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Abstract

Lemmatisation, which is one of the most important stages of text preprocessing, consists
in grouping the inflected forms of a word together so they can be analysed as a single
item, identified by the word’s lemma, or dictionary form. It is not a very complicated
task for languages such as English, where a paradigm consists of a few forms close in
spelling; but when it comes to morphologically rich languages, such as Russian, Hungarian
or Irish, lemmatisation becomes more challenging. However, this task is often considered
solved for most resource-rich modern languages irregardless of their morphological type.
The situation is dramatically different for ancient languages characterised not only by a
rich inflectional system, but also by a high level of orthographic variation, and, what is
more important, a very little amount of available data. These factors make automatic
morphological analysis of historical language data an underrepresented field in comparison
to other NLP tasks. This work describes a case of creating an Early Irish lemmatiser with
a character-level sequence-to-sequence learning method that proves efficient to overcome
data scarcity. A simple character-level sequence-to-sequence model trained during 34,000
iterations reached the accuracy score of 99.2 % for known words and 64.9 % for unknown
words on a rather small corpus of 83,155 samples. It outperforms both the baseline and the
rule-based model described in [21] and [76] and meets the results of other systems working
with historical data.

1 Introduction

One of the biggest problems one faces working on NLP tools for under-resourced languages is
the lack of data. It is widely known that in machine learning the quality of a model largely
depends on the size of the training corpus. The situation is even more dramatic when it comes
to ancient and medieval texts, since historical language data is not only sparse, but also very
inconsistent.

Lemmatisation, which is one of the most important stages of text preprocessing, consists
in grouping the inflected forms of a word together so they can be analysed as a single item,
identified by the word’s lemma, or dictionary form. It is not a very complicated task for
languages such as English, where a paradigm consists of a few forms close in spelling; but when
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it comes to morphologically rich languages, such as Russian, Hungarian or Irish, lemmatisation
becomes more challenging. However, this task is often considered solved for most resource-
rich modern languages irregardless of their morphological type. The situation is dramatically
different for ancient languages characterised not only by a rich inflectional system, but also by
a high level of orthographic variation.

Old and Middle Irish, often described together as “Early Irish", is a language with an
extremely complicated inflectional system and a high level of orthographical variation. It means
that an average number of forms for each lemma in Early Irish will be substantially bigger than
in many other European languages. Therefore, a training corpus for a task of lemmatisation in
this case must be substantially bigger as well for any machine learning algorithm to work. The
problem is, there are no publicly available annotated corpora of Early Irish, except POMIC [41],
which is represented as a bunch of parse trees in PSD format, thus being not a very suitable
source of data for machine learning.

Is there any solution except manually annotating all the digitised texts first, and then
building ML-based NLP tools, or opting for rule-based systems? It seems like going down
from word-level to character-level and using sequence-to-sequence learning might help. If we
reformulate the lemmatisation task as taking a sequence of characters (form) as input and
generating another sequence of characters (lemma), we can forget about tens of verbal and
nominal inflection classes, let alone spelling variation. Moreover, this approach allows us to use
the Dictionary of the Irish Language [68] as source of data.

This work describes a case of creating an Early Irish lemmatiser with a character-level
sequence-to-sequence learning method that proves efficient to overcome data scarcity.

2 Related Works

The problem of NLP for historical languages first arose in the last quarter of the XX century
in regard to Ancient Greek [48], Sanskrit [71, 31] and Latin [44, 49] and for a long time was
confined to these languages. As more and more medieval manuscripts were being digitised,
there appeared a number of works dedicated to spelling variation in historical corpora, its
normalisation and further linguistic processing for Early Modern English [5, 6], Old French
[66], Old Swedish [10], Early New High German [9], historical Portuguese [29, 56, 27], historical
Slovene [58], Middle Welsh [46] and Middle Dutch [36, 37]. Historical data processing in general
has been surveyed in a substantial monograph [53] and several articles [25, 52]. Apart from
corpus studies, there have emerged several open-source tools for historical language processing,
such as a Classical Language Toolkit! [34], which offers NLP support for the languages of
Ancient, Classical, and Medieval Eurasia. For the moment, only Greek and Latin functionality
in CLTK includes lemmatisation.

Lemmatisation has also been an active area of research in computational linguistics, es-
pecially for morphologically rich languages [19, 20, 43, 14, 15, 63, 28, 69]. There are two
major approaches to lemmatisation, a rule-based approach and a statistical one. The rule-
based approach, which requires much manual intervention but yield very good results due to
being language-specific, is widely used, examples being Swedish [17], Icelandic [32], Czech [35],
Slovene [54], German [51], Hindi [50], Arabic [3, 24] and many other languages. A classical
work on automatic morphological analysis of Ancient Greek describes a stem lexicon, where
each stem is marked with inflectional class, and a list of pseudo-suffixes needed to restore these
stems to lemmas [48]. A Latin lemmatiser from the aforementioned Python library CLTK also

Thttp://docs.cltk.org/en/latest/
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uses stem and suffix lexicons. The best morphological analyser for Russian, Mystem, is based
on Zalizniak grammatical dictionary [77]. This dictionary contains a detailed description of
ca. 100,000 words that includes their inflectional classes. Mystem analyses unknown words
by comparing them to the closest words in its lexicon. The ‘closeness’ is computed using the
built-in suffix list [61]. A morphological analyser of modern Irish used in New Corpus of Ireland
is based on finite-state transducers and described in [22] and [38].

Statistical approach to lemmatisation is computationally expensive and requires a large
annotated corpus to train a model, especially when one deals with a complex inflectional system.
Nevertheless, there are a few statistical parsers that achieve excellent results. Morfette, which
was developed specially for fusional and agglutinative languages, simultaneously learns lemmas
and PoS-tags using maximum entropy classifiers. It does not need hard-coded lists of stems
and suffixes and derives lemma classes itself from the working corpus [16]. It shows over 97 %
lemmatisation accuracy for seen words and over 75 % accuracy for unseen words on Romanian,
Spanish and Polish data. Another joint lemmatisation and PoS-tagging system, Lemming,
achieves more than 93-98 % for both known and unknown words on Czech, German, Spanish
and Hungaian datasets [47]. Now there are models available for more than 15 languages,
including Basque, Hebrew, Korean, Estonian, French and Arabic?. Unfortunately, it is almost
impossible to directly compare the performance of rule-based and statistical-based systems for
the same language described in different works due to the discrepancy of training datasets and
the absence of evaluation results for some of the models.

Recently, neural networks also started being used for lemmatisation. A system combining
convolutional architecture that models orthography with distributional word embeddings that
represent lexical context was successfully implemented by [37] to lemmatise Middle Dutch data.
The authors obtained 94-97 % accuracy for known words and 45-59 % accuracy for unknown
words on four different datasets.

3 Data

3.1 Sources

One of the most difficult problems one faces working on NLP tools for ancient languages is
the lack of data. The quality of a machine learning model is widely known to depend upon
the size of the training corpus. The only publicly available annotated corpus of Early Irish
is POMIC [41], but it is not a very suitable source of data for machine learning because it is
represented as parse trees in PSD format. Another substantial resource is the electronic edition
of the Dictionary of the Irish Language® [68]. The DIL is a historical dictionary of Irish, which
covers Old and Middle Irish periods. Each of 43,345 entries consists of a headword (lemma), a
list of forms including different spellings and compounds and examples of use with a reference
to source text.

However, the list of forms cited in the DIL is incomplete; apart from that, some of the
forms are contracted: for example, the list of forms for cruimther ‘priest’ is represented in the
dictionary as -ir, which stands for cruimthir, and the list of forms for carpat ‘chariot’ looks like
cairpthiu, -thib, -tiu, -teb, which has to be read as cairpthiu, caipthib, cairptiu, cairptib. Words
can be abbreviated in many different ways, which is a consequence of the fact that there were
many scholars who contributed to the DIL throughout 1913-1976, and each of them used his

2http://cistern.cis.lmu.de/marmot /models/ CURRENT/
Shttp://dil.ie
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Table 1: Contracted, restored and missing forms and spellings from the DIL

DIL Restored Missing
carpat, cairpthiu, carpat, cairpthiu, carbad, carbat, carbait, carpait, carput,
-thib, -tiu, -tib caipthib, cairptiu, carpti...
cairptib
carat(r)as caratas, caratras caratrad, caradras, caradrus, caradruis,
caratrais...
cruimther, -ir cruimther, cruimthir cruimter, crumther, cruimthear, crumper,

crumpir, cromthar, crumthirech
anmothaig[thigle anmothaige, anmothige anmothaigthech, anmotuighe...

aball, a. aball abhull, aboll, ubull, abaill, abla, abhla,
ubla, ubhaill...

own notation, as preserved in the digital edition. Some common types of contractions are listed
in Table 1.

Still, the DIL is the best source of data for training a lemmatiser. The electronic edition
of the DIL [68] was used to compile a training corpus of 83,155 unique form-lemma pairs, ex-
tracted from HTML files and restored to their full forms when necessary. These samples were
then shuffled and split into training, validation and test sets, the former two being 5,000 sam-
ples each. One has to bear in mind, that this amount of training data is still insufficient for
getting extremely good results in lemmatisation for a language as morphologically complex and
orthographically inconsistent as Early Irish.

3.2 Morphology and Orthography

Old Irish is a fusional language with an elaborate system of verbal and nominal inflexion,
comparable to Ancient Greek and Sanskrit in its complexity. In Celtic languages, there are
two ways to encode morphological information in a word form, which often occur together:
regular endings and grammaticalised phonetic changes in the beginning of the word called ‘initial
mutations’. It means that the first sound of a word can change under specific grammatical
conditions, for example, the word céile ‘servant’ with a definite article in nominative plural
will take a form ind chéili ‘the servants’, where the first stop [k] mutated into fricative [x].
This type of mutation is called lenition, and in this particular case it shows the presence of a
definite article in nominative plural masculine, while the ending -i means that the noun itself is
in nominative plural. There are four types of initial mutations in Early Irish: lenition, eclipsis,
t-prothesis and h-prothesis. I will not expand on how exactly they affect consonants and vowels
and when they occur, because it is not relevant for the task. I have to mention though, that both
in Old and Middle Irish mutations were inconsistently marked in writing, and the orthography
on the whole involves much variation.Tables 2 and 3 show various spellings of mutated vowels
and consonants I encountered in my data.

There are several other orthographic features that increase a number of possible forms for
a single lemma:
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Table 2: Mutated consonant spellings

Original b c d f g 1 m n p r s t

Mutated bh c¢ch dh fh g 1 mh nn ph rr sh th

mb gc nd f ng 11 mm bp S dt
ce fh m-m ss
bhf ts
S-S

Table 3: Mutated vowel spellings

Original a a e é i i o) o} u u

Mutated ha hd he hé hi hi ho hé hu hua

e inconsistent use of length marks;
e in later texts there appear mute vowels that indicate the neighbouring consonant’s quality;
e complex verb forms can be spelled either with or without a hyphen or a whitespace.

Moreover, in Old and Middle Irish objective pronouns and relative particles are incorporated
into a verb between the preverb and the root: cf. caraid ‘he / she / it loves’ and rob-car-
si ‘she has loved you’, where ro- is a perfective particle, -b- is an infixed pronoun for 24
person plural object, and -si is an emphatic suffixed pronoun 39 person singular feminine. The
presence of a preverb with dependent forms triggers a shift in stress, which causes complex
morphophonological changes and often produces a number of very differently looking forms in
a verbal paradigm, particularly in the case of compound verbs, cf. do-beir ‘gives, brings’ and
n? tab(a)ir ‘does not give, bring’. Table 4 illustrates the variety of Early Irish verbal forms
through the example of do-beir.

I should also mention, that the DIL is not strictly grammatical in the following assumptions,
and so are the models trained on it:

e verbal forms with infixed pronouns are lemmatised as verbal forms without a pronoun
(notbéra ‘will bring you’ > beirid ‘brings’);

e compound forms of a preposition and a definite article are lemmatised as prepositions
without an article (isin ‘in + DET” > ¢ ‘in’ );

e prepositional pronouns are lemmatised as prepositions (indtib ‘in them’ > 4 ‘in’);

e emphatic suffixed pronouns (-som, -siu, -si, -sa etc.) are lemmatised as independent
personal pronouns.
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Table 4: Some forms of the verb ‘do-beir’

Form Deutero- Prototonic (after Translation

tonic preverb)
INDIC PRES do-beir (ni) thabair ‘does (not) give / bring’
35G
SUBJ PRES do-bera (ni) thaibrea ‘if does (not) give /
3SG bring’
PRET 3SG do-bert (ni) thubart ‘did (not) give / bring’
FUT 3SG do-béra (ni) thibéra ‘will (not) give / bring’
PERF 3SG do-rat (ni) tharat ‘did (not) give’
PERF2 3SG do-uic (ni) thuicc ‘did (not) bring’

Table 5: Character-to-character model mistakes

Form Real lemma Predicted lemma
ar-com-icc ar-céemsat ar-coimcin

déirfiniu déirine dairfinu

folortadh folortad folortaid

fris-tasgat fris-tasgat fris-taig

ithear ithir ithra

n-etarcnaigedar etargnaigidir = etarncaigedar

t-iarrath iarrath dirarth

4 Experiment and Evaluation

A character-to-character model was trained during 34,000 iterations, but reached minimum loss
and maximum accuracy of 69.8 % on a validation set after 10,000 iterations. When the training
set accuracy reached its maximum, the validation set accuracy dropped to 64.9 %; on the test
set the model achieved 63.9 %, , as shown in Figure 1. These results are a serious improvement
over the rule-based model described in [21] and [76], which showed only 45.2 % on unknown
words. Dots on accuracy graphs represent maximums on known (training set) and unknown
(validation set) forms.

Having a closer look at some mistakes in Table 5, made by the character-to-character model
in its best configuration (further referred as char2char), we can clearly see, that it learned to
demutate forms (cf. the last two examples), but some inflection models are still unknown to it,
which can be explained by the lack of training data. The model experiences most difficulties
with compound verbs, which is not surprising.

As poor as the results may seem, they are not very different from those achieved by sequence-
to-sequence models on analogous tasks. For example, the best results for the OCR post-
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Figure 1: Character-to-character model accuracy

Table 6: Performance of different models on Early Irish data

Model Accuracy (unknown) Accuracy (known)
baseline 57.5 % 57.5 %
rule-based  45.2 % 71.6 %
char2char  64.9 % 99.2 %

correction and spelling correction tasks according to [59] fall between 62.75 % and 74.67 %
on different datasets. The score is even lower for grapheme-to-phoneme task, 44.74 % — 72.23
% [59]. Lemmatisation scores described in the article are much higher, 94.22 % for German
verbs and 94.08 % for Finnish verbs [59], but taking the inflectional diversity and abundant
orthographic variation of Early Irish into account, this task is closer to spelling correction and
grapheme-to-phoneme translation rather than to lemmatisation of any modern language. In
any case, a character-level sequence-to-sequence model reached the accuracy score of 99.2 %
for known words and 64.9 % for unknown words on a rather small corpus of 83,155 samples,
which is a serious improvement over the rule-based model described in [21]. Table 6 shows the
performance of different models on Early Irish data.

The model also meets the results of other systems working with historical data. Table
7 provides a summary of best accuracy scores achieved by Early Irish, Middle Dutch [37],
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Table 7: Best accuracy scores on historical language data

Language Model Unknown Known

Early Irish character-level seq2seq 64.9 % 99.2 %
Middle Dutch CNN + word embeddings 59.48 % 97.89 %
Latin CRF 81.84 % 95.58 %
Old French rule-based ? 60 %

Latin [47] and Old French [66] lemmatisers having different architectures are give in Table 7.
Unfortunately, it is not possible to cite more results as there are no clear figures in other works
concerning lemmatisation for ancient languages.

5 Conclusion

Although the task of lemmatisation for Early Irish data is quite challenging, there is a number
of promising solutions. A character-level sequence-to-sequence model appears to be the best
one for the moment, reaching the accuracy score of 99.2 % for known words and 64.9 % for
unknown words on a rather small corpus of 83,155 samples. It outperforms both the baseline
and the rule-based model and meets the results of other systems working with historical data.

Nevertheless, there is still much space for improvement and further research, and the first
priority task that could help to ameliorate the performance is creating an open-source searchable
corpus of Early Irish. It is also important to develop a detailed sensible grammatical notation to
avoid such things as dropping out infixed pronouns when lemmatising verbal forms that persist
in the DIL.

The results of the research, including working rule-based and seq2seq models and data, are
available on GitHub.
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