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Abstract

The spread of various sensors and the development of cloud computing technologies en-
able the accumulation and use of large numbers of live logs in ordinary homes. To operate
a service that utilizes sensor data, it is difficult to install servers and storage in ordinary
homes and to analyze the collected data from sensors. Those data are typically trans-
mitted from sensors to a cloud and analyzed in the cloud. However, services that involve
moving image analysis must transfer large amounts of data continuously and require high
computing power for analysis. Hence, it is highly difficult to process them in real time
in the cloud using a conventional stream data processing framework. In this research, we
propose a construction scheme for a highly efficient distributed stream processing infras-
tructure that enables scalable processing of moving image recognition tasks according to
the amount of data that are transmitted from sensors. We implement a prototype system
of the proposed distributed stream processing infrastructure using Ray and Apache Kafka,
which is a distributed messaging system, and we evaluate its performance. The experi-
mental results demonstrate that the proposed distributed stream processing infrastructure
is highly scalable.

1 Introduction

The spread of various sensors and the development of cloud computing technologies enable the
accumulation and use of many live logs in ordinary homes. These technologies are applied
to various services such as watching the elderly and children and crime prevention measures.
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In addition, deep learning technology has been widely used for image and speech recognition
processing. Deep learning is a machine learning method that uses multilayered intermediate
layers that perform identification in a neural network. Many deep learning libraries, such as
TensorFlow [1] and Chainer [2], have been developed. However, a key issue for deep learning is
heavy processing loads.

To operate a service that utilizes sensor data, it is difficult to install servers and storage
in ordinary homes and analyze the collected data from sensors. Typically, those data are
transmitted from sensors to a cloud and analyzed in the cloud. However, services that involve
moving image analysis require large amounts of data to be transferred continuously and high
computing power for the analysis; hence, it is difficult to process them in real time in the cloud
using a conventional data processing framework.

We propose a construction scheme for a highly efficient distributed stream processing infras-
tructure that enables scalable processing in moving image recognition according to the amount
of data that is transmitted from sensors.

First, we perform preliminary experiments using Apache Spark [3] (hereinafter called Spark)
and Ray [4]. Spark is a representative cluster computing platform that is designed to be
fast and versatile, and Ray is a newer distributed execution framework. We investigate the
characteristics of their distributed recognition processing and demonstrate that Ray enables
scalable distributed processing. However, according to our previous work [6], it is difficult
to perform effective distributed processing using Spark because it aims at high-throughput
processing of multiple user tasks based on a data affinity policy. In the preliminary experiments,
the image identification processes are distributed and parallelized using Spark and Ray with
various parameters, and the behaviors of each distributed process are visualized. Image data
that are identified are provided by the ImageNet [5]. We demonstrate that scalable distributed
processing can be performed using Ray from the experimental results.

Next, we implement a prototype system of the proposed distributed stream processing in-
frastructure using Ray and Apache Kafka [7] (hereinafter called Kafka), which is a distributed
messaging system, and demonstrate its performance. In the previous work [9], we investigated
the performance characteristics of Kafka and confirmed that a Kafka cluster with an appropriate
configuration enables the performances of large amounts of image data messaging. Therefore,
we employ Kafka as a messaging system for the prototype system. In the experiments on
the prototype system, Kafka transmits image data to the Ray cluster and we investigate the
performance of distributed recognition processing using PyTorch [8] and TensorFlow, and neu-
ral network libraries. The experimental results show that the implemented distributed stream
processing infrastructure that uses Ray and Kafka is highly scalable.

2 Distributed stream processing infrastructure

In this research, we assume a large-scale distributed stream data processing infrastructure, as
shown in Fig. 1. When moving image data are transmitted from the sensors and cameras
that are installed in each home to the cloud, the moving image data are processed by the
stream processing infrastructure and passed to the distributed processing platform. When the
distributed processing platform receives the data, the data analysis processing is performed by
the deep learning framework and the result is returned to the service management system. The
stream processing infrastructure is an infrastructure that can continuously process an infinitely
long stream of data. By using the stream processing infrastructure, it is possible to process data
continuously and in real time. In this system, it is assumed that image data that are acquired
from sensors in each home are processed as a stream. The distributed processing infrastructure
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Table 1: Performance of the computer used in the experiment
OS Ubuntu 16.04LTS

CPU
Intel(R) Xeon(R) CPU W5590 @3.33 GHz
4 core×2 sockets(8 core)

GPU NVIDIA GeForce GTX 980
Memory 48 Gbyte

is the foundation on which a large amount of data is efficiently processed using clusters that
are composed of many computers. In this system, identification processing of a large amount
of image data is performed in a cluster and the image data are identified in a short time.

Figure 1: Assumed infrastructure for large-scale distributed stream processing.

Specifically, we propose the distributed stream processing infrastructure that is shown in
Fig. 2. Since it was confirmed that Kafka can construct a scalable messaging system, we use
Kafka as a stream processing infrastructure. Data are transferred from the Kafka cluster to
the Spark cluster or the Ray cluster and image identification processing is performed by their
workers in the cluster. The Kafka Producers are placed in the Clients and the image data that
are acquired from the sensors are sent to the Broker in the Kafka Cluster. The Broker transmits
the acquired image data to the Kafka Consumer running on the worker nodes of the Spark or
Ray cluster and the image data recognition processing is performed in the Consumers.

3 Distributed processing efficiencies in Spark and Ray

We investigate the distributed processing efficiency of Spark and Ray, as preliminary experi-
ments. We construct clusters of Spark and Ray and aim at high efficiency of image identification
processing using PyTorch and TensorFlow as the back end of PyTorch. In the experiments, Im-
ageNet is used as a data set. For each case of Spark and Ray, we measure the time that it takes
for images to be evaluated by each worker after execution of the program and for the result to
be returned to the master. We prepare 10000 ImageNet data files, each of size 26 KB, for the
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Figure 2: Overview of the proposed distributed stream processing infrastructure, which uses
Kafka and Spark or Ray.

Figure 3: Experimental environment.

experiments. Table 1 shows the performance of a cluster node used in the experiments. Nodes
with the same performance are used for the master and all workers. Each node is connected by
a 1 Gbps network as shown in Fig. 3. In the experiments, we use Spark v. 2.3.1, Ray v. 0.5.3,
PyTorch v. 0.4.1, and TensorFlow v.1.8.0.

3.1 The efficiency of Spark distributed processing

Fig. 4 shows master-worker processing in the case of Spark. The round rectangle drawn by a
solid line represents the entire Spark cluster and the dotted rectangles represent a physical node.
Among the physical nodes, a node that is used as a master is represented by a red dotted line
and a node that is used as a worker is represented by a blue dotted line. Distributed processing
in Spark is performed as follows: (1) Execute the Python program on the master. (2) Make
Spark read the ImageNet data and create the RDD. (3) Pass the created RDD to the worker.
(4) Identify ImageNet data using PyTorch in workers. RDD is a fault tolerance distributed
data set, and Spark automatically distributes data by using RDD and its processing methods
provided by Spark. Each node is connected in Spark Standalone Mode.

The results when the number of nodes is changed from 1 to 5 and the number of partitions
is changed from 8 to 48 in 8 increments, are shown in Fig. 5. The number of partitions is a
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Figure 4: Master-Worker processing using Spark and PyTorch

Figure 5: Processing times of distributed processing by Spark.

parameter that determines how many tasks are to be divided and distributed to workers. In
general, the larger the number of partitions, the smaller the task bias between workers becomes.
In Fig. 5, the horizontal axis indicates the number of nodes and the vertical axis indicates
elapsed time; each color shows different experimental results when the number of partitions is
set from 8 to 48. According to Fig. 5, the processing time is reduced as the number of nodes
increases, while the results obtained by different numbers of partitions are almost comparable.

3.2 The efficiency of Ray distributed processing

Fig. 6 shows master-worker processing in the case of Ray. The round rectangle drawn by a
solid line represents the entire Ray cluster and the dotted rectangles represent physical nodes.
Among the physical nodes, a node that is used as a master is represented as a red dotted line
and a node that is used as a worker is represented as a blue dotted line.

Distributed processing in Ray is performed as follows: (1) When a Python program is
executed on the master, (2) the Ray driver in the master node places the data in the object
store of its own node and contacts the local scheduler. (3) The local scheduler communicates
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Figure 6: Master-Worker processing using Ray and PyTorch.

Figure 7: Processing times of distributed processing by Ray.

to the global scheduler. (4) The global scheduler sends instructions to local schedulers of each
node. (5) Ray workers evaluate ImageNet data using PyTorch. The data are stored and shared
in Object Store deployed over the Ray cluster nodes.

As with Spark, we measure the execution times of Ray on 10000 tasks as we change the
number of nodes from 1 to 5. Since Ray does not have the concept of a partition as Spark
does, we distribute data to workers 1 to 5 in a round-robin manner. The average values of 10
measurements is shown in Fig. 7. The horizontal axis is the number of nodes and the vertical
axis indicates elapsed time. In Fig. 7, as the number of nodes is increased, the processing time
is reduced. It seems that Ray’s ImageNet data identify process is highly scalable.

Table 2 shows comparison of the elapsed times of Spark and Ray. The results of phase (1)
show the duration from the start of the program to the start of the identification process. The
phase (2) results indicate the time to identify 10000 ImageNet data. The configuration of Spark
process is that number of workers is 1, 5 and the number of partitions is 40. The configuration
of Ray is that number of workers is 1, 5. According to table 2, the times for identification
comparable between Spark and Ray. However, it seems that Spark takes time for the phase (1)
due to resource management, task scheduling or another reasons. Therefore, Ray can process
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Table 2: Comparison of identify processing time, spark and ray.
# of workers 1 5

Phase (1) (2) (1) (2)

Spark 392.873 213.682 229.235 49.897
Ray 1.686 226.133 7.123 48.890

Figure 8: Processing times of batch-based distributed processing by Ray.

faster than Spark.
Further, in this experimental configuration, batch processing can be applied for remote func-

tions. Batch processing is a method of identifying multiple image data simultaneously together
after storing a specified amount of data. It is possible to convert many matrix×vector exe-
cutions to a few matrix×matrix executions, thereby possibly shortening the overall processing
time. The number of worker nodes is varied among 1, 2, 4, 8, 12; and the batch size is varied
among 1, 5, 10, 20. Fig. 8 shows the average values of 10 measurements of processing 10000
images. The horizontal axis is the number of workers and the vertical axis indicates the elapsed
time; Fig. 8 is drawn for the results of different batch sizes. In the Fig. 8, increasing the batch
size from 1 to 5 can shorten the processing time by 70 seconds when the number of workers
is 1. However, even if the number of workers and the batch size are increased, the processing
time converges to approximately 28 seconds.

4 Distributed stream processing infrastructure

According to the investigation of the distributed processing efficiencies in Section 3, Ray is
faster and more scalable than Spark for the distributed parallel identification processing of an
image.

Fig. 9 shows the proposed distributed stream processing infrastructure using Ray and Kafka.
Kafka Broker receives image data from Kafka Producers in the clients and passes them to the
Kafka Consumers that are deployed in the workers in the Ray cluster. Each Consumer performs
identification processing. Again, experiments are conducted using image data from ImageNet.
The computers used in the experiments have the same performance as those used in Section 3.
In the experiments, we use Kafka v. 1.1.0.
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Figure 9: Distributed stream processing infrastructure using Ray and Kafka.

Figure 10: Distributed stream processing composition by Ray and Kafka.

4.1 Adaptation to a streaming environment by Kafka

We perform distributed stream processing using Kafka and Ray. The experimental configuration
is shown in Fig. 10. The round rectangles drawn by solid lines represent the Ray cluster and
the Kafka cluster and the dotted rectangles represent physical node. When Kafka is started
and a Python program is executed, image data are transmitted from Producer to Broker. Upon
receiving the data, the Broker sends the data to the Consumers deployed in the worker nodes
in the Ray cluster and the Consumers identify the image using PyTorch and TensorFlow.

The number of Producers is set to 1, the number of Ray workers is varied among 1, 2, 4, 8,
12, and the batch size is varied among 1, 5, 10, 20. The experimental results are shown in Fig.
11. The horizontal axis is the number of worker nodes and the vertical axis is the throughput; a
graph is drawn for each batch size. Here, the throughput is calculated from the number of image
data processed per second. Fig. 11 shows that the throughputs are improved by approximately
a factor of two compared with batch sizes of 1 and 5, while the throughputs of batch size 10
and 20 are comparable. In addition, the throughputs of all batch sizes are improved as the
number of workers increases. Thus, the experimental results show that a scalable distributed
stream processing infrastructure can be constructed using Kafka and Ray.
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Figure 11: Throughputs of batch-based distributed stream processing by Kafka and Ray.

5 Related Work

Chen et al. [10] use the Producer-Consumer model of Kafka as a streaming data acquisition
layer for moving images and the real-time processing framework Spark Streaming, combined
with OpenCV [11], as a data processing layer, with memory, HDFS and HBase [12] used as data
storage layers and Web Technology for final result display. The performance is evaluated by
adjusting the numbers of worker nodes and batch slices and the CPU usage rate. This method
can extract simple information from a video. Further development requires the detection of
moving objects and the recognition of behaviors, for which models that support CNN and 3D
CNN are necessary. Our research uses TensorFlow, which is supporting CNN deep learning
framework.

In our research, we aim at accelerating distributed stream processing using a general data
processing infrastructure.

6 Conclusions

We proposed a construction scheme of a distributed stream processing infrastructure using
Kafka and Ray. In the preliminary experiments, image processing by PyTorch was distributed
in parallel, using Spark or Ray and those efficiencies were investigated. We found that scal-
able distributed processing is possible using Ray. Next, we implemented a distributed stream
processing infrastructure using Ray and Kafka. The experimental results showed that it is
possible to implement a highly scalable distributed stream processing infrastructure with Ray
and Kafka. Moreover, its performance is further improved by batch processing. In the future,
we will consider adapting the system to the processing of moving images, increasing the sizes of
Kafka and Ray clusters, and conducting experiments in a larger-scale environment to improve
the performance.
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