Kalpa Publications in Computing

Volume 20, 2024, Pages 17-24
T M&L[A
Proceedings of 2024 Concurrent Processes Architectures —
and Embedded Systems Hybrid Virtual Conference Computing

Modelling a Guardrail for an AI Control
System Using CSP

Jeremy M. R. Martin
Lloyd’s of London

Abstract

I consider the problem of attempting to constrain the behaviour of artificial
intelligence software to prevent it from carrying out unwanted, dangerous, or malicious
operations. I shall analyse a medical appliance scenario: the artificial pancreas. I shall
model a diabetes patient as a system which contains a certain level of insulin and a certain
level of glucose at any given point in time, and may be engaged in eating, rest, or exercise.
Sugar levels will be lowered using up some insulin. Exercise will also contribute to
lowering sugar levels. The artificial pancreas will periodically inject some more insulin
into the patient depending on decisions made by an Al-driven control system when it is
provided with monitoring data and it is intended to learn over time how best to manage
the patient’s glucose levels. There is also a safety system which may decide to suspend
the Al system and trigger a manual or algorithmic override should a particular threshold
be breached. I shall use the CSP process algebra to represent the processes and the
associated FDR proof tool to deduce properties about their behaviour.

Keywords - CSP, Concurrency, Al.

1 Introduction

We are living in a time when artificial intelligence is almost never out of the news and the field is
coming of age and penetrating many mainstream aspects of our society. The theoretical origins of Al
go back to the days of Alan Turing, but we have only recently arrived at a situation where the computing
power available to end users has crossed a threshold which makes Al readily available on a large scale.
Possibilities of Al that were once in the realm of science fiction are becoming commonplace. We
already have driverless cars on the streets in California. Al is being used for medicinal purposes to
diagnose and treat illnesses. It is being used in creation of documentation and programming code. It
proliferates in the worlds of music and art. And it is increasingly used for both cyber security and cyber
terrorism. There are both significant opportunities and threats to humans within the realm of artificial
intelligence. The latter concern has led to the UK government recently setting up the Al Safety Institute
to “minimise surprise to the UK and humanity from rapid and unexpected advances in AI” [1].

L. Quarrie (ed.), COPA 2024 (Kalpa Publications in Computing, vol. 20), pp. 17-24

Modelling a Guardrail for an AI Control System Using CSP J. Martin

In this paper I shall consider the specific problem of building guardrails to prevent Al control
systems from running amok and making dangerous or malicious decisions with potentially devastating
impact [2]. I have considered three areas to help illustrate this problem.

The first of these is the automated construction and pricing of insurance policies: a role that is
typically carried out by actuaries and underwriters in the Lloyd’s Insurance Market. It is in the nature
of Al systems that they are trained in specific domains using relevant training sets of data, and then
adapt their behaviours as they learn from their experience. They may perform tasks representative of
human activities proficiently in those areas where they have been trained but doubts persist as to what
they might do should they be plunged into a context which has not been explored as part of their training.
The insurance industry is heavily regulated, and this regulation has largely come due to failings in the
past where insufficient funds might have been put aside to payout to policy holders in the event of them
experiencing major losses due to large volumes of claims occurring due to unforeseen events. In the
case of the Lloyd’s Insurance Market there was a major crisis in the 1980s when asbestos-related losses
surfaced, covered by historical policies, which were devastating to investors. It is hard to see how an
Al pricing engine could have reliably foreseen the possible appearance of a previously unknown health
condition that took decades to emerge after the policies were priced. It would be interesting to consider
how guardrail software could be used to warn against possible issues arising from decisions made by
Al in this context.

A second problem that interests me is the safety of driverless cars. As a driver I have occasionally
encountered very difficult driving conditions which I had never experienced before. For instance, I have
been caught driving on a narrow coastal road in thick fog with very little visibility. I have also found
myself driving on an icy country lane with many potholes in a blizzard. So, I wonder what would happen
to an Al self-learning system, driving a car if it were suddenly to encounter a situation that had not been
seen before in any of the training data? If I were travelling in such a vehicle, I would want some
assurance of safety perhaps provided by an early warning system and the possibility of manual override.

Both above scenarios are of considerable interest to me, however 1 have decided to select the
phenomenon of Al-driven medical appliances for a slightly deeper dive. These have the potential to
save and extend lives but also carry risks of doing immeasurable harm to the individuals who depend
upon them. I shall be looking at the artificial pancreas concept and how this might be prevented from
accidentally causing harm by using a guardrail process. I am using the CSP and FDR technologies to
analyse this space. Below, I shall describe how to model a highly simplified version of an interesting
prototype system, called PEPPER [3] and then how these tools provide insights into its behaviour.

2 Case Study

The PEPPER system [3] was not in itself an artificial pancreas, it was more in the nature of an Al-
informed decision support system which ran on a mobile phone. It was connected to certain monitoring
apparatuses and would make recommendations to a person with diabetes as to how much insulin to
ingest. It acted as a prototype for a real artificial pancreas that could be of huge benefit to those who
suffer from type 1 diabetes.

PEPPER was developed by a consortium of scientists from Oxford Brookes University Imperial

College London and the Institut d'Investigacié Biomédica de Girona. The system was tested on a group
of adult volunteers and was found to improve the management of their condition.

18

Modelling a Guardrail for an AI Control System Using CSP J. Martin

Each patient using this system had the glucose level in their blood continually monitored by a
wearable device, an insulin pump to supply multiple daily injections of insulin directly into their blood,
an activity monitor which measures when they are exercising or at rest, and they were also required to
enter information about all the food they consumed manually through the graphical user interface of the
mobile application that ran on their phones. The mobile application included two Al tools: one was the
Bolus Recommender which made recommendations to the patient about how much insulin to inject
using the pump, and the other was the safety system which would predict the likelihood of impending
adverse events: hypoglycaemia or hyperglycaemia, allowing patients to make informed dosing
decisions.

The study concluded the following. “A safety system for an insulin dose recommender has been
proven to be a viable solution to reduce the number of adverse events associated to glucose control in
type 1 diabetes.”

3 Analysis using CSP

The CSP language of CAR Hoare (Communicating Sequential Processes) [4, 5, 6, 7, 8, 9] is a
notation for describing patterns of communication by algebraic expressions. It is widely used for design
of parallel and distributed hardware and software and for the formal proof of vital properties of such
systems. (However, without computer assistance it is often impractical to prove such properties,
algebraically, other than for very simple systems.) The grammar of CSP is shown in Figure 1

Process :== STOP Deadlock
| SKIP Termination
| CHAOS Might do anything
| event — Process Event prefix
| channel?x — Process Input
| channellx — Process Output
| Process,; Processs Sequential composition
| Process; |[alph,|alph,]| Process, Parallel Composition
| Process) N Processz Non-deterministic choice
| Process) O Processa Deterministic choice
| if B then Process) else Processz2 Conditional
| Process | event Event hiding
| f(Process) Event relabelling
|

name

Figure 1. Grammar of the core CSP Language

The FDR tool (Failures Divergences Refinement) [8] provides an automated proof system for the
CSP language when it is expressed in a machine readable format. In the following section we shall
construct a model of an artificial pancreas system and provide a safety mechanism which runs alongside
the Al control system. We shall then use FDR to reason about the behaviour of this system and how it
might help to prevent adverse events for the patients.

An individual’s blood glucose level is affected by multiple factors, including carbohydrate

consumption, physical activity, ambient temperature, illness, stress, sleep and insulin on board. We
consider only carbohydrates and exercise for the purposes of this model.

19

Modelling a Guardrail for an AI Control System Using CSP J. Martin

We start by defining the CSP code to describe the system in question. We define some
communication channels and their types. The channel ‘measure’ is used to connect the patient to the
monitoring device and is used to return three measured values. These values are the level of glucose in
the blood, whether or not eating has taken place since the last observation, and whether or not exercise
has taken place since the last observation. We also define channels to represent the acts of eating and
exercising by the patient, the decision by either the Al engine or the safety algorithm to inject some
insulin.

channel measure, signal ai, signal alg: {0..9}.{0,1}.{0,1}
channel eat, exercise, inject ai, inject alg, inject: {0,1}
channel tock, alert

We define utility functions to calculate maximum and minimum of two numbers as follows.

max (a,b) = if a>b then a else b
min(a,b) = if a>b then b else a

Now let us define a process to represent a patient. This is simplified — we use abstract units to
quantify insulin, time, food consumption and energy. It would be vital that this would be made into a
far more realistic model if this approach were to be used for real. So, a patient is modelled as a process
which maintains certain levels of glucose and insulin and at specified points in time may eat, exercise,
rest or receive an injection of insulin. The ‘tock’ event represents the cadence of the monitoring
intervals.

PATIENT (glucose, insulin) = tock -> eat?food -> exercise?activity ->
if (insulin > 0 and glucose > 0 and food == 1) then
measure!glucose.l.activity -> inject?dose ->
PATIENT (glucose, insulin-1l+dose)
else if (insulin == 0 and glucose < 9 and food == 1) then
measure! (glucose+l) .l.activity -> inject?dose ->
PATIENT (glucose+l, dose)
else if (glucose > 0 and activity == 1) then
measure! (glucose-1) .food.1 -> inject?dose ->
PATIENT (glucose-1, min(insulin+dose,9))
else if (insulin > 0 and glucose > 0 and food == 0) then
measure! (glucose-1) .0.activity -> inject?dose ->
PATIENT (glucose-1, insulin-1l+dose)
else
measure!glucose.food.activity -> inject?dose ->
PATIENT (glucose, min(insulin+dose, 9))

Note that the use of ‘min’ and ‘max’ functions here is a necessary trick to prevent the Patient model
from becoming infinite state, which would break the automated checks carried out by FDR. We impose
sufficiently high, but abstract, upper bounds for levels of glucose and insulin, which we can show will
not impact on the level of reality within this model.

The Monitor process retrieves information from the patient about glucose levels, food, and activity
on every time interval. If the glucose level goes above a dangerous threshold where a ‘hyper’ could take
place it will then execute an ‘alert’ event and then stop and deadlock the whole control system. (We
should also check for ‘hypo’ events but that is left out here to preserve simplicity in this model.) The
purpose of the alert would be to hand control over to the patient however the intention is that that should
not happen as it would have already handed over the control to an algorithmic dosing system before the
glucose level could ever rise that high.

20

Modelling a Guardrail for an AI Control System Using CSP J. Martin

An algorithmic system might not be as effective as an Al system in managing the stability of the
insulin levels, because the Al system can potentially learn from its mistakes and converge towards an
optimal dosing regime. But on the other hand, it will hopefully provide an upper bound as to the level
of insulin that should be in the system within the constraints of how the simulated human body works.

MONITOR (overidden) =
tock -> measure?glucose.food.activity ->

if glucose > 8 then
alert -> STOP

else if (not overidden and glucose < 8) then
signal ail!glucose.food.activity -> MONITOR (false)

else
signal alg!glucose.food.activity -> MONITOR (true)

We model the Al Pancreas algorithm as something that is completely unpredictable and potentially
might perform any dangerous or malicious act. This is similar to how intruders are modelled in the
CSP treatment of cryptographic protocol vulnerability by Lowe, Roscoe and others [10, 11, 12].

AT PANCREAS =
signal ai?glucose.food.activity —->
((inject_ai!l -> AI PANCREAS) |~| (inject _ai!0 -> AI PANCREAS))

On the other hand, we model the algorithmic Pancreas process as something which will always
naively inject insulin if the residual blood sugar level is beyond a certain threshold and otherwise do
nothing. This could result in a see-sawing effect in terms of the blood sugar in the system and one
would hope that a truly intelligent Al system would learn to handle that better over time, however it
does provide predictable safety behaviour.

ALG PANCREAS =
signal alg?glucose.food.activity -> if (glucose > 3) then
inject alg!l -> ALG PANCREAS else inject alg!0 -> ALG PANCREAS

The Injector process may receive instructions from either the Al process or the algorithmic process
to inject insulin into the patient, which it will always follow.

INJECTOR =
(inject ai?x -> inject!x -> INJECTOR) []
(inject alg?x -> inject!x -> INJECTOR)

Now we compose all these components in parallel to create the CSP process network. (See figure 2
for the process diagram.)

SYSTEM =
((AI_PANCREAS ||| ALG PANCREAS) [|{l|inject ai, inject algl|}|] INJECTOR)
[{Isignal alg, signal ai, inject]}]|]
(MONITOR (false) [|{|measure, tock|}|] PATIENT(5,1))

21

Modelling a Guardrail for an AI Control System Using CSP J. Martin

alert

a
MONITOR —— Al_PANCREAS
tock

eat, exercise

IS N e
O

N

'-'U'J PATIENT

inject INJECTOR ALG_PANCREAS

Figure 2. Communication Diagram.

We assert that this system is deadlock free in the failures-divergences model which ‘means that the
monitor never will trigger the ‘alert’ event and suspend the whole system — the safety system
(algorithmic process) is doing its job.

assert SYSTEM :[deadlock free [FD]]

For the sake of completeness, we should also test this system with the safety system disabled. We
change the monitor so that it always relies upon the potentially malicious Al algorithm.

UNSAFE MONITOR =
tock -> measure?glucose.food.activity ->
if glucose > 8 then
alert -> STOP
else
signal ail!glucose.food.activity -> UNSAFE MONITOR

UNSAFE SYSTEM =
((AI_PANCREAS ||| ALG_PANCREAS) [|{|inject_ai, inject alg|}|] INJECTOR)
[I{Isignal alg, signal ai, inject]}]|]
(UNSAFE MONITOR [|{|measure, tock|}|] PATIENT(5,1))

We then run the same assertion on the unsafe system and we would expect to see this fail.

assert UNSAFE SYSTEM :[deadlock free [FD]]

Figure 3 shows what we see within the FDR tool console when we load the CSP code and run the
assertions. The system reports as we would expect that the first system is deadlock free and therefore it
prevents the adverse hyperglycaemic event from happening.

22

Modelling a Guardrail for an AI Control System Using CSP J. Martin

Assertions Run Al

® SYSTEM :[deadlock free [FD]] 2
Finished: Passed

® UNSAFE_SYSTEM :[deadlock 2
Finished: Failed

Debug

Figure 3. FDR Console

However the unsafe system which relies purely on the AI process, might deadlock and this
corresponds to a serious adverse event occuring. A minimal sequence of events which triggers this is
shown within the tool. It corresponds to the patient repeatedly eating and the Al system withholding
any top-up insulin injections so that the blood sugar continues to rise until it hits a dangerous level

e eat smmenc (0 =R 1.0 signal ai.5.1.0
UNSAFE_SYSTEM_QtuCk’Qcat.l’Oc.acl\,l.;c.u@mca;ulc.S.l.U= signal_ai.S5.1 ”>O

T inject_ai.0 ~ inject.0 tock eat.l exercise.0
w L'

Figure 4. FDR reports deadlock event trace.

4 Conclusions

Despite the simplicity of the model presented, I believe it provides encouragement that we could
facilitate the design of guardrails for Al systems, through this style of analysis. It should be worthy of
future research. Clearly its accuracy and success are very much dependent on how realistically we can
model the environment. In the case study illustrated this was the process representing how a patient’s
blood sugar and insulin levels respond over time to the three stimuli of eating, exercising and receiving

23

Modelling a Guardrail for an AI Control System Using CSP J. Martin

insulin injections. These were massively simplified in this example and to create a more functional
model would require substantial domain knowledge of Human Physiology and Biology, especially in
the context of type 1 diabetes.

Please note that the opinions expressed here are those of the author and do not necessarily represent
those of Lloyds of London.

5 References

Nk

10.

11.

12.

24

“Policy paper. Introducing the Al Safety Institute”,
https://www.gov.uk/government/publications/ai-safety-institute-overview/introducing-the-ai-
safety-institute

Jeremy M. R. Martin. “Concurrency and models of abstraction: past, present and future”,
Proceedings of 2023 IEEE Concurrent Processes Architectures and Embedded Systems Virtual
Conference (COPA 2023).

Liu C, Avari P, Leal Y, Wos M, Sivasithamparam K, Georgiou P, Reddy M, Fernandez-Real JM,
Martin C, Fernandez-Balsells M, Oliver N, Herrero P. “A Modular Safety System for an Insulin
Dose Recommender: A Feasibility Study”, J Diabetes Sci Technol. 2020 Jan;14(1):87-96. doi:
10.1177/1932296819851135. Epub 2019 May 22. PMID: 31117804; PMCID: PMC7189144.

C. A. R. Hoare. “Communicating sequential processes”, Prentice-Hall, 1985.
A. W. Roscoe. “The theory and practice of concurrency”, Prentice Hall, 1998.
A. W. Roscoe. “Understanding concurrent systems”, Springer, 2010.

Brookes, Stephen D., and A. W. Roscoe. “CSP: A practical process algebra, Theories of
Programming: The Life and Works of Tony Hoare”, 2021. 187-222.

Thomas Gibson-Robinson, Guy Broadfoot, Gustavo Carvalho, Philippa Hopcroft, Gavin Lowe,
Sidney Nogueira, Colin O’Halloran, and Augusto Sampaio. “FDR: from theory to industrial
application”, In Concurrency, Security, and Puzzles, pages 65—87. Springer, 2017.

M. Goldsmith and J. Martin. “Parallelization of FDR”, in Workshop on Parallel and Distributed
Model Checking, affiliated to CONCUR 2002 (13th International Conference on Concurrency
Theory), Brno, Czech Republic, 2002.

Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR, in
International Workshop on Tools and Algorithms for the Construction and Analysis of Systems,
pages 147—-166. Springer, 1996. 29.

Gavin Lowe. Casper: a compiler for the analysis of security protocols, Journal of computer
security, 6(1-2):53-84, 1998.

Peter Ryan, Steve A Schneider, Michael Goldsmith, Gavin Lowe, and A.W. Roscoe. The
modelling and analysis of security protocols: the CSP approach, Addison-Wesley Professional,
2001.

