
Howard Barringer

The Man who Invented the Past

Klaus Havelund∗

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California, USA
klaus.havelund@jpl.nasa.gov

Abstract

This article is an introduction to Professor Howard Barringer, in honor of his 60th
birthday on December 20, 2011, which was celebrated by the HOWARD-60 workshop
(Higher-Order Workshop on Automated Runtime verification and Debugging), held on the
same day at University of Manchester.

1 A 60 Second Overview

Howard Barringer was born on December 20, 1951, is married to Margaret, and has three
children. This forms the concrete part of Howard’s life. Beyond this, Howard has had an
abstract life centred around mathematics, physics, and computer science. At secondary school
(1964-1969) Howard moved into the science stream and finished with ’A’ levels in mathematics
(pure and applied) and physics. He went on to University of Manchester where he first received
a B.Sc in Physics (1972), then an M.Sc in Computer Science (1973), and finally a Ph.D in
Computer Science (1978).

His adult academic life has been centred at University of Manchester. He became a Research
Associate in Computer Science at Manchester in 1975, a Lecturer in 1977, a Senior Lecturer
in 1986 and was then rapidly promoted to Professor in Computer Science in 1987. For the
majority of his career, his research and teaching has been focussed around the development
and application of logics, in particular temporal and modal logics, in the specification, design,
and analysis of software and hardware systems. Howard insisted on the importance of past
time logic in temporal logic, and hence got named “the man who invented the past”1. He has
taught classes in the theory of computation, compiling techniques, specification and verification,
concurrency, modal and temporal logic, algorithms, and programming in Java. Howard also
spent a significant portion of his career in senior and highly influential administrative positions
at University of Manchester.

He has been invited to present over 100 seminars and research lectures in Austria, Belgium,
Canada, China (Beijing, Shanghai, Wuhan), Denmark, England, France, Germany, Greece,
Israel, Italy, the Netherlands, Norway, Scotland, South Africa, Spain, Sweden, USA (Arizona,
California, New York, Pennsylvania, Texas) and Wales. He was visiting professor at Kings
College (2001 and 2006), and visited Silicon Valley numerous times including NASA Ames
Research Center, Moffett Field, CA in 2002 and 2003, and the Computer Science Laboratory
at SRI International, Menlo Park, CA in 2002. It has been observed that, temporally speaking,
a series of Mars Rovers were launched after Howard visited NASA. Howard was one of the

∗The writing of this article was carried out at Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.

1This title was assigned to Howard in connection with his 60th birthday by Andrei Voronkov.

A. Voronkov, M. Korovina (eds.), HOWARD-60, pp. 1–12 1



Howard Barringer Klaus Havelund

founding editors of the Journal of Logic and Computation in 1989 and is now Co-Chief Editor
with Dov Gabbay. He is also Editor for Journal of Applied Logic.

2 Initial Research Phase

Howard started his research activities in systems programming (1973–1979). The research
for the M.Sc and Ph.D degrees was concerned with compiling techniques for the ALGOL 68
programming language. As a Research Assistant after his doctorate, his work involved the
design and implementation of portable compiling systems, and resulted in a low-level target
machine language (TML) (Barringer, Capon and Phillips, 1979) [20] and a simpler high-level
systems implementation language (MUPL). This line of work continued during the first year in
which he was employed as a lecturer within the Department of Computer Science and resulted in
the implementation of an improved, higher level, intermediate target language (TL) that enabled
straightforward implementation of an improved systems implementation languages (MUSL).

During the end of the 1970s, Howard developed an interest in formal methods, causing a
change of direction. This change coincided with Cliff Jones joining Manchester University as
professor. Together with Howard’s Ph.D student Jen Cheng they worked on a logic for partial
functions, see (Barringer, Cheng and Jones, 1984) [22]. During the first half of the 1980ties,
his interest otherwise centred around compositional temporal logic, specifically techniques for
specification and verification of parallel and distributed systems. Initially, results were obtained
for the axiomatic verification of Ada tasks (Barringer and Mearns, 1982) [21] and (Barringer
and Mearns, 1986) [23]. He became a member of the CEC Ada-Europe Working Group on
Formal methods for Specification and Development (1983–1985), was chairman for this group
from 1985–88, and was additionally member of the Ada UK Working Group on Formal Methods
from 1984–87.

In 1981-1982 he went on two three-week trips to 12 university and industrial research labora-
tories in the United States to have discussions with researchers about their verification methods.
The research undertaken was published as a volume in the Springer-Verlag Lecture Notes in
Computer Science series (Barringer, 1985) [1]. The study led to ideas on specifying systems in
a modular and compositional fashion based on the use of temporal logics – including reasoning
about the past – which were presented in (Barringer and Kuiper, 1983) [44]. As a result of
this work, Howard spent a couple of weeks at the Weizmann Institute of Science, Israel, at
the invitation of Professor Amir Pnueli in order to collaborate on developing compositional
temporal proof systems for parallel languages (the goal of compositionality in temporal proof
systems had been standing for approximately eight years).

That visit marked the beginning of a strong collaboration with Pnueli, leading to general
techniques for constructing compositional temporal proof systems for both shared variable
and message based communication mechanisms in parallel programming languages (Barringer,
Kuiper and Pnueli, 1984) [47], (Barringer, Kuiper and Pnueli, 1985) [49] and for fully abstract
concurrency models (Barringer, Kuiper and Pnueli, 1986) [50]. Other researchers joined the
work and visited Manchester, including Professors Willem-Paul de Roever and Zhou Chaochen.
In 1986, at the invitation of Professor Zhou Chaochen, he presented a research lecture series on
temporal logic and its applications in concurrency (a total of 32 hours of lectures was presented
at the Academy of Sciences, Beijing, Wuhan University and Fudan University, Shanghai, over
a four week period).

Further work led, for example, to a temporal fixed point calculus (Banieqbal and Barringer,
1986) [104], as well as what was probably the first practical implementation of a decision pro-
cedure for checking validity of a linear temporal logic covering infinite past, present and infinite

2



Howard Barringer Klaus Havelund

future, undertaken by one of Howard’s M.Sc students, Graham Gough, in 1984. Elements of
that implementation were used in prototyping a system enabling model checking, both linear
and branching time, of finite state programs presented in arbitrary finite-state programming
languages (Barringer and Gough, 1988) [51] and (Barringer, Fisher and Gough, 1989) [56].

The work on compositional temporal logic, formal specification and decision procedures led
to a collaboration with Professor Dov Gabbay (King’s College London) from 1986 to 1994 on
a novel approach to programming with temporal logic. The usual view of temporal logic (as in
model checking) is to evaluate a formula over a structure. In this new work, this was turned
around, and they proposed an imperative view that dynamically created a model for a formula.
Thus for a temporal formula representing a specification of some desired system, the imperative
view provided a mechanism for animating, or directly simulating, the specification. This led
to the development of the MetateM system, described in the book: The Imperative Future:
Principles of Executable Temporal Logic (Barringer, Fisher, Gabbay, Owens and Reynolds,
1996) [3].

During the period 1986–1994, Howard was also involved in the development of techniques
for the specification and verification of synchronous hardware systems, specifically resulting in
a CAD environment for the hardware design language ELLA (at the time viewed as a potential
European standard for high-level digital design). This was a result of an industrial project.
Of particular interest on the verification side was the novel symbolic state-based equivalence
checking, combining state-based exploration with theorem proving to enable the equivalence
checking of infinite state systems in a largely automated fashion (Barringer, Gough, Monahan
and Williams, 1995) [63]. His interest in hardware design and verification continued during the
years 1993–2000 through his leadership of the Rainbow project, a system for comprehensive
design and formally-based analysis tools, including a CTL* model checker developed by his
Ph.D student Willem Visser, for asynchronous chip designs (Barringer, Fellows, Gough, Jinks,
Marsden and Williams, 1996)[67], (Barringer, Fellows, Gough, Jinks and Williams, 1997) [71],
(Barringer, Fellows, Gough and Williams, 1997) [69], (Visser, Barringer, Fellows, Gough and
Williams, 1997) [72] and (Visser and Barringer, 2000) [31].

3 University Administration

Howard has committed a significant effort to the administration of University of Manchester.
As well as undertaking nearly every academic-led administrative role in the department, he has
held senior posts in the university itself. (He even claims to have had a total of ten days of
management training.) As professor he has been head of the formal methods group since 1996.
He was head of the Computer Science Department in the period 1991–96. His success in this
role led to an invitation to become Pro-Vice-Chancellor for Research in the period 1996–2001.

As Pro-Vice-Chancellor for Research Howard performed many extraordinary tasks in order
to help shape and guide University policy and strategy in research and graduate education
matters. He was for example asked to conduct an academic review of the Chemistry department,
and bring forward academic and financial plans that would support, or otherwise, a case for
major refurbishment of their laboratories, caused by unsafe working conditions. He was also
asked to head a research review of Medicine, working together with a very high-powered group
consisting of medical, biological and dental specialists, causing a turnaround and upward trend
within the faculty.

He played a major leading role in preparing the University for the 2001 Research Assessment
Exercise (RAE), where British universities are compared and ranked relative to each other. His
personal goal was to lift the University’s research ranking to be in the top ten (from the mid

3



Howard Barringer Klaus Havelund

twenties), possibly the top large civic full-breadth UK University. The University achieved an
uplift in quality assessment and was considered to be truly back within the top ten UK research
universities. He has furthermore represented the University of Manchester on many major
international missions, e.g. to China, Japan, South Africa, Syria, USA, Canada, Singapore,
and Indonesia.

He warned many years ago that each year away from full-time personal research requires at
least two years for recovery. Since his administrative career was during the years 1991–2001,
he should now be well beyond half way to full recovery. Retiring to become Emeritus Professor
should hopefully speed up this process.

4 Return to Research

From 2002 when Howard visited NASA Ames Research Center, Moffett Field, California, USA,
for the first time, a set of new research directions caught his attention. He and colleagues Dim-
itra Giannakopoulou and Corina Pasareanu at NASA Ames co-developed a novel solution to
generate weakest environment assumptions necessary for a given component to achieve a desired
behavioral property. This technique was applied to models of a part of the plan execution engine
of K9, an experimental autonomous Mars rover, and to the plan execution engine of the Remote
Agent, part of an AI solution for autonomous control of the experimental Deep-Space 1 space-
craft (Giannakopoulou, Pasareanu and Barringer, 2002) [76] and (Giannakopoulou, Pasareanu
and Barringer, 2005) [33].

An interesting unpublished piece of work during his visit to NASA Ames is a formalization
of a new planning and scheduling system, that the robotics group there was working on. The
complexity of the system was such, that it was difficult to get the design defined precisely during
the design phase. Howard formalized the system as a VDM model, during the visit, in order to
facilitate the communication.

Another line of research ongoing at NASA Ames at the time was the study of logics and
systems for monitoring systems executions. This field is also sometimes referred to as runtime
verification. The fundamental idea is to instrument a program (or more generally: a system)
to emit events during its execution, and check the resulting execution generated event stream
against a formal specification. Howard has contributed in several substantial ways to this field.
A wide variety of different languages and logics had been proposed for specifying such trace
properties, initially of course inspired by already existing logics from model checking, including
temporal logics and regular expressions. Researchers at NASA Ames wanted to go beyond the
propositional case and be able to specify properties over traces of data carrying events. In ad-
dition, Howard was dissatisfied that there was no unifying base logic from which these different
temporal logics could be built. Researchers had in the past searched for efficient algorithms
for the evaluation of restricted sub-logics, e.g. pure past time LTL, pure future LTL, extended
regular expressions, metric temporal logic, and so forth. However, for monitoring program ex-
ecutions one could consider relaxing the constraints somewhat. Based on his experience with
executable temporal logics, e.g. MetateM, this led to a collaboration with Allen Goldberg,
Klaus Havelund (both at NASA Ames) and Kousik Sen (summer intern at NASA Ames from
University of Illinois), to the development of the Eagle fixed point logic and corresponding
Java evaluation engine (Barringer, Goldberg, Havelund and Sen, 2004) [78], restricted to finite
traces. The logic is based on recursive rules defined over primitives for next (one step forwards
in a trace), previous (one step backwards in a trace) and concatenation and/or fusion (of two
traces). Rules can be parameterized by other rules, and by other typed data parameters. The
data parameterization provides some limited form of data quantification in the logic; in partic-

4



Howard Barringer Klaus Havelund

ular, it facilitates definition of metric and real-time temporal logics, and in general permits the
embedding of a whole range of temporal logics.

The Eagle implementation was, however, somewhat complex. From this experience, and
again his previous experience with MetateM, Howard initiated the design and implementation of
a simpler rule-based system, RuleR, which can be viewed as an even lower-level abstract machine
into which various monitoring specifications (from different languages) can be compiled. The
resulting logic was designed in collaboration with David Rydeheard (University of Manchester)
and Klaus Havelund, and was published as (Barringer, Rydeheard and Havelund, 2007) [83]
and (Barringer, Rydeheard and Havelund, 2008) [37]. Independently and at the same time, Dov
Gabbay developed the idea of reactive Kripke structures, in which traversal from one world to
another can influence other connections between worlds. This has led to a collaboration between
Howard and Dov on what they call Reactive Grammars. A subsequent collaboration with Ylies
Falcone (University of Grenoble, France), Howard’s Ph.D student Giles Reger (University of
Manchester), David Rydeheard, and Klaus Havelund led to a theory named Quantified Event
Automata (QEA), an automaton-based approach to monitoring, focusing on efficient monitoring
as well as expressiveness of the logic, see (Barringer, Falcone, Havelund, Reger and Rydeheard,
2012) [98].

The work on runtime monitoring logics naturally leads to the question: what to do when a
monitored system fails to conform with the specification, that the execution is verified against.
Howard and colleagues David Rydeheard, Brian Warboys (University of Manchester), Dov
Gabbay, and John Woods (University of British Columbia, Canada) have since 2005 studied
this problem as what they refer to as evolvable systems. The idea is to consider a system as
consisting of a supervisee (the actual system), and a supervisor (a monitor) which monitors the
supervisee, and triggers corrective action when the supervisee violates the specification installed
in the supervisor. See (Barringer and Rydeheard, 2005) [15], (Barringer, Rydeheard, Warboys
and Gabbay, 2007) [82], (Barringer, Rydeheard and Gabbay, 2007) [84], and (Barringer, Gabbay
and Woods, 2012, parts 1 and 2) [41, 42]. Another interesting problem is how to infer a
specification from a program’s execution traces. This problem was studied by Howard’s Ph.D
student Giles Reger in a collaboration with Howard and David Rydeheard, see (Reger, Barringer
and Rydeheard, 2013a) [99] and (Reger, Barringer and Rydeheard, 2013b) [100].

5 Conclusion

Howard Barringer has, as can be seen from the above, been interested in a wide spectrum of
work, and has in addition taken on leadership roles when asked to do so, helping other people
on their way, always “stepping up to the plate”. It has been pointed out by colleagues, that
one of his most important personality traits is, that he cares about other people. He is always
ready to discuss just about any subject thrown at him, with a positive and open mind. This
positive spirit combined with a very sharp mind, and being always willing to open an Eclipse
editor and start writing Java, as well as a Latex document and write formulas, is what makes
Howard admired and liked by so many. We are told that he went mountain climbing with John
Rushby in the past. Clearly, it helped form a solid guy.

Acknowledgements

I would like to thank Andrei Voronkov and Margarita Korovina for having organized the
HOWARD-60 workshop, which gave all participants an opportunity to celebrate Howard Bar-
ringer. I would also like to thank Cliff B. Jones and Andrei Voronkov for their comments and

5



Howard Barringer Klaus Havelund

edits to this article.

References

Authored Books

[1] Barringer H. (1985): A Survey of Verification Techniques for Parallel Programs, Lecture Notes in
Computer Science, Vol. 191, 120 pages, Springer-Verlag.

Edited Books

[2] Proceedings of Colloquium on Temporal Logic and Specification. Edited by Barringer H., Ban-
ieqbal B. and Pnueli A., LNCS 398, Springer-Verlag, October 1989.

[3] The Imperative Future: Principles of Exectuable Temporal Logic. Edited by Barringer H., Fisher
M.D., Gabbay D.M., Owens R.P. and Reynolds M. Research Studies Press, May 1996.

[4] Advances in Temporal Logic. Edited by Barringer H., Fisher M.D., Gabbay D.M. and Gough G.D.
Volume 16, Applied Logic Series, Kluwer Academic Publishers, Dordrecht, December 1999.

[5] We Will Show Them! Essays in Honour of Dov Gabbay: Volume 1. Edited by Artemov S.,
Barringer H., DAvila Garcez A., Lamb L. and Woods J. Kings College Press, October 2005.

[6] We Will Show Them! Essays in Honour of Dov Gabbay: Volume 2. Edited by Artemov S.,
Barringer H., DAvila Garcez A., Lamb L. and Woods J. Kings College Press, October 2005.

[7] Proceedings of the Fifth Workshop on Runtime Verification (RV 2005). Edited by Barringer H.,
Finkbeiner B., Gurevich Y. and Sipma H.B. ENTCS, Volume 144, Number 4, May 2006.

[8] Proceedings of the 1st International Conference on Runtime Verification (RV 2010). Edited by
Barringer H., Falcone Y., Finkbeiner B., Havelund K., Lee I., Pace G., Rosu G., Sokolsky O. and
Tillman N. LNCS 6418, Springer, November 2010.

Invited Chapters in Books

[9] Barringer H. (1987): The Use of Temporal Logic in the Compositional Specification of Concurrent
Systems. In Temporal Logic and its Applications, ed. A.P.Galton, Academic Press Inc. (London)
Limited, pp. 53 90.

[10] Barringer H. and Gabbay D.M. (1991): The Imperative Future: Past Successes ⇒ Future Actions.
In Logic from Computer Science, (ed. Y.N. Moschovakis), Proc. of a Workshop held at MSRI
Berkeley, Springer Verlag, pp. 1 16.

[11] Barringer H., Gabbay D.M. and Reynolds M.D. (1996): Introduction to Temporal Logic. In The
Imperative Future: Principles of Executable Temporal Logic, Research Studies Press, pp. 3 32.

[12] Barringer H., Fisher M.D., Gabbay D.M., Gough G.D. and Owens R.P. (1996): MetateM: A
Framework for Executing Temporal Logic. Revised and updated version of workshop paper in The
Imperative Future: Principles of Executable Temporal Logic, Research Studies Press, pp. 68 114.

[13] Barringer H. and Gabbay D.M. (2005): Modal Varieties of Temporal Logic. In Handbook of
Temporal Reasoning in Artificial Intelligence (eds Fisher, Gabbay and Vila), pp 119-165, Elsevier.

[14] Barringer H., Gabbay D.M. and Woods J (2005): Temporal Dynamics of Support and Attack
Networks: From Argumentation to Zoology. In Mechanizing Mathematical Reasoning, Essays in
Honor of Jorg B. Siekmann on the Occasion of His 60th Birthday, LNCS 2605, pp 59-98, Springer,
2005.

[15] Barringer H. and Rydeheard D.E. (2005): Modelling Evolvable Systems: A Temporal Logic View.
In We Will Show Them! Essays in Honour of Dov Gabbay, Kings College Press, 2005.

6



Howard Barringer Klaus Havelund

[16] Barringer H., Gabbay D.M. and Woods J (2008): Network Modalities: an exploration paper.
In G. Gross and K.U. Schulz, editors, Linguistics, Computer Science and Language Processing:
Festschrisfft for the 60th Birthday of Franz Guentner, College Publications, 2008.

[17] Barringer H., Rydeheard D.E. and Gabbay D.M (2010): Reactive Grammars: an exploration
paper. In: Volume in honour of Yaacov Choueka, LNCS, Springer, 2010.

[18] Barringer H. and Gabbay D.M. (2010): Modal and Temporal Argumentation Networks. In: Time
for Verification, Essays in Memory of Amir Pnueli, LNCS 6200, pp 1-25, Springer 2010.

[19] Barringer H. and Havelund K. (2011): Internal versus External DSLs for Trace Analysis (Extended
Abstract). In Proceedings of 2nd International Conference on Runtime Verification, San Francisco,
LNCS 7186, pp 1-3, Springer, 2012

Journal Articles

[20] Barringer H., Capon P.C. and Phillips R. (1979): The Portable Compiling Systems of MUSS.
Software-Practice and Experience, Vol. 9, pp 645 655.

[21] Barringer H. and Mearns I. (1982): Axioms and Proof Rules for Ada Tasks. IEE Proceedings, Vol.
129, Pt. E, No. 2.

[22] Barringer H., Cheng J.H. and. Jones C.B. (1984): A Logic Covering Undefinedness in Program
Proofs. Acta Informatica, Vol. 21, No. 3, pp. 251 269, 1984.

[23] Barringer H. and Mearns I. (1986): A Proof System for Ada Tasks. The Computer Journal, Vol.
29, No. 5, October 1986, pp. 404 415.

[24] Barringer H. (1987) Up and Down the Temporal Way. The Computer Journal, Vol.30, No.2, pp.134
148.

[25] Bjoerner D., Hoare C.A.R., Bowen J., He JiFeng, Langmaack H., Olderog E.-R., Martin U.,
Stavridou V., Nielson F. and H.R., Barringer H., Edwards D., Loevengreen H.H., Ravn A.P.,
Rischel H. (1989): A ProCoS Project Description: Esprit BRA 3104. Bulletin of EATCS, Number
39, pp. 60 73.

[26] de Roever W.P., Barringer H., Courcoubetis C., Gabbay D., Gerth R., Jonsson B., Pnueli A.,
Reed M., Vytopil J. and Wolper P. (1990): Formal Methods and Tools for the Development of
Distributed and Real Time Systems: SPEC – Esprit Project 3096 (Extended Abstract). Bulletin
of EATCS, Number 40, pp. 117 133.

[27] Barringer H., Fisher M.D., Gabbay D.M., Gough G.D. and Owens R.P. (1995): MetateM: An
Introduction. Formal Aspects of Computing, Vol. 7, No. 5, Springer International, pp. 533 549.

[28] Barringer H., Gough G.D., Monahan B.Q. and Williams A.J. (1995): Symbolic Equivalence Check-
ing for the ELLA Hardware Description Language. Journal of Brazilian Computer Society, Special
Issue on EDA, pp. 49 62.

[29] Barringer H., Brough D., Fisher M., Hunter A., Owens R., Gabbay D., Gough G., Hodkinson
I., McBrien P. and Reynolds M. (1996): Languages, Meta-Languages and MetateM, A discussion
paper. Journal of the IGPL, Vol. 4, No. 2, pp. 255 272.

[30] Barringer H., Gough G., Monahan B., and Williams A. (1996): A Process Algebra Foundation for
Reasoning about Core ELLA. The Computer Journal, Volume 39(4), pp. 303 324.

[31] Visser W. and Barringer H. (2000): Practical CTL* Model Checking - Should SPIN be Extended?
International Journal of Software Tools for Technology Transfer, volume 2, issue 4, pp. 350 365.

[32] Barringer H., Fellows D., Gough G.D., and Williams A.J. (2002): Rainbow: Development, Simu-
lation and Analysis Tools for the Asynchronous Micro-pipeline Hardware Design. The Computer
Journal, volume 45(1), pp. 2 11, Special Focus: Formal Methods in Computation.

[33] Giannakopoulou D., Pasareanu C.S., and Barringer H. (2005): Component Verification with Au-
tomatically Generated Assumptions. Automated Software Engineering, Volume 12, number 3, pp
297-320, Springer Science, July 2005.

7



Howard Barringer Klaus Havelund

[34] Artho C., Barringer H., Goldberg A., Havelund K., Khurshid S., Lowry M., Pasareanu C., Rosu
G., Sen K., Visser W. and Washington R. (2005): Combining Test Case Generation and Runtime
Verification. Theoretical Computer Science 336, pp. 209-234, Elsevier.

[35] Inggs C.P. and Barringer H. (2006): CTL* Model Checking on a Shared-Memory Architecture.
Formal Methods of System Design, Vol. 29, No. 2, pp. 135-155, Springer.

[36] Pasareanu C.S., Giannakopoulou D, Bobaru M.G, Cobleigh J.M. and Barringer H. (2008): Learn-
ing to Divide and Conquer: Applying the L* Algorithm to Automate Assume-Guarantee Reason-
ing. Formal Methods in System Design, Vol. 32, pp175-205, Springer.

[37] Barringer H., Rydeheard D.E. and Havelund K. (2008): Rule systems for run-time monitoring:
from Eagle to RuleR (extended version). Journal of Logic and Computation, (JLC Advanced
Access published Nov 21, 2008), Oxford University Press., June 2010, Vol. 20, No. 3, pp 675-706

[38] Yang N., Barringer H. and Zhang N. (2008): A Purpose-Based Access Control Model. Journal of
Information Assurance and Security, Vol.1, pp 51-58.

[39] Barringer H., Gabbay D. and Rydeheard D.E. (2009): Modelling of Evolvable Systems: Part 1: A
logical framework. Logic Journal of the IGPL, December 2009, Vol. 17, pp 631 - 696. 2010.

[40] Barringer H., Groce A., Havelund K. and Smith M.: Formal Analysis of Log Files. AIAA Journal
of Aerospace Computing, Information and Communications, Vo. 7, No 11, pp365-390, 2010.

[41] H. Barringer H,, Gabbay D.M. and Woods J. (2012): Temporal, numerical and metalevel dynamics
in argumentation networks. Argument & Computation, 3:2-3, 143-202.

[42] Barringer H. , Gabbay D.M. and Woods J. (2012): Modal and Temporal Argumentation Networks.
Argument & Computation, 3:2-3, 203-227.

Refereed Conference Articles

[43] Barringer H. and Lindsey C.H. (1977): The Manchester ALGOL 68 Compiler - Part 1. In Pro-
ceedings of the 5th Annual III Conference, Guidel, France, pp 145-165, INRIA.

[44] Barringer H. and Kuiper R. (1983): Towards the Hierarchical, Temporal Logic, Specification of
Concurrent Systems. In Proceedings of the STL/SERC Workshop on the Analysis of Concurrent
Systems Cambridge, September 1983, LNCS Vol. 207 pp.157 183.

[45] Barringer H. (1984): Formal Specification Techniques for Parallel and Distributed Systems: A
Survey. In Proceedings of the Third Joint Ada Europe/AdaTEC Conference, Brussels, 26 28 June
1984, The Ada Companion Series, (ed. J. Teller), Cambridge University Press.

[46] Barringer H. and Kuiper R. (1984): Hierarchical Development of Concurrent Systems in a Tempo-
ral Logic Framework. Proceedings of the NSF/SERC Seminar on Concurrency, CMU, Pittsburgh,
July 1984, LNCS Vol. 197, pp. 45 75.

[47] Barringer H., Kuiper R. and Pnueli A. (1984): Now You May Compose Temporal Logic Specifi-
cations. In Proceedings of the 16th ACM Symposium on the Theory of Computing, Washington,
pp. 51 63.

[48] Barringer H. (1985): Specifying Ada Tasks, Proc. of the Ada UK Conference Ada — The Next
Ten Years, York. In Ada UK News, Vol. 6, No. 2.

[49] Barringer H., Kuiper R. and Pnueli A. (1985): A Compositional Approach to a CSP-like Language.
In Formal Models in Programming, ed. E.J. Neuhold and G. Chroust, North Holland, Proc. of the
IFIP TC2 Working Conference The Role of Abstract Models in Information Processing, Vienna,
pp. 207 227.

[50] Barringer H., Kuiper R. and Pnueli A. (1986): A Really Abstract Concurrent Model and its
Temporal Logic. In Proceedings of the ACM Symposium on Principles of Programming Languages,
St. Petersburg, pp. 173 183.

[51] Barringer H., Gough G.D. (1988): A Semantics Driven Temporal Verification System. Proc. of
European Symposium on Programming, Nancy, LNCS 300, pp. 21 34.

8



Howard Barringer Klaus Havelund

[52] Barringer H., Edwards D.A. and Stavridou V. (1988): Formal Specification and Verification of
Hardware: A Comparative Case Study. Proc. 25th ACM/IEE Design Automation Conference,
Los Angeles, pp. 197-204, 1988. Reprinted in Formal Verification of Hardware Design (ed. Michael
Yoeli), IEEE Computer Society Press (1991).

[53] Barringer H. and Gabbay D.M. (1988): Executing Temporal Logic: Review and Prospects. In
Proc. Concurrency 88, Hamburg, LNCS 335, pp. 104 105.

[54] Barringer H., Fisher M.D., Gabbay D.M., Gough G.D. and Owens R.P. (1990): MetateM: A
Framework for Executing Temporal Logic. Proc. of REX Workshop, Stepwise Refinement of Dis-
tributed Systems: Models, Formalisms and Correctness, Mook, May/June 1989, LNCS 430, pp.
94 129.

[55] Banieqbal B. and Barringer H. (1989): Temporal Logic with Fixpoints. In Proc. Colloquium on
Temporal Logic and Specification, Altrincham, 1987, LNCS 398, pp. 62 74.

[56] Barringer H., Fisher M.D. and Gough G.D. (1989): Fair SMG and Linear Time Model Checking.
In Proc. of Workshop on Automatic Verification Methods for Finite State Systems, Grenoble, June
12th-14th, 1989, LNCS 407, pp. 133 150.

[57] Barringer H., Fisher M.D., Gabbay D.M. and Hunter A. (1991): MetaProgramming in MetateM.
In Proc. of Knowledge Representation ’91, Morgan Kaufmann.

[58] Barringer H. and Fisher M.D. (1991): Concurrent MetateM Processes –A Language for Distributed
AI. In Proc. European Simulation Multiconference ’91.

[59] Barringer H., Gough G.D. and Monahan B.Q. (1992): Operational Semantics for Hardware Design
Languages. In Proc. of the Advanced Research Workshop on Correct Hardware Design Method-
ologies, edited by P.Prinetto and P.Camurati, pp. 313 334, Elsevier.

[60] Barringer H., Gough G.D., Longshaw T.B., Monahan B.Q., Peim M. and Williams A.J. (1992):
Semantics and verification for Boolean Kernel ELLA using IO automata. In Proc. of the Ad-
vanced Research Workshop on Correct Hardware Design Methodologies, edited by P.Prinetto and
P.Camurati, pp. 65 90, Elsevier.

[61] Barringer H.,.Gough G.D, Longshaw T.B., Monahan B.Q., Peim M. and Williams A.J. (1993):
Formal Verification Support for ELLA. In Proceedings of the 1993 DTI/SERC JFIT Conference,
Keele.

[62] Barringer H., Dixon C. and Fisher M.D. (1994): A Graph-Based Approach to Resolution in
Temporal Logic. In Proceedings of the First International Conference, ICTL ’94, LNAI 827, pp.
415 429.

[63] Barringer H., Gough G.D., Monahan B.Q. and Williams A.J. (1995a): Symbolic Verification of
hardware systems. In Proceedings of ASP-DAC/CHDL/VLSI’95, Chiba, Japan, pp. 631 636.

[64] Barringer H., Gough G.D., Monahan B.Q. and Williams A.J. (1995b): A Design and Verification
Environment for ELLA. In Proceedings of ASP-DAC/CHDL/VLSI’95, Chiba, Japan, pp 685-691.

[65] Barringer H., Gough G.D., Monahan B.Q. and Williams A.J. (1995): Formal Support for the
ELLA Hardware Description Language. In Proceedings of CHARME’95, Frankfurt, LNCS 987,
pp. 225 246.

[66] de Melo A.C.V. and Barringer H. (1995): A Foundation for Formal Reuse of Hardware. In Pro-
ceedings of CHARME’95, Frankfurt, LNCS 987, pp. 124 145.

[67] Barringer H., Fellows D., Gough G.D., Jinks P.J., Marsden B.W. and Williams A.J. (1996):
Design and Simulation in Rainbow: A framework for Asynchronous Micropipeline Circuits. In A.G.
Bruzzone and U.J.H. Kerckhoffs, editors, Proceedings of the European Simulation Symposium
(ESS’96), pp. 567 571, Vol. 2. Genoa, Italy, October 1996, Society for Computer Simulation
International.

[68] Visser W. and Barringer H. (1997): Memory Efficient State Storage in Spin. In J.-C. Gregoire,
G.J. Holzmann, D.A. Peled, editors, Proceedings of the Second Workshop on the Spin Verification
System (August 1996), DIMACS Series in Discrete Mathematics and Theoretical Science, pp. 185
203, Vol. 32, American Mathematical Society.

9



Howard Barringer Klaus Havelund

[69] Barringer H., Fellows D., Gough G.D. and Williams A.J. (1997): Abstract Modelling of Asyn-
chronous Micropipeline Systems using Rainbow. In C.D. Kloos, E. Cerny, editors, Hardware De-
scription Languages and their Applications, Proceedings of IFIP TC10 WG10.5 International
Conference on Computer Hardware Description Languages and their Applications (CHDL’97),
Toledo, pp. 285 304, Chapman & Hall.

[70] de Melo A.C.V. and Barringer H. (1997): Minimization of Synchronous Processes Preserving
Bisimulation. In S. Bampi, M. Lubaszzewski, editors, Proceedings of the X Brazilian Symposium
on Integrated Circuit Design (SBCCI ’97), pp. 293 302.

[71] Barringer H., Fellows D., Gough G.D., Jinks P.J. and Williams A.J. (1997): Multi-view design
of Asynchronous Micropipeline Systems using Rainbow. In R. Reis, L. Claesen, editors, IX IFIP
International Conference on Very Large Scale Integration (VLSI’97), Gramado, Chapman & Hall.

[72] Visser W., Barringer H., Fellows D., Gough G.D. and Williams A.J.(1997): Efficient CTL* model
checking for analysis of Rainbow designs. In H.F. Li, D.K. Probst, editors, Advances in Hardware
Design and Verification, Proceedings of IFIP TC10 WG10.5 International Conference on Correct
Hardware and Verification Methods, Montreal, pp. 128 145, Chapman & Hall.

[73] Visser W. and Barringer H. (1998): CTL* Model Checking for SPIN. In Proceedings of 4th
Workshop on Automata Theoretic Verification with the SPIN Model Checker (SPIN98), Paris,
Ecole Nationale Superieure des Telecommunications - ENST 98 S 002.

[74] Inggs, C.P. and Barringer H. (2002): On the Parallelisation of Model Checking. In Proceedings
of the Second Workshop on Automated Verification of Critical Systems (AVoCS 2002), Technical
Report CSR-02-6, School of Computer Science, the University of Birmingham, England, April
2002.

[75] Inggs, C.P. and Barringer H. (2002): Effective State Exploration for Model Checking on a Shared
Memory Architecture. In Proceedings of the Workshop on Parallel and Distributed Model Checking
(PDMC 2002), held in association with Concur 2002, Brno, August 2002.

[76] Giannakopolou, D., Pasareanu, C. and Barringer H. (2002): Assumption Generation for Software
Component Verification. In Proceedings of 17th IEEE/ACM Automated Software Engineering
Conference, Edinburgh, September 2002. (this paper received an ACM SigSoft Distinguished Paper
Award and was the Best in Conference)

[77] Barringer H., Giannakopolou, D. and Pasareanu, C. (2003): Proof Rules for Automated Composi-
tional Verification through Learning. In Proceedings of the International Workshop on Specification
and Verification of Component Based Systems, Helsinki, September 2003.

[78] Barringer H., Goldberg A., Havelund K. and Sen K. (2004): Rule-based Runtime Verification. In
Proceedings of VMCAI04, Venice, LNCS Vol. 2937, Springer, pp 44–57, January 2004.

[79] Barringer H., Goldberg A., Havelund K. and Sen K. (2004): Run-time Monitoring with LTL in
Eagle. Proceedings of PADTAD 04, Santa Fe, New Mexico, April 2004, IEEE Computer Society,
IDPDS04, Volume 17, Number 17.

[80] Inggs, C.P. and Barringer H. (2005): CTL* Model Checking on a Shared-Memory Architecture.
In Proceedings of the Workshop on Parallel and Distributed Model Checking (PDMC 2004), in
association with Concur 2004, ENTCS, Vol. 128, No. 3, pp 107–123, September 2005.

[81] Inggs, C.P., Barringer H. , Nenadic, A. and Zhang N. (2004): Model Checking a Security Protocol.
In Proceedings of SATNAC 2004, Spier Wine Estate, Western Cape, RSA, September 2004.

[82] Barringer H., Rydeheard D.E., Warboys B.C. and Gabbay D. (2007): A Revision-based Logi-
cal Framework for Evolvable Software. In Proceedings of the 25th IASTED International Multi-
Conference, Software Engineering, February, Innsbruck, Austria, pp78-83.

[83] Barringer H., Rydeheard D.E. and Havelund K. (2007): Rule systems for run-time monitoring:
from Eagle to RuleR. In Proceedings of the 7th International Workshop on Runtime Verification,
Vancouver, March 2007, LNCS Vol. 4839, pp 111-125, Springer.

[84] Barringer H., Rydeheard D.E. and Gabbay D. (2007): From Runtime Verification to Evolvable
Systems. In Proceedings of the 7th International Workshop on Run-time Verification, Vancouver,

10



Howard Barringer Klaus Havelund

March 2007, LNCS Vol. 4839, pp 97–110, Springer.

[85] Barringer H., Rydeheard D.E. and Gabbay D. (2007): A Logical Framework for Monitoring and
Evolving Software Components. In 1st IEEE International Conference on Theoretical Aspects of
Software Engineering (TASE07), Shanghai, China, IEEE Computer Press, pp 373-383, June 2007.

[86] Baran J. and Barringer H. (2007): A Grammatical Representation of Visibly Pushdown Languages.
In 14th Workshop on Logic, Language, Information and Computation (WoLLIC07), LNCS, Vol.
4576, pp 111, July 2007.

[87] Yang N., Barringer H. and Zhang N. (2007): A Purpose-Based Access Control Model. In 3rd
International Symposium on Information Assurance and Security (IAS 07), IEEE CS Press, August
2007.

[88] Baran J., Barringer H. (2008): Forays into Sequential Composition and Concatenation in Eagle.
Runtime Verification. 8th International Workshop, RV2008, Budapest, Hungary, March 2008.
Selected Papers. LNCS Vol. 5289, pp 69-85, Springer.

[89] Bujorianu M.C., Bujorianu M.L and Barringer H. (2009): A Formal Framework for User Centric
Control of Probabilistic Multi-Agent Cyber-Physical Systems. Selected papers of CLIMA work-
shop, LNCS, Vol. 5405, pp 97-116, Springer 2009.

[90] Bujorianu M.C., Bujorianu M.L and Barringer H. (2009): A Unifying Specification Logic for Cyber-
Physical Systems. In Proceedings of 17th Mediterranean Conference on Control, Automation,
IEEE Computer Society Press, pp 1166-1171, 2009.

[91] Barringer H. Havelund K., Rydeheard D.E. and Groce A.(2009): Rule Systems for Runtime Veri-
fication: A Short Tutorial. Runtime Verification, 9th International Workshop, RV 2009, Grenoble,
France, June 26-28, 2009. Selected Papers. LNCS, Vol. 5779, pp 1-24, Springer 2009.

[92] Bujorianu M.C. and Barringer H.(2009): An Integrated Specification Logic for Cyber-Physical
Systems. ICECCS 2009: pp 291-30.

[93] Barringer H. , Groce A., Havelund K., Smith M.(2010): An Entry Point for Formal Methods:
Specification and Analysis of Event Logs. Proceedings of the FMA Workshop, November 2009.
EPTCS, 2010.

[94] Afifi, D., Rydeheard, D. and Barringer H. (2010): ESAT: A Tool for Animating Logic-Based
Specifications of Evolvable Component Systems. Proceedings of the International Conference on
Runtime Verification, RV 2010, Malta, Nov 1-4, LNCS, Vol. 6418, pp 469474, Springer 2010.

[95] Barringer H., Havelund K., Kurklu E. and Morris R.: Checking Flight Rules with TraceContract
— Application of a Scala DSL for Trace Analysis. In Scala Days 2011, Stanford, June 2011.

[96] Barringer H., Havelund K.: TraceContract: A Scala DSL for Trace Analysis. In Proceedings of
FM11, 17th International Symposium on Formal Methods, Limerick, Ireland, June 2011.

[97] Bujorianu M.L., Bujorianu M.C. and Barringer H. (2011): Systems Theory in an Analytic Setting.
In Proceedings of 50th Conference CDC-ECC 2011, IEEE Computer Society, 2011.

[98] Barringer H., Falcone Y., Havelund K, Reger G. and Rydeheard D.: Quantified Event Automata:
Towards Expressive and Efficient Runtime Monitors. In Proceedings of FM 2012, 18th Interna-
tional Symposium on Formal Methods, Paris, France, LNCS vol. 7436, pp 6884, August 2012.

[99] Reger, G., Barringer H. and Rydeheard D. (2013): A Pattern-Based Approach to Parametric Spec-
ification Mining. In Proceedings of 28th IEEE/ACM Automated Software Engineering Conference,
Palo Alto, November 2013.

[100] Reger, G., Barringer H. and Rydeheard D. (2013): Automata-based Pattern Mining from Imper-
fect Traces. 2nd International Workshop on Software Mining, Palo Alto, 2013.

Other Conference Articles

[101] Barringer H. (1983): On the Development of Parallel/Distributed Programs. Proceedings of the
BCS-FACS/SERC Workshop on Specification and Verification, York.

11



Howard Barringer Klaus Havelund

[102] Babb E., Barringer H. and Gabbay D.M. (1991): HF-PLL — A Meta-level Rewrite Language for
Non-linear Planning. European Workshop on Planning (EWSP-91), GMD, Sankt Augustin.

[103] Barringer H., Gough G.D., Monahan B.Q. and Williams A.J. (1995): The State Evolution Method
for Verifying Hardware Systems. Poster presentation at CHARME’95.

Technical Reports

[104] Banieqbal B. and Barringer H. (1986): A Study of an Extended Temporal Language and a Tem-
poral Fixed Point Calculus. Technical Report UMCS-86-10-2, Department of Computer Science,
University of Manchester.

[105] Fisher M.D. and Barringer H. (1986): Program Logics: A short survey. Technical Report UMCS-
86-11-1, Department of Computer Science, University of Manchester.

[106] Barringer H., Gough G.D., Longshaw T.B., Monahan B.Q., Peim M. and Williams A.J. (1992):
Towards the semantics and verification for ELLA. Technical Report UMCS-92-4-6, Department of
Computer Science, 50 pages, May 1992.

[107] Barringer H., Gough G.D., Monahan B.Q. and Williams A.J. (1993): Formal Semantic Model
for ELLA. Technical report UMCS-93-2-1, Department of Computer Science, 160 pages, February
1993.

[108] Ying Zhang and Barringer H. (1994): A Reified Temporal Logic for Nonlinear Planning. Technical
Report UMCS-94-7-1, Department of Computer Science, 24 pages, July 1994.

[109] Ying Zhang, Carlisle D. and Barringer H. (1994): Domain Constraint Maintenance. Technical
Report UMCS-94-8-1, Department of Computer Science, 28 pages, August 1994.

[110] Ying Zhang and Barringer H. (1994): Constraint Logic Planning. Technical Report UMCS-94-9-2,
Department of Computer Science, 33 pages, September 1994.

[111] Ying Zhang and Barringer H. (1994): Action Constraint Maintenance. Technical Report UMCS-
94-9-1, Department of Computer Science, 24 pages, August 1994.

12


	A 60 Second Overview
	Initial Research Phase
	University Administration
	Return to Research
	Conclusion

