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Abstract 

The integration of occupant data into the management of indoor environment factors 

is gaining increasing attention for creating intelligent and inclusive built environments. 

Existing approaches have mostly relied on static models, often failing to account for the 

ever-changing nature of occupant behavior and environmental factors across time and 

dimensions. Recent advancements in deep learning, especially deep sequential models 

capable of capturing both local and global dependencies between time steps, provide an 

opportunity to overcome these challenges. To address these challenges, the authors 

propose an LSTM-based model framework that utilizes multimodal self-attention-based 

fusion, real-time occupant data, indoor environmental quality (IEQ) data, and outdoor 

environmental data to predict future IEQ conditions, preferred IEQ conditions, and 

classify current IEQ conditions based on collected occupant feedback. To develop and 

test the proposed framework, four key steps were followed: (1) collecting IEQ data 

through smart sensors, (2) collecting perceived occupant feedback, (3) collecting outdoor 

environmental data, and (4) developing an attention-fusion-based Bi-Directional 

LSTM(Bi-LSTM) model. The proposed framework was tested at the Virginia Tech 

Blacksburg campus, showing promising results. 

1 Introduction 

Indoor Environmental Quality (IEQ) includes various aspects, including indoor air quality, lighting, 

thermal conditions, and acoustics, which are crucial in how occupants feel in indoor spaces (USGBC 

2014). Furthermore, in today’s modern society, humans have largely become an indoor species, 

spending up to 90% of their time indoors (EPA 2023). Many studies have found that well-maintained 

IEQ conditions result in improved occupant well-being, while sub-optimal IEQ conditions result in sick 

building syndromes and other health risks (Samet and Spengler 2003, Shan et al. 2018, Cincinelli and 

Martellini 2017, Jones 1999). Furthermore, buildings are becoming more dynamic and complex, 
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especially with climate changes, which calls for integrating holistic and multiple factors into IEQ 

modeling and assessment (Smarra et al. 2018, Du et al. 2021, Liu et al. 2022).  

Previous research in IEQ modeling and assessment for indoor environment management, while 

comprehensive, has been limited. Tien et al. (2022) stated that existing efforts for IEQ modeling and 

assessment often rely on traditional statistical models, which do not leverage the capabilities of deep 

learning to analyze complex interactions among multiple IEQ factors. Furthermore, Aldakheel (2023) 

reviewed the application of Artificial Intelligence (AI) in building management systems, noting that 

while there is a growing interest in using deep learning for energy efficiency and comfort, many studies 

have yet to explore its full potential in real-time IEQ monitoring and management. Second, previous 

studies have approached IEQ modeling and assessment using isolated data streams, neglecting the 

holistic integration of indoor and outdoor environmental factors. Lolli et al. (2022) stated that many 

existing models overlook the integration of indoor and outdoor data, which can result in an incomplete 

understanding of the indoor environment. Similarly, Appau (2023) conducted a post-occupancy 

evaluation of university student housing, highlighting that many studies focus solely on indoor 

conditions without considering the influence of external environmental factors, such as outdoor air 

quality and weather conditions. Furthermore, Sun et al. (2019) stated that the development of indoor air 

quality monitoring systems that often rely on isolated data streams can compromise the quality and 

reliability of the data collected.    

To address these challenges, this paper proposed a novel framework that utilizes attention-based 

multimodal fusion with Bi-LSTM model architecture that can predict future IEQ conditions and classify 

current IEQ conditions from multidimensional IEQ data, outdoor environmental data, and occupant 

feedback. The proposed framework for IEQ prediction and classification consists of four main 

components: (1) collecting IEQ data through smart sensors, (2) collecting perceived occupant feedback, 

(3) collecting outdoor environmental data, and (4) developing an attention-fusion-based Bi-LSTM 

model to predict future IEQ conditions as well as classify IEQ conditions based on collected occupant 

feedback.  

2  Background 

2.1 Importance of IEQ 

 

As humans spend more time in indoor spaces, reaching up to 90% of their time (EPA 2023), IEQ 

conditions are increasingly recognized as critical factors impacting occupant health and productivity 

within indoor environments. Recent literature highlighted the need for comprehensive and standardized 

IEQ data and measurement methods and emphasized that understanding of IEQ is still limited compared 

to outdoor air quality (Vardoulakis et al. 2020). Additionally, studies have shown that high 

concentrations of indoor air pollutants, such as CO2, can lead to symptoms associated with Sick 

Building Syndrome (SBS), underscoring the importance of effective IEQ assessment in office 

environments (Shamsudin 2023). Zahaba et al. (2022) also showed that human exposure to indoor air 

pollutants can be significantly higher than that of outdoor pollutants, which raises concerns about the 

health impacts of poor IEQ. Furthermore, Deng et al. (2023) demonstrated that IEQ significantly affects 

occupants’ productivity in indoor environments, particularly in the context of the COVID-19 pandemic, 

highlighting the need for improved IEQ management strategies (Deng et al., 2023). Furthermore, a 

study has also found a relationship between occupant mental health and the indoor environment, further 

highlighting the importance of well-maintained IEQ conditions (Beemer et al. 2019). 

As the importance of well-maintained IEQ conditions increases, accurate modeling and assessment 

of IEQ conditions are also becoming important. Tagliabue et al. (2021) predicted future IEQ conditions 

A Self-Attention Fusion-Based BI-LSTM Framework Lee and Zhang

792



following a data-driven approach with an IoT sensor network. Similarly, Lee and Zhang (2024) 

predicted future IEQ conditions at educational facilities utilizing multimodal occupant feedback along 

with multidimensional IEQ data. Kapoor et al. (2022) predicted future CO2 concentration levels for 

office rooms using a machine learning-based approach. Fritz et al. (2022) evaluated machine learning 

models to classify occupants’ perceptions of their indoor environment. IEQ models can be integrated 

into downstream applications such as smart building systems to enable occupant-centric control, where 

environmental settings are adjusted based on the predictions from IEQ models. Despite the 

advancements in predictive modeling and machine learning applications for IEQ, there remains a gap 

in fully understanding the complex relationship between IEQ and its effects on occupants along with 

outdoor environmental conditions   

 

2.2 Deep Learning in Indoor Environments 

The application of deep learning-based models in indoor environments has gained attraction, 

particularly for tasks such as indoor localization and environmental monitoring. Deep learning, which 

is a subset of machine learning, holds the improved ability to compute and classify large and complex 

datasets. Deep learning, when combined with multimodal data, can result in improved model 

performance (Meng et al. 2020). Recent studies have demonstrated the effectiveness of deep learning 

models in enhancing accuracy. For instance, Chenari et al. (2017) developed a CO2- based demand-

controlled ventilation strategy using deep learning algorithms, which not only improves IEQ but also 

optimizes energy consumption. Lee and Zhang (2024) developed an IEQ prediction model, based on 

Convolutional Neural Network (CNN), achieving high performance. Similarly, Rizk et al. (2019) 

showcased the use of deep learning models, specifically Convolutional Neural Networks (CNNs), for 

indoor localization based on Received Signal Strength (RSS) and Channel State Information (CSI), 

achieving notable improvements in localization accuracy. However, challenges remain regarding the 

generalization of these models across different indoor environments and the variability of data inputs, 

highlighting a need for further research to improve model robustness and applicability (Cretescu et al. 

2019). 

 

2.3 Multimodal Data Fusion 

Multimodal data, collected from different sources and sensors, encompasses information that can 

show unique insights into each type of data as well as the overall system of interest (Lahat et al. 2016). 

Gao et al. (2020) surveyed deep learning for multimodal data fusion, emphasizing the importance of 

effectively combining different modalities to improve event understanding, especially when one 

modality is incomplete. Multimodal data fusion is increasingly recognized as a vital approach for 

improving IEQ assessments and modeling systems. Out of different algorithms for fusing multimodal 

data, attention-based fusion is gaining traction due to its ability to selectively focus on the most relevant 

features across modalities, thereby enhancing the overall model performance and resilience to missing 

data. Lin et al. (2023) fused multi-sensor data based on a self-attention mechanism. Similarly, Chan-

To-Hing and Veeravalli (2024) proposed a cross-attention-based data fusion approach for Masked 

Autoencoders in remote sensing. Zhao et al. (2022) proposed an attention-based multimodal fusion 

model for human activity recognition. Liu et al. (2023) proposed a Transformer-based fusion model 

with modality-specific tokens to achieve effective cross- modal interaction. While multimodal data 

fusion is increasingly being applied across various domains, its application to IEQ or indoor 

environment modeling remains limited. Despite its potential to enhance the accuracy and 

comprehensiveness of indoor environment assessments, the use of attention-based fusion techniques in 
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this field is still in its early stages, with only a few studies exploring these capabilities for effective IEQ 

prediction. 

3 Proposed Framework 

The proposed framework for IEQ prediction and classification consists of four main components 

(Figure 1): (1) collecting IEQ data through smart sensors, (2) collecting occupant feedback through a 

developed occupant feedback user interface (UI), (3) collecting outdoor environmental data through an 

API, and (4) developing an self-attention based Bi-LSTM model to predict future IEQ conditions as 

well as classify current IEQ conditions based on collected occupant feedback. 

 

 
 

 

3.1 IEQ Data Collection 

The first step of the proposed framework involves collecting real-time IEQ condition data using 

smart sensors, specifically the Airthings View Plus device. This sensor collects variable IEQ data, 

including temperature, humidity, CO2 levels, VOC concentration levels, indoor air pressure, PM1, 

PM2.5, and Radon levels. All these variables are crucial for assessing and modeling indoor 

environmental conditions as well as occupant comfort. For example, high levels of CO2 can indicate 

insufficient ventilation, leading to potential cognitive impairment, while VOCs and particulate matter 

(PM1 and PM2.5) are linked to respiratory issues and general discomfort. By capturing these diverse 

parameters continuously in real-time, the framework aims to provide a comprehensive dataset that 

reflects the dynamic nature of indoor environments. 

3.2 Occupant Feedback Collection 

The second step of the proposed framework includes collecting occupant feedback using an UI 

developed by the authors. This UI is designed to be accessible and intuitive, allowing occupants to 

indicate their perceived comfort, health, and mental level on a 5-point Likert scale. This subjective 

feedback serves as a valuable complement to the objective sensor data collected in the first step, as it 

helps bridge the gap between measured environmental conditions and their perceived impact on the 

occupants. By capturing individual perceptions, the framework can better account for variability in 

comfort preferences among different users, which may be influenced by factors such as age, health, or 

personal sensitivity to environmental changes. The collection of this feedback also allows for the 

Figure 1: Proposed Framework 
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identification of temporal patterns in occupant comfort, which can be analyzed alongside the objective 

IEQ data to create a more adaptive indoor environment that responds to the occupants’ needs in real-

time. 

3.3 Outdoor Environmental Data Collection 

The third step of the proposed framework involves collecting outdoor environmental data through 

an API, specifically the National Oceanic and Atmospheric Administration (NOAA) API. This provides 

additional context and perspective for the indoor environment. These data include outdoor temperature 

(°F), outdoor humidity (%), wind speed (mph), precipitation (in), cloud cover (%), PM2.5 (µg/m3), PM10 

(µg/m3), CO2 (ppb), O3 (ppb), and CO (ppm), all of which can influence IEQ and IAQ conditions as 

well as how occupants feel in indoor environments. Integrating outdoor condition data allows the model 

to consider external factors that can potentially impact the indoor environment, enabling predictions 

and classifications to be more comprehensive and holistic, and account for variations in outdoor 

environmental conditions. 

3.4 Attention-Fusion based Bi-LSTM Model Development 

The proposed framework’s final step involves developing a Bi-LSTM with a temporal self-attention 

model for IEQ predictions and classifications. The proposed model is a deep learning-based architecture 

designed to handle temporal and multimodal data, incorporating Bi-LSTM layers and interpretable 

temporal attention mechanisms. This architecture allows the model to capture both local temporal 

patterns through the LSTM layers and global dependencies across time steps using the self-attention 

mechanism. The proposed model also includes three final heads: (1) predicting future IEQ conditions 

without considering occupant preferences, (2) predicting preferred IEQ conditions based on collected 

occupant feedback (i.e., comfort and health levels) using a weighted loss function, and (3) classifying 

IEQ conditions based on occupant feedback. This design allows the model architecture to 

simultaneously focus on current conditions, adjust for occupant preferences, and provide a classification 

of occupant well-being. The interpretable temporal self-attention mechanism enables the identification 

of influential features from the collected data that affect the predictions. The proposed model 

architecture consists of three key components: 

1. Data Processing Layers: The model begins with linear projection layers that project each data 

modality (IEQ, occupant feedback, and outdoor conditions) into a common hidden dimension. 

This ensures consistency across all input data types and prepares each modality for further 

processing. The input sequences are then fed into separate Bi-LSTM layers for each modality, 

following the model fusion approach. The Bi-LSTM layers allow the model to capture temporal 

dependencies within each data stream, leveraging the bidirectional processing to incorporate 

both past and future data. 

2. Attention-Fusion Layers: The outputs of the Bi-LSTM layers are then processed by temporal 

self-attention layers. These attention layers are applied separately to each modality, allowing 

the model to focus on important time steps within the data sequences. The self-attention 

mechanism helps identify which time steps in the sequence contribute the most to the prediction 

and classification tasks, capturing both short-term variations and long-term trends. The 

attention outputs from all three modalities (IEQ, outdoor, feedback) are then fused, combining 

the learned features into a unified representation. This fusion process involves stacking the 

attention outputs from each modality and averaging them, followed by a fully connected layer 

to reduce the dimensionality and integrate the information. Additionally, the model incorporates 

learnable weights for each modality, which allows the model to prioritize certain data streams 

based on their relevance to the task at hand. 
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3. Prediction and Classification Heads: The fused representation is passed through separate 

fully connected layers for both regression and classification tasks. The proposed model includes 

three output heads: 

a. IEQ Prediction Head: Predicts future IEQ conditions without considering occupant 

preferences, using a regression approach. 

b. Preferred IEQ Prediction Head: Predicts conditions that are more favorable to the 

occupants based on collected feedback, incorporating a weighted loss function to give 

higher importance to preferred conditions. 

c. Classification Heads for Occupant Feedback: Outputs predictions for occupant 

comfort and health levels, treating these as classification tasks. 

4 Experiments and Results 

4.1 Data Collection 

To test the proposed framework, a set of experiments was conducted from an academic building on 

the Virginia Tech Blacksburg campus. The selected building represents a typical academic environment 

with varied occupant activities ranging from self-studying to listening to lectures. IEQ data were 

recorded every 2 minutes, resulting in a dataset capable of capturing subtle changes in environmental 

conditions. Occupant feedback was collected through an UI, and additional feedback data were 

augmented using an AI-based algorithm to increase the volume and diversity of the dataset for this 

experiment. Outdoor environmental data were collected from an API and augmented using a similar 

AI-based approach to provide more comprehensive coverage. After augmentation, the total number of 

data points for each data type was 23,636. 

4.2 Data Processing 

Several preprocessing steps were followed to ensure that the data was in the correct format and 

suitable for effective and accurate analysis as well as prediction and classification by the proposed 

model. 

(1) Loading and Merging Datasets. The IEQ, outdoor, and occupant feedback datasets were loaded 

and merged based on a timestamp, double-checking that all modalities were aligned, resulting 

in a cohesive dataset for training the model. Furthermore, the recorded timestamp was 

converted to a consistent datetime format, and the merged dataset was sorted chronologically 

to maintain temporal dependencies. 

(2) Data Normalization. All collected data, including IEQ/IAQ data, occupant feedback data, and 

meteorological and OAQ data, were normalized using the MinMaxScaler to bring all features 

to a common scale, allowing more effective learning by the proposed model. 

(3) Imputation for Feedback. Missing feedback values were handled by first forward-filling to 

extend previously recorded feedback until new feedback was recorded. This ensured the 

continuity of feedback data, which is crucial for time series training. In cases where initial 

feedback was missing, a neutral value of 3 was used to fill the gaps. 

(4) Sequence Generation and Data Splitting. Sequences of data were generated with a length of 15 

timesteps to capture temporal patterns effectively. The target for regression (future IEQ values) 
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was set to 1 timestep ahead of the input sequence. The dataset was split into training, validation, 

and test sets in a 60-20-20 ratio to ensure proper evaluation of the model. 

 

4.3 Evaluation Metrics 

To evaluate the proposed model, five key metrics were used: Mean Squared Error (MSE), Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), R2, and accuracy. MSE, as shown in 

Equation 1, measures the average squared difference between the predicted and actual values, indicating 

how well the model predicts future IEQ conditions. A lower MSE suggests better performance. MAE, 

shown in Equation 2, measures the average magnitude of the errors without considering their direction, 

providing a straightforward interpretation of prediction accuracy. Compared to MSE, MAE is less 

sensitive to outliers, and lower MAE indicates better performance. RMSE, shown in Equation 3, is the 

square root of MSE and provides an interpretable error metric in the same units as the target variable. 

R2, as shown in Equation 4, represents the proportion of variance in the dependent variable that is 

predictable from the independent variables, with a value closer to 1 indicating a better fit. 

MSE =  
1

𝑛
∑(

𝑛

𝑖=1

𝑇𝑖 − 𝑇̂𝑖)2 (1) 

MAE =
1

𝑛
∑|𝑇𝑖 − 𝑇̂𝑖|(2)

𝑛

𝑖=1

 

RMSE =  √MSE   (3) 

             R2  =  1 − 
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
  (4)           

 

Accuracy, as shown in Equation 5, is used for classification tasks to assess the proportion of correct 

predictions made by the model out of all predictions. 

Accuracy =
TP + TN

Total number of samples
 (5) 

4.4 Ablation Analysis 

The proposed model was tested in Python 3 using an NVIDIA A100 GPU. Comparative analyses 

were conducted to evaluate the impact of model architecture and data fusion strategies on the prediction 

and classification of IEQ. The analyses included two primary model configurations: (1) the proposed 

BiLSTM with Self-Attention, and (2) the standard LSTM with Self-Attention. These configurations 

were chosen to assess the ability to capture complex temporal dependencies and deliver accurate 

predictions. Additionally, the evaluation considered two different data fusion strategies: (1) Attention-

Based Fusion, which utilized multi-head attention mechanisms to integrate IEQ, outdoor, and occupant 

feedback data, and (2) GAT-Based Fusion, which employed Graph Attention Networks to explicitly 

model relationships between data modalities. 

The evaluation compared two key aspects: model architecture and fusion strategies. In terms of 

model architecture (Table 1), the proposed Bi-LSTM with Self-Attention demonstrated significantly 

better performance than the standard LSTM with Self-Attention. The Bi-LSTM achieved a 38.7% lower 

MSE, indicating its superior ability to capture complex temporal dependencies in the data, which is 

crucial for accurate indoor environmental quality (IEQ) predictions. Both models maintained perfect 

classification accuracy for comfort and health levels, but the proposed Bi-LSTM consistently provided 

more precise regression results, reflecting its improved predictive capabilities. 
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Model MSE % Diff. in 

MSE 

MAE RMSE R2 Comfort 

Acc. 

Health 

Acc. 

Bi-LSTM with Self-

Attention 

0.1515 – 0.2239 0.3889 0.8093 1.0000 1.0000 

LSTM with Self-

Attention 

0.2469 +38.7% 0.3569 0.4968 0.6424 1.0000 1.0000 

     For fusion strategies (Table 2), Attention-based Fusion outperformed GAT-Based Fusion by 19.3% 

in terms of MSE. The use of multi-head attention allowed the model to effectively integrate IEQ, 

outdoor conditions, and occupant feedback data, resulting in more accurate predictions. While GAT 

Fusion was less effective than Attention- Based Fusion, it still offered meaningful benefits over other 

methods by modeling the relationships between data modalities explicitly. However, the superior 

performance of Attention-Based Fusion highlighted its capability to better capture and utilize the 

diverse information available across different data sources. Despite the differences in MSE, both fusion 

strategies showed strong classification results, with Attention-Based Fusion maintaining a slight 

advantage in terms of overall predictive accuracy. 

 

Fusion Strategy MSE % Difference in 

MSE 

MAE RMSE R2 Comfort 

Accuracy 

Health 

Accuracy 

Attention-Based 

Fusion 

0.1515 – 0.2239 0.3889 0.8093 1.0000 1.0000 

GAT-Based 

Fusion 

0.1878 +19.3% 0.2908 0.4330 0.7483 0.2381 1.0000 

     The results showed that the proposed Bi-LSTM with Self-Attention and Attention-Based Fusion 

consistently delivered superior performance, achieving lower prediction errors and more accurate 

integration of data compared to the other models and fusion strategies. This confirms the effectiveness 

of the proposed approach in capturing temporal dependencies and utilizing diverse information for 

predicting and classifying IEQ conditions. 

4.5 Predicted vs. Actual Values Plot 

Figure 2 compares actual and predicted values for four IEQ parameters: Radon, CO2, PM2.5, and 

Humidity. The plots show that the predicted values closely follow the general trend of the actual data, 

indicating the model’s ability to track fluctuations in the IEQ parameters. However, some deviations 

are observed, suggesting areas where prediction accuracy could be further refined. Overall, the model 

demonstrates its capacity to capture key patterns in the data across different IEQ variables. 

Table 1: Performance difference between different model architectures 

Table 2: Fusion method comparison 
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5 Conclusion 

In conclusion, this paper presents a novel Bi-LSTM model with self-attention that integrates IEQ 

data, outdoor environmental data, and occupant feedback through attention-based fusion to predict and 

classify indoor environmental quality conditions. The proposed framework leverages the advantages of 

deep learning and multimodal data fusion to provide a comprehensive assessment of indoor 

environments. Results from the comparative analyses demonstrate that the proposed Bi-LSTM model 

with attention-based data fusion consistently outperforms the baseline models, highlighting the benefits 

of using advanced model architectures and fusion techniques. This research contributes to the growing 

body of work on IEQ assessment, offering valuable insights for improving occupant comfort, health, 

and overall indoor environment quality. 

While the proposed framework’s results are promising, several areas for future work remain. 

Additional data modalities, such as occupancy patterns, activity data, and human vital signs, could be 

incorporated to further enhance the model’s capabilities. This will allow the model to capture the 

dynamic interactions between environmental conditions and occupant behavior more effectively, 

creating adaptive and personalized indoor environments. Future research could look into evaluating the 

scalability of the proposed framework across different building types, including residential, 

commercial, and mixed-use facilities, to assess its generalizability. Furthermore, integrating Model 

Predictive Control (MPC) could be explored to enable real-time, proactive adjustments of indoor 

environmental conditions based on the model’s predictions. By employing MPC, the system would 

provide an intelligent, closed loop control mechanism to maintain optimal IEQ conditions continuously. 

Figure 2: Predicted vs. Actual Values Plot 
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