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Abstract

This article is an introduction to Professor Howard Barringer, in honor of his 60th
birthday on December 20, 2011, which was celebrated by the HOWARD-60 workshop
(Higher-Order Workshop on Automated Runtime verification and Debugging), held on the
same day at University of Manchester.

1 A 60 Second Overview

Howard Barringer was born on December 20, 1951, is married to Margaret, and has three
children. This forms the concrete part of Howard’s life. Beyond this, Howard has had an
abstract life centred around mathematics, physics, and computer science. At secondary school
(1964-1969) Howard moved into the science stream and finished with ’A’ levels in mathematics
(pure and applied) and physics. He went on to University of Manchester where he first received
a B.Sc in Physics (1972), then an M.Sc in Computer Science (1973), and finally a Ph.D in
Computer Science (1978).

His adult academic life has been centred at University of Manchester. He became a Research
Associate in Computer Science at Manchester in 1975, a Lecturer in 1977, a Senior Lecturer
in 1986 and was then rapidly promoted to Professor in Computer Science in 1987. For the
majority of his career, his research and teaching has been focussed around the development
and application of logics, in particular temporal and modal logics, in the specification, design,
and analysis of software and hardware systems. Howard insisted on the importance of past
time logic in temporal logic, and hence got named “the man who invented the past”1. He has
taught classes in the theory of computation, compiling techniques, specification and verification,
concurrency, modal and temporal logic, algorithms, and programming in Java. Howard also
spent a significant portion of his career in senior and highly influential administrative positions
at University of Manchester.

He has been invited to present over 100 seminars and research lectures in Austria, Belgium,
Canada, China (Beijing, Shanghai, Wuhan), Denmark, England, France, Germany, Greece,
Israel, Italy, the Netherlands, Norway, Scotland, South Africa, Spain, Sweden, USA (Arizona,
California, New York, Pennsylvania, Texas) and Wales. He was visiting professor at Kings
College (2001 and 2006), and visited Silicon Valley numerous times including NASA Ames
Research Center, Moffett Field, CA in 2002 and 2003, and the Computer Science Laboratory
at SRI International, Menlo Park, CA in 2002. It has been observed that, temporally speaking,
a series of Mars Rovers were launched after Howard visited NASA. Howard was one of the
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1This title was assigned to Howard in connection with his 60th birthday by Andrei Voronkov.
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founding editors of the Journal of Logic and Computation in 1989 and is now Co-Chief Editor
with Dov Gabbay. He is also Editor for Journal of Applied Logic.

2 Initial Research Phase

Howard started his research activities in systems programming (1973–1979). The research
for the M.Sc and Ph.D degrees was concerned with compiling techniques for the ALGOL 68
programming language. As a Research Assistant after his doctorate, his work involved the
design and implementation of portable compiling systems, and resulted in a low-level target
machine language (TML) (Barringer, Capon and Phillips, 1979) [20] and a simpler high-level
systems implementation language (MUPL). This line of work continued during the first year in
which he was employed as a lecturer within the Department of Computer Science and resulted in
the implementation of an improved, higher level, intermediate target language (TL) that enabled
straightforward implementation of an improved systems implementation languages (MUSL).

During the end of the 1970s, Howard developed an interest in formal methods, causing a
change of direction. This change coincided with Cliff Jones joining Manchester University as
professor. Together with Howard’s Ph.D student Jen Cheng they worked on a logic for partial
functions, see (Barringer, Cheng and Jones, 1984) [22]. During the first half of the 1980ties,
his interest otherwise centred around compositional temporal logic, specifically techniques for
specification and verification of parallel and distributed systems. Initially, results were obtained
for the axiomatic verification of Ada tasks (Barringer and Mearns, 1982) [21] and (Barringer
and Mearns, 1986) [23]. He became a member of the CEC Ada-Europe Working Group on
Formal methods for Specification and Development (1983–1985), was chairman for this group
from 1985–88, and was additionally member of the Ada UK Working Group on Formal Methods
from 1984–87.

In 1981-1982 he went on two three-week trips to 12 university and industrial research labora-
tories in the United States to have discussions with researchers about their verification methods.
The research undertaken was published as a volume in the Springer-Verlag Lecture Notes in
Computer Science series (Barringer, 1985) [1]. The study led to ideas on specifying systems in
a modular and compositional fashion based on the use of temporal logics – including reasoning
about the past – which were presented in (Barringer and Kuiper, 1983) [44]. As a result of
this work, Howard spent a couple of weeks at the Weizmann Institute of Science, Israel, at
the invitation of Professor Amir Pnueli in order to collaborate on developing compositional
temporal proof systems for parallel languages (the goal of compositionality in temporal proof
systems had been standing for approximately eight years).

That visit marked the beginning of a strong collaboration with Pnueli, leading to general
techniques for constructing compositional temporal proof systems for both shared variable
and message based communication mechanisms in parallel programming languages (Barringer,
Kuiper and Pnueli, 1984) [47], (Barringer, Kuiper and Pnueli, 1985) [49] and for fully abstract
concurrency models (Barringer, Kuiper and Pnueli, 1986) [50]. Other researchers joined the
work and visited Manchester, including Professors Willem-Paul de Roever and Zhou Chaochen.
In 1986, at the invitation of Professor Zhou Chaochen, he presented a research lecture series on
temporal logic and its applications in concurrency (a total of 32 hours of lectures was presented
at the Academy of Sciences, Beijing, Wuhan University and Fudan University, Shanghai, over
a four week period).

Further work led, for example, to a temporal fixed point calculus (Banieqbal and Barringer,
1986) [104], as well as what was probably the first practical implementation of a decision pro-
cedure for checking validity of a linear temporal logic covering infinite past, present and infinite
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future, undertaken by one of Howard’s M.Sc students, Graham Gough, in 1984. Elements of
that implementation were used in prototyping a system enabling model checking, both linear
and branching time, of finite state programs presented in arbitrary finite-state programming
languages (Barringer and Gough, 1988) [51] and (Barringer, Fisher and Gough, 1989) [56].

The work on compositional temporal logic, formal specification and decision procedures led
to a collaboration with Professor Dov Gabbay (King’s College London) from 1986 to 1994 on
a novel approach to programming with temporal logic. The usual view of temporal logic (as in
model checking) is to evaluate a formula over a structure. In this new work, this was turned
around, and they proposed an imperative view that dynamically created a model for a formula.
Thus for a temporal formula representing a specification of some desired system, the imperative
view provided a mechanism for animating, or directly simulating, the specification. This led
to the development of the MetateM system, described in the book: The Imperative Future:
Principles of Executable Temporal Logic (Barringer, Fisher, Gabbay, Owens and Reynolds,
1996) [3].

During the period 1986–1994, Howard was also involved in the development of techniques
for the specification and verification of synchronous hardware systems, specifically resulting in
a CAD environment for the hardware design language ELLA (at the time viewed as a potential
European standard for high-level digital design). This was a result of an industrial project.
Of particular interest on the verification side was the novel symbolic state-based equivalence
checking, combining state-based exploration with theorem proving to enable the equivalence
checking of infinite state systems in a largely automated fashion (Barringer, Gough, Monahan
and Williams, 1995) [63]. His interest in hardware design and verification continued during the
years 1993–2000 through his leadership of the Rainbow project, a system for comprehensive
design and formally-based analysis tools, including a CTL* model checker developed by his
Ph.D student Willem Visser, for asynchronous chip designs (Barringer, Fellows, Gough, Jinks,
Marsden and Williams, 1996)[67], (Barringer, Fellows, Gough, Jinks and Williams, 1997) [71],
(Barringer, Fellows, Gough and Williams, 1997) [69], (Visser, Barringer, Fellows, Gough and
Williams, 1997) [72] and (Visser and Barringer, 2000) [31].

3 University Administration

Howard has committed a significant effort to the administration of University of Manchester.
As well as undertaking nearly every academic-led administrative role in the department, he has
held senior posts in the university itself. (He even claims to have had a total of ten days of
management training.) As professor he has been head of the formal methods group since 1996.
He was head of the Computer Science Department in the period 1991–96. His success in this
role led to an invitation to become Pro-Vice-Chancellor for Research in the period 1996–2001.

As Pro-Vice-Chancellor for Research Howard performed many extraordinary tasks in order
to help shape and guide University policy and strategy in research and graduate education
matters. He was for example asked to conduct an academic review of the Chemistry department,
and bring forward academic and financial plans that would support, or otherwise, a case for
major refurbishment of their laboratories, caused by unsafe working conditions. He was also
asked to head a research review of Medicine, working together with a very high-powered group
consisting of medical, biological and dental specialists, causing a turnaround and upward trend
within the faculty.

He played a major leading role in preparing the University for the 2001 Research Assessment
Exercise (RAE), where British universities are compared and ranked relative to each other. His
personal goal was to lift the University’s research ranking to be in the top ten (from the mid
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twenties), possibly the top large civic full-breadth UK University. The University achieved an
uplift in quality assessment and was considered to be truly back within the top ten UK research
universities. He has furthermore represented the University of Manchester on many major
international missions, e.g. to China, Japan, South Africa, Syria, USA, Canada, Singapore,
and Indonesia.

He warned many years ago that each year away from full-time personal research requires at
least two years for recovery. Since his administrative career was during the years 1991–2001,
he should now be well beyond half way to full recovery. Retiring to become Emeritus Professor
should hopefully speed up this process.

4 Return to Research

From 2002 when Howard visited NASA Ames Research Center, Moffett Field, California, USA,
for the first time, a set of new research directions caught his attention. He and colleagues Dim-
itra Giannakopoulou and Corina Pasareanu at NASA Ames co-developed a novel solution to
generate weakest environment assumptions necessary for a given component to achieve a desired
behavioral property. This technique was applied to models of a part of the plan execution engine
of K9, an experimental autonomous Mars rover, and to the plan execution engine of the Remote
Agent, part of an AI solution for autonomous control of the experimental Deep-Space 1 space-
craft (Giannakopoulou, Pasareanu and Barringer, 2002) [76] and (Giannakopoulou, Pasareanu
and Barringer, 2005) [33].

An interesting unpublished piece of work during his visit to NASA Ames is a formalization
of a new planning and scheduling system, that the robotics group there was working on. The
complexity of the system was such, that it was difficult to get the design defined precisely during
the design phase. Howard formalized the system as a VDM model, during the visit, in order to
facilitate the communication.

Another line of research ongoing at NASA Ames at the time was the study of logics and
systems for monitoring systems executions. This field is also sometimes referred to as runtime
verification. The fundamental idea is to instrument a program (or more generally: a system)
to emit events during its execution, and check the resulting execution generated event stream
against a formal specification. Howard has contributed in several substantial ways to this field.
A wide variety of different languages and logics had been proposed for specifying such trace
properties, initially of course inspired by already existing logics from model checking, including
temporal logics and regular expressions. Researchers at NASA Ames wanted to go beyond the
propositional case and be able to specify properties over traces of data carrying events. In ad-
dition, Howard was dissatisfied that there was no unifying base logic from which these different
temporal logics could be built. Researchers had in the past searched for efficient algorithms
for the evaluation of restricted sub-logics, e.g. pure past time LTL, pure future LTL, extended
regular expressions, metric temporal logic, and so forth. However, for monitoring program ex-
ecutions one could consider relaxing the constraints somewhat. Based on his experience with
executable temporal logics, e.g. MetateM, this led to a collaboration with Allen Goldberg,
Klaus Havelund (both at NASA Ames) and Kousik Sen (summer intern at NASA Ames from
University of Illinois), to the development of the Eagle fixed point logic and corresponding
Java evaluation engine (Barringer, Goldberg, Havelund and Sen, 2004) [78], restricted to finite
traces. The logic is based on recursive rules defined over primitives for next (one step forwards
in a trace), previous (one step backwards in a trace) and concatenation and/or fusion (of two
traces). Rules can be parameterized by other rules, and by other typed data parameters. The
data parameterization provides some limited form of data quantification in the logic; in partic-
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ular, it facilitates definition of metric and real-time temporal logics, and in general permits the
embedding of a whole range of temporal logics.

The Eagle implementation was, however, somewhat complex. From this experience, and
again his previous experience with MetateM, Howard initiated the design and implementation of
a simpler rule-based system, RuleR, which can be viewed as an even lower-level abstract machine
into which various monitoring specifications (from different languages) can be compiled. The
resulting logic was designed in collaboration with David Rydeheard (University of Manchester)
and Klaus Havelund, and was published as (Barringer, Rydeheard and Havelund, 2007) [83]
and (Barringer, Rydeheard and Havelund, 2008) [37]. Independently and at the same time, Dov
Gabbay developed the idea of reactive Kripke structures, in which traversal from one world to
another can influence other connections between worlds. This has led to a collaboration between
Howard and Dov on what they call Reactive Grammars. A subsequent collaboration with Ylies
Falcone (University of Grenoble, France), Howard’s Ph.D student Giles Reger (University of
Manchester), David Rydeheard, and Klaus Havelund led to a theory named Quantified Event
Automata (QEA), an automaton-based approach to monitoring, focusing on efficient monitoring
as well as expressiveness of the logic, see (Barringer, Falcone, Havelund, Reger and Rydeheard,
2012) [98].

The work on runtime monitoring logics naturally leads to the question: what to do when a
monitored system fails to conform with the specification, that the execution is verified against.
Howard and colleagues David Rydeheard, Brian Warboys (University of Manchester), Dov
Gabbay, and John Woods (University of British Columbia, Canada) have since 2005 studied
this problem as what they refer to as evolvable systems. The idea is to consider a system as
consisting of a supervisee (the actual system), and a supervisor (a monitor) which monitors the
supervisee, and triggers corrective action when the supervisee violates the specification installed
in the supervisor. See (Barringer and Rydeheard, 2005) [15], (Barringer, Rydeheard, Warboys
and Gabbay, 2007) [82], (Barringer, Rydeheard and Gabbay, 2007) [84], and (Barringer, Gabbay
and Woods, 2012, parts 1 and 2) [41, 42]. Another interesting problem is how to infer a
specification from a program’s execution traces. This problem was studied by Howard’s Ph.D
student Giles Reger in a collaboration with Howard and David Rydeheard, see (Reger, Barringer
and Rydeheard, 2013a) [99] and (Reger, Barringer and Rydeheard, 2013b) [100].

5 Conclusion

Howard Barringer has, as can be seen from the above, been interested in a wide spectrum of
work, and has in addition taken on leadership roles when asked to do so, helping other people
on their way, always “stepping up to the plate”. It has been pointed out by colleagues, that
one of his most important personality traits is, that he cares about other people. He is always
ready to discuss just about any subject thrown at him, with a positive and open mind. This
positive spirit combined with a very sharp mind, and being always willing to open an Eclipse
editor and start writing Java, as well as a Latex document and write formulas, is what makes
Howard admired and liked by so many. We are told that he went mountain climbing with John
Rushby in the past. Clearly, it helped form a solid guy.
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