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Abstract

If we are going to have computing systems that can be trusted to help us with difficult
situations in difficult environments, then those systems are going to need much more
capability, both for actions that conform to our goals for the systems, and for appropriate
adaptations to unexpected or difficult conditions in their operational environment.

We may not be able to communicate with them in any timely or even useful way, so
they will need to have strong autonomy in their action and adaptation decision processes.

This paper extends earlier work with further implications and expectations, along with
some design notes for experiments that we are in the process of developing.

The first key finding of this investigation is that systematic language and the expressive
and analytic properties of symbol systems are extremely important: abstractions cannot
be computed without symbol systems; analogies cannot be discovered without symbol
systems; models cannot be analyzed without symbol systems; and there are many other
processes that we think are necessary that are greatly facilitated by explicit symbol systems.

The difficulty is that symbol systems cannot be indefinitely elaborated without a cor-
responding reduction process (by the “Get Stuck” Theorems in the field of Computational
Semiotics, which studies the use of symbol systems by computing systems), so some kind
of balance must be kept between what the system needs to know and how much that
knowledge requires of its resources.

1 Introduction and Context

Our interest is in designing and deploying computing systems that can be trusted to help us
with difficult situations in environments that may be remote, hazardous, possibly even denied
or actively hostile. We expect to need much more autonomous capability in those systems,
both for actions that conform to our goals for the systems, and for appropriate adaptations to
unexpected or difficult conditions in their operational environment (which must often modify the
original goals). In these difficult environments, we may not be able to communicate with them
in any timely or even useful way, so they will need to have strong autonomy in their decision
processes for both action and adaptation. They will have to be “Autonomous Computational
Partners”.

This paper extends [20] with further implications and expectations, along with some further
design notes and some near term experiments.

We claim that the use of systematic languages and the expressive and analytic properties of
symbol systems are essential to the flexibilities and adaptiveness we expect for building capable
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autonomous computational partners, and we think that careful consideration of representations
and the symbol systems that define them, and how a computing system uses and even creates
them (this subject is called “Computational Semiotics” [29] [22]), will lead to advances in
adaptive behavior. We have already shown the advantages of flexibility at the computational
resource management level [23], [17], and this project is extending these advantages to the very
symbols in which the system processes and data are written (to a certain level of detail, selected
as an engineering design decision). In this paper, we describe the properties we deem essential
for improving autonomous systems in this way, primarily in data and model construction.

There are really only two classes of requirements for effective autonomy, other than correct-
ness (both are difficult): robustness and timeliness. Robustness means graceful degradation in
increasingly hostile environments [19], which to us implies a requirement for adaptability, and
timeliness means that situations are recognized “well enough” and “soon enough”, and that
“good enough” actions are taken “soon enough” [24], [6]. There is never any optimization here,
since that usually takes too much time and produces non-robust solutions.

2 Partner Properties

This is a non-exclusive list of what we think are the important properties that should exist in
any kind of computational partner [20], autonomous or not. They are predictability (we can
know what the system is likely to do), interpretability (we can follow what the system is doing),
and explainability (we can understand why the system did whatever it did, and why it did not
do something else).

These properties allow us to build viable mental and computational models of what that
system is and does, which we need to use for our own planning. One way to provide some of
the information needed is our notion of an “audit trail”, that is, a description of what was and
was not done and why (this requires essential elements of the decision process that made the
choice and the information used to support the decision, as well as the elements that precluded
or discounted other possible choices), with the implications that would result from making
alternative choices (this is much more than the usual kind of audit trail that records only what
was done, when, and sometimes why).

Other important properties are easily seen to have significant overlaps in purpose and func-
tionality. We choose only a few to elaborate further here (primarily for space reasons):

• verification and validation;

• behavioral constraint management;

• dynamic efficiency management;

• continual improvement; and

• representation.

We are certain that these are not all of the important properties, but we think they are enough
to make system behavior more amenable to difficult applications.

The terms verification and validation refer to two different but related aspects of a system.
Verification is about proving (or just demonstrating) that a system conforms to its specification
(“is the system built right?”), while validation refers to showing that a system satisfies the user
/ owner / operator / other stakeholder expectations (“is it the right system?”). We expect all
systems to undergo both processes during design time, before deployment, but we insist that
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it can also be performed by the system itself at run time [12]. The issue is that very often (we
claim almost always), the specifications for what is required are not complete or unambiguous
(and far too often not even correct). They very often do not specify what is supposed to
happen when hardware wears out or the environment does not cooperate (which we know is
almost always, eventually).

The term behavioral constraint management refers to a set of guarantees of system behavior,
each with context dependent gradations of these guarantees, ranging from “must do” to “must
not do”. It also includes graceful degradation in the face of failures or other problems (such
as the environment not conforming to the system’s expectations), with surprise, deficiency,
and degradation announcements to the system decision processes, and to the system operators,
when possible.

Any system can be overwhelmed by a sufficiently hostile environment; we cannot expect or
even hope to provide complete protection in all situations. We can, however, make the appli-
cation specific engineering judgments that decide how the system should to respond to system
threats, especially ones that appear to be getting more likely or more dangerous. Sometimes
the right answer is for the system to go into “safe-hold”, shutting down most processes until
conditions improve.

The term dynamic efficiency management means balancing appropriate efficiency with de-
sired robustness, at run time according to ambient conditions, with “compiled-out” design
decisions [7], [14] that can be revisited when conditions change. We call this “dynamic” effi-
ciency as an analogy with dynamic range in signals and human perception, since for us it is
a range (a region in an abstract space) of decision opportunities or action capabilities, while
in signal processing it is a range of amplitudes for specific measurable variables. This process
includes balancing flexibility and efficiency with assurance and robustness (more flexibility usu-
ally means assurance is harder to guarantee; more efficiency usually means less robustness); the
“management” part of the phrase means being able to change those decisions at run time.

The phrase continual improvement means that the system is examining its own behavior,
deciding where that is deficient (usually according to designer-provided criteria), and striving
to improve the models that give rise to the deficient behavior. Our main approach here is Model
Deficiency Analysis, which aims to assign blame for deficiencies and decide where new models
need to be built, or old models need to be adjusted. This process involves explicit construction,
selection, evaluation, and adaptation of models.

For us, representation is the key, since nothing can be computed without a representation.
These are almost always fixed in advance by expert designers, and each time that happens, a
large fraction of otherwise available adaptability is lost. We want our systems to be able to
change their frame of reference, which means change their representations, at multiple scopes
(ranges of considered concepts), and scales (levels of detail). We especially want our systems
to be able to detect unknown phenomena (because there is an effect on their models that is not
otherwise explained [31]), and devise experiments to understand their effect on the system, or
just ignore them and complain (eventually, when possible) to the system operators.

We get another clue from considering commonly desired properties of adaptive systems.
We defined a set of desired properties [24], and then devised a map of desired properties to
underlying capabilities:

• speed and scope of adaptability to unforeseen situations;

• rate of effective learning of observations;

• accurate modeling and prediction of the relevant external environment;
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• speed and clarity of problem identification and formulation;

• effective association and evaluation of disparate information; and

• identification of more important assumptions and prerequisites.

In [24], we showed that these capabilities can be provided by a system that has the following
processes:

• methods of retention and retrieval;

• methods of comparison and association;

• methods of representation (conceptual spaces);

• methods of evaluation in context;

• methods of abstraction, analogy, and simplification; and

• creation and use of symbolic language, and, in particular, layers of symbol systems.

These properties are the subjects of intense studies in many fields of computing, and we do
not believe that there is a widely supported consensus (and we are not sure that there will ever
be one, because the applications are so different in scope and difficulty). We offer no better
than notional descriptions here.

The first two are the simplest. Retention and retrieval is about saving and restoring
information, which can be difficult in light of the Get Stuck Theorems [22] [19].

Comparison and association (equal or related) are two of many ways to relate different
sets of information by content.

Representation underlies all of our theory about making information explicit so it can be
analyzed and shared, applied and improved (what are these expressions, what do they mean,
and how can they be analyzed).

Evaluation in context is an evaluation of significance of information (what does this
information mean to me here and now?). It must represent the (relevant part of the) context
and have some information about the significance of various phenomena. Of course, the level of
significance can change for the same information in a different situation, and the system must
manage that also.

An abstraction is a detail-independent description of a phenomenon, but it is not com-
plete without being related back to the original phenomenon. Making abstractions involves
identifying what roles those details play, and how to describe them so that other details can
step in when necessary.

An analogy is a comparison of certain aspects of two situations or contexts that are expected
to be similar, as a way of deciding what to do when there is no clearly applicable model.

Simplification just asks what aspects do not matter as much and what changes when we
ignore them? It is often a first step towards abstraction, and is often way too drastic.

For our part the last one creation and use of symbolic language is the most important,
since it is about how the system creates its own language to express what it has learned.
This process clearly requires creating simpler overall languages that do not have decideability
problems [10], so that common methods can produce analyzable languages [1].

Finally, [4] has argued that there is a common origin in biological systems of both language
and movement (biology being tremendously conservative about basic processing methods), so
that it seems important to examine layers of symbol systems for language applications, since
it has been so useful in simplifying computing system architectures (the internet, structured
programming, etc.).
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3 Enablers

There is a set of enablers that we believe can supply or at least support many of these afore-
mentioned properties. They have played a prominent role in recent work in Self-Aware and
Self-Adaptive Systems (see [26], [5], [16], [3], [2]), and we are using several results and ap-
proaches from that area in this design study.

We described the most important three earlier in [20]:

• Computational Reflection,

• Model-Based Operation, and

• Speculative Simulation.

(there were others, but only these were discussed).
“Computational Reflection” [17] is when a system has effective access to all of its internal

processes, so it can study them and change them. We have usually paired this with Continual
Contemplation [23] in our Wrapping integration infrastructure, to provide the system contin-
ual access to its own operations. Here, the issue is how to represent and reason about the
computational resources and the conditions for using them, so that they can be used in the
appropriate contexts, and different resources can be used in different contexts for the same
purpose (a simple version of this fact is that when you know that a finite matrix is symmetric,
that greatly reduces the amount of computation time needed to produce its eigenvectors, and
also improves the accuracy [11]). There are many examples of this algorithm improvement for
special cases. This is the “Problem Posing Paradigm” [23], which separates information ser-
vice requests (which we call “problems”, hence “problem posing”) from the information service
providers (which we call “resources”, generally meaning computational algorithms or structures
that can be queried for data or applied to produce that data), and maps one to the other us-
ing a context-dependent Knowledge-Based System. In addition (and this is what makes our
Wrapping approach unusual), all the resources that are involved in these maps are themselves
resources, and selected using exactly the same mechanism. This commonality supports many
kinds of flexibility in system operation.

“Model-Based Operation” is inherent in our “Self-Modeling” systems [25], since they are
defined as consisting entirely of models that are interpreted to produce whatever decisions or
actions are required, desired, expected, or just tried in experiments. Then, if a system can
change its models, it will change its behavior. This kind of modeling extends Model-Based
Engineering [32] to run time, and includes, not just the model definitions and interfaces, but
precise declaration of the responsibilities of each model, and the conditions under which it
is to be used. This approach clearly requires expressive representations of the models, their
prerequisites, their interfaces, the algorithms for deciding applicability, and the algorithms for
deciding that degradation has occurred and which replacement models to use.

In addition, explicit expression of all models and model processes allows “refactoring” [9],
which is (for our purposes) a rearrangement of the models and a reassignment of their original
responsibilities, generally intended to support better “separation of concerns” [8].

“Speculative Simulation” is the ability of a system to set up scenarios, evaluate them, and
use those results to choose courses of action, including changes of goals. It may also involve
refactoring of existing processes (computational resources) into new combinations. This one is
a little harder, but it requires the system to have not only good models of the system processes,
goals, and the expected environment, but also good models of phenomena that do not relate to
the actual task at all (for example, in automatic driving algorithms, there needs to be a model
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for detecting “squirrels” and accounting for what they might do; using a generic “anomalies”
model is much harder). And again we are back to representations.

4 Problems

These considerations are not without their difficulties. There is a large literature in multiple
communities that addresses some of these problems: Organic Computing [33], [30], which is
largely about the system qualities needed to enable collections of largely autonomous systems
to be effective in complex real-world environments, interwoven and self-integrating systems [3],
which are concerned with the difficult and dynamic boundaries between cooperating systems,
and how much a system needs to know about its own behaviors and capabilities to integrate
effectively into a team, autonomic systems [15], which are about keeping the underlying pro-
cesses running, in analogy with the autonomic nervous system, and even explainable artificial
intelligence, though that is currently largely limited to explaining a few classes of learning
algorithms.

We noted a few problems and questions earlier [20] that cannot be solved, only mitigated:
bad models, hardware failures, unforeseen circumstances and consequences, lack of data, and re-
liability of human and other partners (which we do not think is easily handled by the computing
system at all).

The problem with bad models is not just that they may not contain the required infor-
mation [28] [27], but that they can use it inappropriately, and even spew enormous amounts of
irrelevant or wrong data into the system’s communication processes. To that end, we described
“integrity fences” [18], which are interfaces between models that act as verifiers of correct-
ness and appropriate volume at run time. These act much like bulkheads on a submarine (or
other kind of ship): during normal operation, bulkheads do nothing. They are open. During
heightened difficulties, such as subsystem failures or perceived threats, they can be partially or
completely closed to prevent one problem from propagating to other subsystems. This is done
with software organized into multiple levels of protection and even multiple styles of threat.

For hardware failures, which we know will eventually occur, the system should have
multiple models of partially degraded subsystems, and mechanisms to identify which ones are
most appropriate to use for the recognized situation. The same is almost true for unforeseen
circumstances and consequences, which is a special (but harder) case of lack of data. The
difference is that with hardware, we know many of the ways in which it can fail (we have been
building and breaking things for at least thousands of years), but with software, our history
is much shorter, at most since the Jacquard loom in 1804, and arguably mostly after Charles
Babbage and Ada Lovelace in the 1840’s, and moreover, software is not subject to most of the
physical laws with which we are familiar, so we have little or no long-term experience with
software errors in comparison.

Missing data can occur in many ways: complex numerical calculations [27] are the most
prominent (and they can be easier to handle, with a number of mathematical techniques that
are beyond the scope of this paper), but we are mostly considering other kinds of structured or
non-numerical data, and what we think the system should do [20].

There are processes for completing analyses or explanations and representations of the re-
sulting structures [21] that can identify that something is missing, such as a behavior offer from
a resource satisfying almost all of the conditions in the request. We would like the system to
ask for the missing data, the way many web servers already do, but in our applications, we are
not easily available to ask. It is still therefore usually quite hard to determine what exactly
is missing, but that will be somewhat easier in the limited application domains we expect to
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consider first. The system can sometimes know that something is missing by examining these
structures for missing data.

There are analysis or explanation frameworks [21] that are mostly complete, missing only
one or two steps. The system can decide that it needs to know something it doesn’t know
because of the missing steps.

The system can decide that it needs to do an experiment when it has no models to apply
exactly to the perceived situation (or it can just call home, and at some level of complexity, it
must).

For each of the above enablers, and for most of the above problems, we have explained that
we expect to reduce or at least mitigate the issue with explicit models, because that allows
the issue to be studied directly, instead of only through its appearance in the software, and its
effects on software errors. This is primarily a representation issue: building and using the right
representations for the problem at hand. What the designers need to do is not only build initial
models for the situations that are expected, but also provide mechanisms to improve them.

The first key finding of this investigation is that the use of systematic language and the
expressive and analytic properties of symbol systems are extremely important: abstractions
cannot be computed without symbol systems; analogies cannot be discovered without symbol
systems; models cannot be analyzed without symbol systems; and there are many other pro-
cesses that we think are necessary for effective autonomy that are greatly facilitated by explicit
symbol systems. We are not trying to solve hard or impossible problems; we only need “good
enough” responses computed “soon enough” [6].

The difficulty is that symbol systems cannot be indefinitely elaborated without a correspond-
ing reduction process (the “Get Stuck” Theorems in the field of Computational Semiotics, which
studies the use of symbol systems by computing systems, show this [22]), so some kind of balance
must be kept between what the system needs to know and how much that knowledge requires
of its resources [19]. Of course, changing the symbol system does not eliminate the problem; it
just pushes it farther away. But that might be good enough for the application. How much of
this balance to leave to run time is an important application specific design decision.

5 Conclusions and Prospects

We have described some important properties that should be available in every system that we
use as an augmentation of our abilities “in the wild” [13], especially if we cannot go out into
that wild. We have shown that most of them are difficult, which is why they are not common
in such systems, but also that all of them can be addressed with the appropriate system and
software architecture to varying levels of success.

The most prominent among them are, in decreasing order of difficulty, representation man-
agement, model creation, and integration infrastructure, with the last one being largely solved
[23] [17], the second one having plausible approaches [21] [20], and the first one having no more
than seemingly possible beginnings [22] [9]. But they all come down to careful management of
representation (creation, comparison, application, evaluation, and improvement).

As a simple experiment to consider approaches to the first hard problem, that of repre-
sentation management, we consider the application domain of patient monitoring in hospitals.
The display devices may have dozens of active measurements taken quite often, and adjusting
the representations used according to ambient conditions (both patient and room environment)
is simple and constrained enough to be addressed. The purpose would be to determine what
the measurements need under different conditions, and computing likely a greatly reduced data
volume, which could be important in an emergency involving large numbers of patients. In ad-
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dition, there is a large amount of information available about the necessary medical knowledge.
This is not the main experiment on autonomy, since it could only be carried out under strict
continuing medical supervision (and appropriate legal conditions), but it is a way to use real
data to consider the representation problem.
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