, for UMR and MMR mesh convergence is achieved, but for LCR
results still show no convergence.

At simulation snapshots, we observe a Kármán vortex emerging for lc,C = 0.01875 m. For
illustration purposes, we provide a snapshot at t = 13 s for a very high-resolution simulation
with lc,C = 0.01 m in Fig. 5. This explains the oscillations observed at gauge 5 for UMR and
MMR. For LCR, the mesh in this region is not fine enough for the Kármán vortex to develop.
Thus, model results converge at gauge 5 for LCR.

7 Conclusions and outlook

Grid convergence could be reached only at gauges 3 and 4, which are not directly impacted by
the emerging Kármán vortices and the backwards propagating hydraulic jump. Model results
at gauges 1 and 5 show oscillations when the cell size is small. We conclude that in cases
where the obstacle density is low, high-frequency oscillations may appear in the domain, e.g.
the periodic Kármán vortex shedding. These cannot be captured accurately by the integral
porosity shallow water model, unless high resolutions similar to the conventional shallow water
model are used. This violates the general principle and the purpose of using a macroscopic
model. The benefit of using the integral porosity model at this point becomes similar to using
an immersed boundary method, i.e. building boundaries do not need to be discretized explicitly.
In this study, we presented ongoing research that examines the grid convergence property of the
integral porosity shallow water model. We also plan to study cases where the flow is through a
building array. We expect a different convergence behaviour, because multiple reflections inside
the building array will hinder the development of the Kármán vortex. We will investigate
whether the porosity model is capable of predicting the small scale fluctuations caused by the
multiple reflections inside the building array. Furthermore, the influence of the building drag
dissipation source term on the Kármán vortex shedding and small scale fluctuations will be
investigated.
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Figure 4: Model results using different meshes
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Figure 5: Snapshot at t = 13 s for water depth (top) and flow velocity (bottom), obtained with
a high-resolution simulation
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